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 24 

  Abstract  25 

Investigating the relationships between diversity indices and ecosystem functions within the 26 

mass‐ratio and niche complementary hypotheses is still a challenging issue in terrestrial 27 

ecology. These relationships have not been studied along a dieback gradient of disturbance in 28 

semiarid forest ecosystems. To fill this gap, we investigated the relationships between a main 29 

ecosystem function -soil carbon storage- and various diversity indices along a dieback intensity 30 

gradient (no, low, moderate or high dieback intensity) in protected or intensively managed 31 



mixed oak forests in western Iran. We used different diversity approaches and calculated the 32 

functional divergence index (FDvar), community weighted mean trait values; CWM, taxonomic 33 

diversity indices (richness, Shannon–Wiener diversity and evenness) and structural diversity 34 

indices (MI: mingling index, HD: height differentiation, DD: diameter differentiation). Soil 35 

carbon storage was significantly influenced by the type of management, the intensity of dieback 36 

and their interactions and was higher in the protected areas (95.90 ± 4.62 ton ha- 1) than in the 37 

intensively managed areas (76.52 ± 2.04 ton ha-1). It showed a humped-shaped pattern along 38 

the dieback intensity gradient in the protected areas, as it peaked at the low dieback intensity 39 

(122.47 ± 10.12 ton ha-1), indicating that soil function was maximized at a low disturbance 40 

level. Soil carbon storage was positively and significantly correlated with all structural and 41 

taxonomic diversity indices, except for evenness, but negatively with most functional 42 

composition indices (CWM of LNC: leaf nitrogen concentration, H: mean of woody species 43 

height and LDMC: leaf dry-matter content). It was best predicted by a structural index 44 

(Mingling index: R2=0.214) followed by a taxonomic index (species richness, R2=0.173) and a 45 

CWM index (CWM LDMC, R2=0.158). Our results emphasize the role played by the diversity 46 

indices to predict ecosystem functions in contrasted management conditions and along a 47 

dieback gradient. They also provide evidence to support both the mass‐ratio and niche 48 

complementary hypotheses. 49 

Keywords: Ecosystem function, forest management, biodiversity, woody species. 50 
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Introduction 54 

Forest vegetation and soils are major reservoirs of carbon storage which make forests the largest 55 

carbon sink in terrestrial ecosystems (Schimel et al., 2001; Zhang et al., 2019; Jhariya, 2017; Qiu 56 

et al., 2020) and major contributors in buffering climate change (Aishan et al., 2018; Gordon et 57 

al., 2018; Klemm et al., 2020). Forest ecosystems, as atmospheric carbon dioxide filters, have a 58 

high potential for storing carbon in wood and other organic matter (Watson et al., 2000) and 59 

therefore play an important role in stabilizing the global carbon cycle contributing to the climate 60 

stability and preventing global warming (Zhu et al., 2010). However, the amount of carbon stored 61 

in soils is about four times the amount of carbon stored in the biomass and 3.3 times the amount 62 

of carbon in the atmosphere (Lal, 2004). Therefore, any change in the environmental conditions 63 

of the forest ecosystem or in management measures can significantly influence soil carbon and 64 

biomass storage and more globally the overall ecosystem carbon flow and atmospheric carbon 65 

dioxide content (Han et al., 2008; Brahma et al., 2018; Marques et al., 2019; Ghosh et al., 2020). 66 

Limiting the increase in  atmospheric carbon is not just a matter of reducing its emission, and 67 

methods favoring the  carbon storage in the vegetation and subsoil can also represent cost-68 

effective, simple and practical methods (Richards and Stokes, 2004; Cho et al., 2019).  In 69 

particular, the protection and restoration of forest areas can play a key role in balancing the carbon 70 

cycle as vegetation degradation can reduce carbon storage and increase carbon dioxide emissions. 71 

Carbon sequestration potential in forested areas is affected by plant species, climate, and the way 72 

biomass is managed, exploited, and used (Singh et al., 2003; Ruiz-Peinado et al., 2017). For 73 

example, the capacity of woody plants for carbon sequestration is species-dependent (Thomas et 74 

al., 2007). In fact, carbon allocation in the different organs of the woody species is a key factor in 75 

the carbon cycle since they have different lifespan and decomposition rates (Pilli et al., 2012). 76 

Besides, human actions or natural events leading to site degradation are also crucial factors altering 77 

carbon storage of the ecosystem (Ahmad et al., 2018). This applies particularly to large forest 78 

dieback. 79 

Indeed, in the last two decades, a widespread phenomenon named tree dieback has been reported 80 

in many forest ecosystems over the world (Ibáñez et al., 2017; Ogaya et al., 2020; Sánchez-81 

Salguero and Camarero, 2020). This phenomenon occurred with different intensities in western 82 

forests of Iran and affected several major tree species including the Persian oak (Quercus brantii 83 

Lindl.) (Karami et al., 2018; Shiravand and Hosseini, 2020). In general, this forest decline is 84 



attributed to climatic factors and particularly long and recurrent periods of drought but habitat 85 

destruction, pests and diseases, as well as non-adaptive management can cause or exacerbate this 86 

phenomenon (Kamata et al., 2002; Touhami et al., 2019; Hevia et al., 2019). 87 

However, the effect of site degradation and non-adaptive forest management on the severity of this 88 

phenomenon has not received much attention (Haller and Wimberly, 2020). According to the 89 

intensity of the dieback, a more or less significant part of the plant decays and disappears, which 90 

can lead to the gradual elimination of some plant species and modify the species composition and 91 

diversity of the ecosystem (Koepke et al., 2010; Nagel et al., 2019). Numerous studies have 92 

examined the effects of disturbances (in particular drought) on tree growth and C storage  93 

(Brouwers et al., 2013; Avila et al., 2016; Takahashi et al., 2020), but  the effects of different 94 

dieback intensities under contrasted management regimes have been more rarely studied. 95 

Among the main factors affecting the carbon storage of land ecosystems species diversity plays a 96 

crucial role (Steinbeiss et al., 2008; Sintayehu et al., 2020). Diversity usually includes the number 97 

of species (richness) and their abundance but to get deeper insight into the ecosystem processes 98 

different functional characteristics of plants must be considered (Dı́az and Cabido, 2001). Based 99 

on these plant traits, a new group of biodiversity indices, called functional diversity indices, has 100 

emerged and has been largely used in numerous ecosystems (Tilman, 2001; Conti and Díaz, 2013; 101 

Kuebbing et al., 2018; Wang et al., 2020). They not only consider the abundance of plants within 102 

the community but also integrate the value, the range, the distribution and frequency of various 103 

functional traits (Dı́az et al., 2007). In recent years, functional diversity indices have been used to 104 

evaluate different ecosystem functions including carbon storage (Tahmasebi et al., 2017; Häger 105 

and Avalos, 2017; Heydari et al., 2020 a) and better results were obtained than by using classical 106 

indices (such as Shannon and Simpson diversity index) (e.g. Siebenkäs and Roscher, 2016). For 107 

instance, functional traits using height and wood density of tree or shrub species were shown to be 108 

directly related to soil biomass and carbon storage, while leaf dry matter content was negatively 109 

related to biomass and carbon storage (Tahmasebi et al., 2017; Rawat et al., 2019). Also, higher 110 

nutrient uptake rates (such as nitrogen and phosphorus) and higher specific leaf area (SLA) 111 

increase photosynthesis and ultimately the plant carbon storage (Herms and Mattson 1992; Poorter 112 

and Garnier, 2007; Freschet et al. 2012).  Therefore, the use of functional traits of plants can 113 

increase our knowledge of changes in ecosystem carbon storage.  114 



In addition, the forest structure often reflects the effect of past management actions or natural 115 

disturbances (Heydari et al., 2017; Haber et al., 2020 a) and descriptors of this structure can also 116 

be effective in predicting changes in various ecosystem functions, including carbon storage (Zhang 117 

et al., 2018; Ali, 2019). Although a great variety of indices has been used to explore many 118 

ecosystem functions, we still largely ignore to what extent these indices can be used in forest 119 

systems submitted to forest decline and different management conditions. In this study, we used a 120 

gradient of forest dieback in semi-arid oak ecosystems under two contrasted types of management 121 

to investigate the relationships between taxonomic, functional and structural diversity indices and 122 

soil carbon storage. Our assumptions are the following: (1) soil carbon storage is affected by the 123 

type of management (conservation vs traditional intense use) and the intensity of dieback, (2) 124 

among the indices used, those based on community-weighted mean (CWM) functional traits better 125 

predict soil carbon storage changes along the dieback gradient in the two management systems, 126 

(3) simultaneous use of all diversity approaches (taxonomic, functional and structural) increases 127 

the predictability of changes in soil carbon storage, (4) CWM trait values can better explain the 128 

separation between the two types of management  than the other approaches. 129 

 130 

 131 

Material and methods  132 

Sites description 133 

The study area is located in semi-arid mixed oak forests in Ilam county (western Iran). These 134 

forests initially hosted a particularly rich flora including many endangered species and are still 135 

recognized as a hotspot of biodiversity. However, forests were submitted to long history of human 136 

disturbances (e.g. firewood exploitation, grazing and fire) altering main ecological functions and 137 

diversity. Two adjacent forest areas with the same physiographic conditions (average slope less 138 

than 20 %, same altitude and similar site conditions) were selected (Figure 1). These two areas 139 

were initially covered by dense forests centuries ago but were then intensively exploited and 140 

degraded due to the high dependence of people's livelihood on forest resources in particular cutting 141 

down trees for fuel consumption and charcoal production and livestock grazing. After the 142 

implementation of national policies approved 50 years ago in Iran, one of the two areas was 143 

protected by the Natural Resources Office from any anthropogenic disturbances (protected area) 144 

while the other was left to the traditional intense use (degraded area). The predominant species in 145 



these forests is the Persian oak (Quercus brantii Lindl.), accompanied by some tree and shrub 146 

species such as Acer monspessulanum L. subsp. Cinerascens (Boiss. Yaltirik), Pistacia atlantica 147 

Desf., Crataegus pontica K. Koch., Cerasus microcarpa Boiss. and Daphne mucronata Royle. In 148 

the degraded area, only scattered individuals of oaks with large stem diameters and pistachio are 149 

found, while the other woody species are very scarce. In contrast, in the protected area oak trees 150 

are more frequent and of smaller diameter and mixed with different tree and shrub species. 151 

Usually, the density of woody species in the study area varies from 30 to 100 stems per hectare. 152 

The soil of both areas is a shallow calcareous clay loamy soil (average depth: 30 to 40 cm) with 153 

abundant small and large stones on the soil surface. 154 

According to long-term statistics of the nearest meteorological station, the mean annual 155 

precipitation and the mean annual temperature are 652.6 mm and 17 °C respectively. This region 156 

is generally described as sub-Mediterranean with a completely seasonal rainfall distribution which 157 

peaks at autumn (Fathizadeh et al., 2017).  158 

Since 2001, a phenomenon known as dieback or sudden death of tree species has occurred leading 159 

to drying up of trees partially or totally.  Oaks were particularly affected and symptoms of decay 160 

were of variable intensity. The causes of this forest decline are still not well known, although some 161 

researchers have attributed this phenomenon to the stresses of prolonged drought periods 162 

(Goodarzi et al., 2019; Shiravand and Hosseini, 2020). 163 

 164 

  165 

Experimental design and sampling 166 

In each of the two forest areas, forty sample plots of 1000 m2 were evenly allocated in each of the 167 

four dieback intensity classes (low, moderate, high or no). Classes were defined using visual 168 

criteria of dieback as follows: 169 

 High intensity dieback: trees with at least 3:4 of their canopy dry and with deep cracks on most 170 

parts of the trunk. 171 

 Moderate intensity dieback: 1:4 to 1:2 of the tree canopy is dry with some cracks and holes on the 172 

trunk. 173 

 Low intensity dieback: less than 1:4 of the canopy is dry and no other signs of rot, holes and cracks 174 

on the trunk are visible. 175 

 No dieback:  healthy trees without signs of dieback.  176 



 177 

 178 

At each each plot, three soil samples were randomly collected from the 0-30 cm layer, mixed 179 

together to produce one composite soil sample. Soil samples (total: 80) were immediately 180 

transferred to the laboratory for analysis. Additional undisturbed soil cores were sampled in the 0–181 

30 cm mineral layer andsoil bulk density (BD) was measured (Black and Hartge, 1986). Soil 182 

organic carbon (SOC) was determined by the Walky and Black wet oxidation method (Nelson and 183 

Sommers, 1982). 184 

The soil carbon storage (CS) was calculated by equation 1 (Qin et al., 2016): 185 

CS (t/ha) = SOC (%) × BD (gr/cm3) × SD (cm) × 10-1        (Equation 1) 186 

 187 

where SOC is soil organic carbon, BD is soil bulk density and SD is soil depth (30 cm). 188 

 189 

 190 

Measurements of the functional traits 191 

In order to evaluate functional diversity at the plot level, several traits related to carbon storage 192 

were measured (Finegan et al., 2015; Ali and Yan, 2017). For different tree and shrub species, 193 

twenty well grown and without damage leaves were collected from the southern direction of 194 

the canopy. Samples were put into an ice box and transferred to the laboratory to measure the 195 

fresh and dry (48 hours in it at 70 ° C) leaf weight and the leaf area (mm2). The leaf dry-matter 196 

content (LDMC) (mg g–1) was calculated as the oven-dry mass (mg) of a leaf, divided by its 197 

fresh mass (g). Specific leaf area (SLA) was determined as fresh leaf (mm2), divided by its 198 

oven-dry mass (mg) (Perez-Harguindeguy et al., 2013). 199 

For each woody species, we collected one wood sample on ten individuals at 1 m height using 200 

a tree corer. These wood samples were dried in an oven at 105 °C for 24 hours (Henry et al., 201 

2010). Wood density (WD) (g cm–3) of each sample was obtained as the ratio of the dry weight 202 

divided by the volume which was measured using the change in volume after immersion in 203 

distilled water in a beaker (cm3). The phosphomolybdic blue colorimetric technique (Anderson 204 

and Ingram, 1993) and Kjeldahl method (Bradstreet, 1965) were used to determine P and N 205 

concentration in leaves (LPC and LNC, respectively; mg.g−1), respectively. 206 

 207 



 208 

 209 

 210 

Calculation of taxonomic, structural and functional diversity indices 211 

For the woody species, we calculated at plot level different taxonomic diversity indices 212 

including the number of woody species, the Shannon Wiener diversity index (H'), the Richness 213 

(S) and the Pielou's evenness (E) using the Ecological Methodology software, version 7. 214 

The community weighted mean (CWM) trait values and the functional divergence index 215 

(FDvar) were used to determine the effects of dominant species (selection effect) and diversity 216 

(niche complementary effect) (Tahmasebi et al., 2017; Rawat et al., 2019). 217 

CWM were calculated using the trait value of each woody species weighted by its abundance 218 

(Equation 2) whereas FDvar was computed using the variance among the traits values of the 219 

plant species recorded on a plot and weighted by the abundance of each species in the 220 

community (Equation 3) (Mason et al., 2005; Conti and Díaz, 2013; Ali et al., 2017; Wen et al., 221 

2021). 222 

 223 
𝐶𝑊𝑀  = ∑ 𝑃   𝑇     (Equation 2) 224 

 225 
 226 

𝐹𝐷  =  𝑎𝑟𝑐𝑡𝑎𝑛 (5𝑉) 𝑎𝑛𝑑 𝑉 = 𝑃    (𝑙𝑛𝑇  − 𝑙𝑛T)     (Equation 3) 227 

 228 
 229 

Where CWMx is the CWM for trait x, S is the number of species in the community, Ti is the 230 

trait value for the ith species, Pi is the relative abundance of the ith species in the community, 231 

FDvar is the functional divergence index.  232 

The structural indices of woody species including the mingling index (Equation 4), the height 233 

and diameter differentiation indices (Equation 5) were calculated using the following equations 234 

(Pommerening, 2002): 235 

𝑀 = 𝑉   𝑀 𝜖 [0, 1]                       (Equation 4) 236 

where Mj is species mingling, n is the number of the nearest neighbors (n=3); Vij = 1, if the 237 

reference tree j and neighbor tree i are different tree and shrub species and 0 otherwise. High values 238 

of this index represent a high species mixture or a high presence of other tree and shrub species.  239 



In each plot, a woody species was randomly selected as the reference tree (i) and the three nearest 240 

neighbor woody species (j) were marked to compute the following indices (Equation 5):   241 

𝑇 =
1

𝑛
𝑇  242 

𝑇 = 1 −
(  .  )

 (  .  )
    or 𝑇 = 1 −

(  .  )

 (  .  )
         Ti 𝜖 [0, 1]       (Equation 5) 243 

These equations were used for the three pairs of reference woody-neighbor woody species and the 244 

Tij indices were calculated as the mean of the three individual calculations. The higher value of 245 

the index (close to 1) indicate a higher diversity in terms of tree size. 246 

 247 

Statistical analysis 248 

Prior to statistical analysis, the assumptions of normality and homogeneity of variance were 249 

checked using the Shapiro-Walk test and Levene test, respectively. The effects of dieback intensity 250 

and management (protection vs. degradation) and their interactions on carbon storage were tested 251 

using general linear models (GLMs) followed by post-hoc Duncan's multiple range test. Pearson’s 252 

correlation coefficients were used to evaluate the relationships between soil carbon storage and 253 

structural, taxonomic and functional diversity indices. Stepwise multiple regressions between soil 254 

carbon storage and different diversity approaches were produced to predict the main factors 255 

affecting carbon storage. A principal component analysis (PCA, using PC-ORD version 5 sofware) 256 

using the various diversity indices was performed to visualize plots distribution along the first two 257 

axes of the analysis. We wanted to test if the various diversity indices (i.e. functional divergence, 258 

functional composition, taxonomic and structural indices) were efficient in segregating the 259 

different dieback intensity classes (no, low, moderate or high dieback intensity) in the two areas.   260 

 261 

 262 

Results 263 

Effect of dieback and management on soil carbon storage 264 

Soil carbon storage was significantly influenced by the type of management, dieback intensity and 265 

their interaction (Table 1). Soil carbon stocks were significantly higher in the protected area (95.90 266 

± 4.62 t/ha) than in the degraded area (76.52 ± 2.04 t/ha) and peaked in the low dieback intensity 267 



class of the protected area (122.47 ± 10.12 t/ha), while no difference was found among the intensity 268 

classes in the degraded area (Figure 2). 269 

Soil carbon storage was positively correlated with structural, functional diversity (i.e. FDvar of 270 

LDMC, H and WD) and taxonomic diversity indices except for species evenness (negative 271 

correlation). Similarly, all structural and taxonomic diversity indices with the exception of 272 

evenness, positively correlated with CWM of leaf phosphorus content (LPC) and specific leaf area 273 

(SLA), and negatively with CWM of LNC, H and LDMC. It was noteworthy that the examination 274 

of the correlation values with evenness revealed an exact opposite pattern as that observed with all 275 

structural and taxonomic diversity indices (Figure 3). 276 

 277 

 278 

Models of soil carbon storage  279 

We produced models of soil carbon storage using either functional, taxonomic or structural 280 

diversity indices as predictors. We found that all taxonomic diversity and all structural indices 281 

were included in the final models as well as almost all of the CWM traits (CWM-LPC, CWM-282 

LNC, CWM-H, CWM-LDMC, and CWM-SLA). In contrast, for the functional divergence, only 283 

FDvar-WD was found significant. Considering all the models, FDvar-WD, CWM-LDMC, species 284 

richness (S) and mingling index (MI) were the best predictors of soil carbon storage for the 285 

different diversity approaches (i.e., functional divergence (FD), functional composition (FC), 286 

taxonomic diversity (TD) and structural diversity (SD)). Lastly, the final model taking into account 287 

all types of indices (total model) showed that the mingling index (MI) alone was the best model to 288 

predict changes in soil carbon storage (R2 = 0.173; P-value = 0.002) along the  dieback intensity 289 

and management gradients (Table 2).  290 

  291 

Results of the PCA 292 

Results of the principal component analysis (PCA) using all types of indices showed that the first 293 

two axes of the PCA represented a total variance of 78.37 % (59.48 % for the first axis and 18.89 294 

% for the second axis). Projection of the plots showed that the degraded area was clearly separated 295 

from the protected area along the first axis while, there was no clear separation among the dieback 296 

intensity classes. Functional traits such as H, LNC, LDMC and species evenness were the most 297 

important to identify plots of the degraded area as a group whatever the dieback intensity class, 298 



while this role was played by diversity indices (MI, HD and DD) and species richness for plots of 299 

the protected area (Figure 4 and Table 3). PCA analyses were also achieved by using only one type 300 

of diversity approach (Appendix 1).  By this method, we found that each approach was able to 301 

separate the protected area from the degraded area but especially when using the structural and 302 

CWM indices (Appendix 1a and 1b). In contrast, only the structural indices were able to segregate 303 

the different dieback intensity classes, especially in the protected area. Plots belonging to the low 304 

and moderate dieback intensity classes were characterized by similar mingling indices (Appendix 305 

1d). 306 

 307 

  308 

Discussion 309 

Influence of management and dieback intensity on soil carbon storage 310 

Our results clearly showed that soil carbon storage was higher in the protected area than in the 311 

degraded area. Carbon sequestration rate is closely related to a large variety of factors including 312 

taxonomic and structural characteristics of the forest stands (e.g. density, composition and species 313 

diversity), land use change, past management actions (e.g. intense or conservative measures), as 314 

well as soil properties (Lal, 2005; Jandl et al., 2007; Hammad et al., 2020; Tong et al., 2020). The 315 

woody forest vegetation obviously plays a very important role in soil carbon storage in 316 

sequestering atmospheric C in their wood biomass resulting from the process of photosynthesis 317 

(Brown and Pearce, 1994). A too intensive forest management can reduce the forest cover and 318 

limit the litter inputs, can decrease soil porosity by soil compaction or can enhance soil dryness 319 

and leading to erosion of the soil surface. All these processes can impair the forest production 320 

cycle and the storage of carbon in the soil (Upadhyay et al., 2005; Li et al., 2017). Land-use change, 321 

and particularly deforestation, by changing the predominant type of vegetation also effectively 322 

affects C fixation and soil respiration (Post and Kwon, 2000). Soil carbon storage is usually 323 

reduced and the soil carbon fluxes also modify due to profound changes in the nature and activity 324 

of soil CO2 emitters (Dixon et al., 1994).We also noted a significant influence of dieback intensity 325 

on soil carbon storage. More precisely, the highest amount of soil carbon storage was observed in 326 

the low dieback intensity in the protected area wile no change was recorded in the degraded area. 327 

In the low dieback intensity class, only a small portion of the crown foliage (mainly leaves and 328 

twigs) was lost increasing the inputs in easily decomposable organic matter. This process could 329 



have increased soil carbon storage considering that all other environmental factors remained 330 

favorable due to the absence of marked disturbances in this protected area. In contrast, when 331 

dieback was more pronounced, the photosynthetic activity and growth were reduced which could 332 

have limited the amount the stabilized carbon in the biomass and eventually the soil (Ryan et al., 333 

1997; Cook et al., 2008). Besides, in stands showing severe symptoms of dieback (i.e. with a large 334 

portion of the canopy dried up), the quantity and quality of litter inputs are likely to be changed 335 

(Cobb et al., 2013; Cobb and Rizzo, 2016). Microclimatic conditions are also modified particularly 336 

due to the reduction of the canopy cover. In particular, the exposition of the soil surface to direct 337 

sunlight is increased and the temperatures are more variable due to a loss of the buffering effect 338 

by the overstorey vegetation. These more instable conditions and reduced inputs of organic matter 339 

can limit soil microbial activity and decomposition which in turn limit soil carbon storage (Sanji 340 

et al., 2020; Karmakar et al. 2016; Berenstecher et al., 2020). Consistent with our results, Pandey 341 

et al. (2020) studying oak forests (Quercus leucotrichophora) in central Himalaya in degraded and 342 

undisturbed conditions, showed that degradation reduced tree density, tree biomass and 343 

consequently carbon sequestration up to 73% and total soil carbon storage up to 79%.  344 

The humped-shape pattern of soil carbon storage along the dieback intensity gradient in the 345 

protected area is in line with the intermediate disturbance hypothesis (Connell, 1978). According 346 

to this hypothesis, ecosystem performance or ecosystem functions (such as soil C sequestration) 347 

are maximized at low to medium disturbance intensities, while at the beginning and end of the 348 

disturbance gradient (i.e. the control and the high dieback intensity in this study) they are reduced. 349 

In our semi-arid oak forests and in absence of marked degradation, a minimal disturbance such as 350 

a low defoliation comparable to a moderate natural pruning can reduce intra- and interspecific 351 

competition and increase ecosystem function (Lin et al., 2018; Bai et al., 2020). 352 

 353 

Modeling soil carbon storage according to different diversity approaches 354 

The establishment of such relationships between species diversity and structural features of the 355 

plant community and ecosystem functions is of a high interest to investigate key processes like 356 

productivity or nutrient retention (e.g. Chen, 2006). It is noteworthy that the mingling index (a 357 

structural index strongly associated with the changes in tree species proportions) (Keren et al., 358 

2020) can be a suitable index in expressing the amount soil carbon change because different woody 359 

species have not same potential in litter (quality and quantity) production (Joly et al., 2017; Cakır 360 



and Makineci, 2020; Heydari et al., 2020 b). The existence of positive relationships between 361 

structural indices (mingling or DD and HD) and soil carbon storage clearly supports the niche 362 

complementarity hypothesis and emphasizes the positive role of diversity in forest structural 363 

features on ecosystem functions as reported by previous other studies (Lin et al., 2016; Fotis et al., 364 

2018). This result can be explained by considering the influence of the forest structure on soil 365 

processes. In fact, soil carbon content is closely related to the composition and activity of 366 

microorganisms involved in the decomposition process, which is controlled for a part by the 367 

composition and structure of the stand (Van der Heijden et al. 1998; Tedeschi et al., 2006). Forest 368 

dieback negatively affects soil carbon storage by eliminating some sensitive species, as shown by 369 

a clear variation of mingling index value, and by changing stand structural characteristics as shown 370 

by previous studies (Aynekulu et al., 2011; Tenzin and Hasenauer, 2016). Modification of the 371 

species composition also implies a variation in biomass accumulation and litter production which 372 

affect carbon storage in the ecosystem (e.g. Chen, 2006; Vesterdal et al., 2013).  The role played 373 

by structural indices is also more clearly visible along a gradient of dieback intensity: when the 374 

dieback is pronounced, stand composition and structure are likely to be largely modified (Martin 375 

et al., 2015; Renne et al., 2019) and soil carbon storage affected (Spielvogel et al., 2009; Xiong et al., 376 

2011). Similarly, taxonomic diversity indices are more efficient predictors of soil carbon storage 377 

along the dieback intensity gradient than functional diversity indices. A possible explanation can 378 

be a large functional redundancy among the species in our study area. The role played by a specific 379 

species is also supported by other species, consequently the value of the functional index may 380 

remain stable even if the species is removed from the community. Under these conditions, the 381 

evenness index, which depends on the percentages of presence of the different species, can be 382 

more efficient in showing the effect of different dieback intensities on ecosystem functions 383 

(Omidipour et al., 2021).  However, in the intense dieback intensity class where many species are 384 

eliminated, the species richness index also performs well. 385 

Woody species evenness was negatively related to soil carbon storage and previous studies have 386 

also reported negative relationships between evenness and various ecosystem functions (Wilsey 387 

and Potvin, 2000; Kardol et al., 2010; Vance‐Chalcraft et al., 2010; Van Con et al., 2013) while 388 

no significant relations were found in other studies (Weiher and Keddy, 1999; van Rooijen et al., 389 

2015). These apparently contradictory results may be explained by the differences in the 390 

ecosystems and in the functions under study. In this regard, Omidipour et al. (2021) reported 391 



negative relationships between evenness and ecosystem functions in steppe-desert and semi-steppe 392 

regions but no significant relationships in Mediterranean rangelands of central Iran. In general, 393 

evenness plays a more important role in areas where dominant species have a greater contribution 394 

in ecosystem functions (Maestre and Reynolds, 2006; Omidipour et al., 2021). In these areas, the 395 

increase in evenness which negatively influences ecosystem functions, is usually controlled by the 396 

decrease in the abundance of the dominant species and the increase in the abundance of other 397 

plants (Omidipour et al., 2021). These findings are consistent with the mass ratio hypothesis. This 398 

hypothesis proposes that the rate of an ecosystem function such as biomass production is primarily 399 

determined by the traits of the dominant species. The evenness index is sensitive to variation of 400 

frequency rather than the number of species (Chapin Iii et al., 2000; Wilsey and Potvin, 2000). In 401 

our study area, oak is the by far the dominant woody species which frequency is primarily affected 402 

by the forest dieback, this can explain why evenness is a significant predictor of ecosystem 403 

functions (Mulder et al., 2004). 404 

Among all the community-weighted mean (CWM) traits, CWM-LDMC showed a negative 405 

relationship with soil carbon storage. In the degraded area with a low soil carbon storage, the 406 

dominant oak trees are old and large and produce thick lignin-rich leaves explaining high LDMC 407 

values (König et al., 2018). Some studies indicated that high LDMC values in a community are 408 

related to the predominance of conservative species growing in a low-production environment 409 

similar to the degraded area in this study (Garnier et al., 2004; Finegan et al., 2015). The SLA 410 

index was positively correlated with soil carbon storage. Leaf is the most important carbon-411 

stabilizing organ during photosynthesis and therefore leaf properties have a high ability to predict 412 

carbon storage (Tahmasebi et al., 2017). Functional characteristics of plants related to 413 

photosynthetic such as CWM-SLA play an important role in ecosystem carbon storage and carbon 414 

balance (De Deyn et al., 2008; Finegan et al., 2015). Therefore, the high CWM-SLA values of 415 

wood species in the protected area at low dieback intensity can be related to an enhanced 416 

photosynthetic efficiency explaining a positive effect on ecosystem carbon storage. 417 

The combined use of all diversity assessment approaches was able to separate management 418 

conditions (the degraded vs. protected area) but not the different dieback intensity classes.  Used 419 

separately, each approach –but especially the structural and CWM approaches- was effective in 420 

separating protected and degraded areas. However, only structural indicators proved efficient in 421 

segregating the different dieback intensities, especially in the protected area. These results put 422 



forward that most diversity indices and trait values are primarily influenced by anthropogenic 423 

disturbances and management actions while the effect of dieback is less pronounced at least at low 424 

intensity.  425 

 426 

 427 

 428 

Conclusion  429 

In this study, we have investigated the predictability of soil carbon storage by taxonomic, 430 

functional and structural diversity approaches under different management conditions (protected 431 

vs. degraded) and along a dieback intensity gradient.  We found that soil carbon storage was clearly 432 

improved in the preserved area compared to the degraded area and was the highest in the low 433 

dieback intensity class of the protected area. This result emphasizes the positive role played by a 434 

moderate disturbance which can reduce intra- and interspecific competition and maximize 435 

ecosystem function in line with the intermediate disturbance hypothesis. The structural diversity 436 

indices were the best predictors of soil carbon storage followed by the taxonomic diversity and 437 

functional composition indices, in contrast to the functional divergence indices. Therefore, the use 438 

of such structural diversity indices can be efficient tools to increase our understanding of changes 439 

in soil carbon storage which represents a key ecosystem function in semiarid forests. Besides, the 440 

positive correlation of the structural, composition and taxonomic diversity indices as well as the 441 

negative correlation of species evenness and functional composition (CWM of LNC, H and 442 

LDMC) with soil carbon storage provide evidence to support both the mass‐ratio and niche 443 

complementary hypotheses. 444 
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  770 

Fig 1. Location of the study area in Ilam province (a), west of Iran (b), the degraded area (c) 771 

and the protected area (d).  772 
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 786 

Fig 2. Comparison of the mean soil carbon storage between the different dieback intensity classes 787 

in degraded (a) and protected (b) areas. Uppercase letters indicate significant differences between 788 

the two areas and lowercase among the intensity classes within the same area (Duncan's multiple 789 

range test). 790 
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 805 

Fig 3. Heat map for Pearson’s correlation coefficients between soil carbon storage and structural, 806 

taxonomic and functional diversity indices; the color and size of the pie chart denotes the 807 

magnitude and direction of the relationship (red and blue circles represent negative and positive 808 

correlation, respectively); CS: carbon storage, CWM: community weighted mean, Fdvar: 809 

functional divergence, LPC: leaf phosphorus concentration,  LNC: leaf nitrogen concentration, H: 810 

mean of woody species height, LDMC: leaf dry-matter content, SLA: specific leaf area, WD: wood 811 

density,  MI: mingling index, HD: height differentiation, DD: diameter differentiation, S: Richness 812 

, H′: Shannon–Wiener index  and E: evenness  813 
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 817 

Fig 4. Principal Component Analysis (PCA) ordination diagram showing the distribution of the 818 

plots along the first two axes based on all diversity approaches  i.e. including functional divergence 819 

of woody species (solid blue arrows), functional composition of woody species (blue dotted 820 

arrows), taxonomic diversity (solid red arrows) and structural diversity of woody species (black 821 

dotted arrows); CWM: community weighted mean, FDvar: functional divergence, LPC: leaf 822 

phosphorus concentration,  LNC: leaf nitrogen concentration, H: mean of woody species height, 823 

LDMC: leaf dry-matter content, SLA: specific leaf area, WD: wood density,  MI: mingling index, 824 

HDif: height differentiation, Ddif: diameter differentiation, S: Richness , H′: Shannon–Wiener 825 

index  and E: evenness. Plots are identified by two letters, the first letter refers to the dieback 826 

intensity class (L, M, H, C) i.e. low, medium, high or control (no dieback), while the second letter 827 

(D,  P) refers to the degraded or protected area. Blank and solid symbols indicate degraded and 828 

protected areas, respectively. 829 

 830 



 831 

Appendix 1. Principal Component Analysis (PCA) ordination diagrams showing distribution of 832 

the plots along the first two axes when using only one diversity approach; functional divergence 833 

(a), functional composition (b), taxonomic diversity indices (c) and structural indices (d); CWM: 834 

community weighted mean, Fdvar: functional divergence, LPC: leaf phosphorus concentration,  835 

LNC: leaf nitrogen concentration, H: mean of woody species height, LDMC: leaf dry-matter 836 

content, SLA: specific leaf area, WD: wood density,  MI: mingling index, HDif: height 837 

differentiation, Ddif: diameter differentiation, S: Richness , H′: Shannon–Wiener index  and E: 838 

evenness.  Plots are identified by two letters, the first letter refers to the dieback intensity class (L, 839 

M, H, C) i.e. low, medium, high or control (no dieback), while the second letter refers (D and P) 840 



to the degraded or protected area. Blank and solid symbols indicate degraded and protected areas, 841 

respectively. 842 

 843 

Table 1. Results of the GLM with dieback intensity, management and their interaction as fixed 844 

factors and soil carbon storage as dependent variables. The statistics are degrees of freedom (df), 845 

mean square (MS), F-value (F) and levels of significance (*** P < 0.001, ** P < 0.01, * P < 0.05). 846 
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 869 

Source of variation soil carbon storage 
df MS F 

Dieback intensity 3 2229.2 5.40*** 
management 1 7556.7 18.31*** 

Dieback intensity × Dieback intensity 3 1124.5 2.71 * 
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 871 

Table 2. Results of multiple regressions between soil carbon storage and different diversity 872 

approaches (functional divergence (FD), functional composition (FC), taxonomic diversity (TD) 873 

and structural diversity (SD)) 874 

Diversity 
approaches 

Variable included in the multiple regression The final model R2 p 

FD FDvar-WD CS = 86.27 FDvar-WD + 72.77 0.088 0.034 
FC CWM-LPC, CWM-LNC, CWM-H, CWM-LDMC, 

CWM-SLA 
CS = - 0.034 CWM-LDMC + 96.23 

0.158 0.000 

TD S, H′, E CS = 6.76 S + 68.76 0.173 0.000 
SD MI, HD, DD CS = 27.21 MI + 74.26 0.214 0.000 

Total model FDvar-WD, CWM-LDMC, S, MI CS = 27.28 MI + 75.28 0.173 0.002 

CS: carbon storage, CWM: community weighted mean, FDvar: functional divergence, LPC: leaf phosphorus 875 

concentration, LNC: leaf nitrogen concentration, H: mean of woody species height, LDMC: leaf dry-matter content, 876 

SLA: specific leaf area, WD: wood density, MI: mingling index, HD: height differentiation, DD: diameter 877 

differentiation, S: Richness, H′: Shannon–Wiener index and E: evenness    878 

 879 

 880 

 881 

 882 

 883 

 884 

 885 

 886 

 887 

 888 

 889 

 890 

 891 

 892 

 893 

 894 

 895 

 896 



 897 

Table 3. Pearson's coefficients of correlation between PCA scores and the different diversity 898 

indices   899 

Diversity approaches Indices PC 1 PC 2 

Functinal composition

CWM.LPC -0.8 ** -0.25 

CWM.LNC 0.968 ** -0.22 

CWM.H 0.98 ** -0.16 

CWM.LDMC 0.968 ** -0.22 

CWM.SLA -0.96 ** 0.248 

CWM.WD 0.419 * 0.844 ** 

Functinal divsersity 

FDvar.LNC -0.44 * 0.587 * 

FDvar.LPC 0.001 -0.54 * 

FDvar.H -0.89 ** -0.35 

FDvar.SLA -0.14 0.33 

FDvar.LDMC -0.56 * 0.370 

FDvar.WD -0.76 ** -0.55 * 

Structural diversity 

MI -0.82 ** 0.224 

Hdif -0.88 ** 0.305 

Ddif -0.87 ** 0.314 

Taxonomic diversity 

R -0.9 ** -0.16 

H′ -0.68 * -0.72 ** 

E 0.956 ** -0.11 

Note: * and ** represent significant correlation at 0.05 and 0.01; CWM: community weighted mean, Fdvar: 900 

functional divergence, LPC: leaf phosphorus concentration, LNC: leaf nitrogen concentration, H: mean of woody 901 

species height, LDMC: leaf dry-matter content, SLA: specific leaf area, WD: wood density, MI: mingling index, 902 

HDif: height differentiation, Ddif: diameter differentiation, S: Richness, H′: Shannon–Wiener index and E: 903 

evenness     904 
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