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The use of CNN and segmentation to extract image features for the prediction of four

postures for sows kept in crates was examined. The extracted features were used as input

variables in an SVM classification method to estimate posture. The possibility of using a

posture prediction model with images not necessarily obtained under the same conditions

as those used for the training set was explored. As a reference case, the efficacy of the

posture prediction model was explored when training and testing datasets were built using

the same pool of images. In this case, all the models produced satisfactory results, with a

maximum f1-score of 97.7% with CNNs and 93.3% with segmentation. To evaluate the

impact of environmental variations, the models were trained and tested on different

monitoring days. In this case, the best f1-score dropped to 86.7%. The impact of using the

posture prediction model on animals that were not present in the training dataset was

then explored. The best f1-score reduced to 63.4% when the posture prediction models

were trained on one animal and tested on 11 other different animals. Conversely, when the

models were tested on one animal and trained on the 11 others, the f1-score only

decreased to 86% with the best model. On average, a decrease of around 17% caused by

environmental and individual variations between training and testing was observed.

© 2021 The Author(s). Published by Elsevier Ltd on behalf of IAgrE. This is an open access

article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Notations

CNN Convolutional neural network

SVM Support vector machine

PPM Posture prediction method

FEM Feature extraction method

Seg-FEM Feature extraction method based on

segmentation

CNN-FEM Feature extraction method based on CNN
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1. Introduction

The survival of the offspring of farmed mammals is strongly

influenced by the behaviour of their mother (Turner &

Lawrence, 2007; Dwyer, 2014). Piglet mortality, which can be

as high as 30%, is highly dependent on sow behaviour (e.g.

Pedersen et al., 2006; Andersen et al., 2005; Canario et al., 2014;

Nicolaisen et al., 2019). In most conventional herds, sows are

kept in a crate during the lactation period, without being able

to move or turn around. In line with societal concerns about

animal welfare, farrowing systems are currently evolving to-

wards looser housing conditions (CWF, 2021). The newhousing

conditions for sows (Baxter et al., 2018) are expected to become

one of the main types of housing in a few years (Commision

European, 2021). But their effect on piglet mortality has not

yet been sufficiently investigated. To facilitate this transition,

sow behaviour should be taken into account in breeding

schemes to select sows with good maternal behaviour. In

particular, sows that are calm around farrowing and careful

when changing their posture have lower stillbirth and mor-

tality rates due to crushing (Canario et al., 2014; Andersen et al.,

2005). Comparing the level of activity between different types

of housing can help assess the impact of their environment on

animal health and welfare. Monitoring animals over a long

periods of time may be necessary to detect changes in their

activity level. However, only a few studies have attempted to

assess the impact of sow housing on sow behaviour, and on an

ad hoc basis during lactation. For example (Wallenbeck et al.,

2008) analysed at 4 days post partum using a scan sampling

methodology applied 24 h a day (Nicolaisen et al., 2019) ana-

lysed the first three days after parturition, also with a scan

sampling methodology but using visual observations, which

makes it almost impossible to create postural activity datasets

that are uniform in the long term (Vizcarra & Wettemann,

1996; Nalon et al., 2014). In the last decade, a number of

methods have been developed to automatically measure ac-

tivity in pigs, mainly using accelerometers (Ringgenberg et al.,

2010; Brown et al., 2013; Escalante et al., 2013; Oczak et al.,

2016b; Matheson et al., 2017; Canario et al., 2019; Thompson

et al., 2019; Chapa et al., 2020). Accelerometers are cheap,

and the acquisition and analysis of the signal is relatively

simple. However, in practice, the quality of the prediction de-

pends on where the sensor is positioned on the animal, i.e. on

the ear, neck, back or leg. Unfortunately, accelerometers can

also be displaced during data acquisition due tomovements by

the animal itself or by other animals touching the sensor,

which alters the prediction. More recently, computer vision
analysis has emerged as a suitable tool for automatic moni-

toring of animal behaviour in several species (Aydin et al., 2010;

Kashiha et al., 2013b; Li et al., 2017; Nasirahmadi et al., 2017;

Bezen et al., 2020; Bonneau et al., 2020). Computer vision

analysis consists in locating the animal in the image and then

estimating several features. For example, in pigs, this can

include live weight (Shi et al., 2016), animal identification

(Marsot et al., 2020), the number of piglets (Oczak et al., 2016a),

water consumption (Kashiha et al., 2013a), episodes of

aggression (Viazzi et al., 2014; Chen et al., 2020) and different

postures (Leonard et al., 2019; Nasirahmadi et al., 2019). Posi-

tioning the cameras on the housing disturbs animals less than

embedded sensors. However, image analysis requires specific

programming skills that are not necessarily available in

research teams who study animal behaviour. We compared

two common methods used to extract useful information,

called features, from the image: image segmentation and

convolutional neural networks (CNN). Once the features are

extracted from the image, they can be used as input variables

of a classification method, like those that use a support vector

machine (SVM). Segmentation consists in applying image

segmentation techniques to differentiate between the animal

and background pixels. The extracted features could be geo-

metric characteristics of the segmented image (Oczak et al.,

2016a; Yang et al. 2018, 2019; Leonard et al., 2019;

Nasirahmadi et al., 2019). The secondmethod consists in using

available CNNs for image analysis. The CNNs are already pre-

trained on a large image dataset, such as ImageNet (Deng

et al., 2009), which generally contain more than a million im-

ages (Zhang et al., 2019; Chen et al., 2020; Marsot et al., 2020;

Gan et al., 2021; Kasani et al., 2021). Both methods have been

reported to produce promising results in the literature. How-

ever, even though software is available to aid the use of CNNs

(e.g. Abadi et al., 2015; Moses & Olafenwa, 2018), it can still be

difficult for new users. In this article, the use of the two

methods to extract image features is compared and they are

then used to estimate the postures of sows kept in a crate. Also

investigated was the impact of the training dataset on the

quality of the prediction model.
2. Materials and methods

2.1. Housing and imaging

This study was carried out using 12 Large White sows

belonging to the INRAE experimental herd at GENESI Le

Magneraud (Charente-Maritime, France. https://doi.org/10.

15454/1.5572415481185847E12). Animals are raised in three-

week batches, and two to three sows were measured in

three successive batches between January and March 2020.

The dimensions of the crate, and the location and dimensions

of the cage inside the crate are given in our supplementary

material S1. All the crates were equippedwith a liquid feeding

trough and one drinking nipple. The creep area for the piglets

was equipped with artificial light that was kept on 24 h day.

The juxtaposed cages were mirrored so that the creep area

was on the left in one and on the right in the other. Each

lactating sow wasmonitored, i.e., with progeny present in the

crate, over two to three successive days between day 6 and

https://doi.org/10.15454/1.5572415481185847E12
https://doi.org/10.15454/1.5572415481185847E12
https://doi.org/10.1016/j.biosystemseng.2021.09.014
https://doi.org/10.1016/j.biosystemseng.2021.09.014
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day 23 of the lactation period. For monitoring, Bascom cam-

eras were used; fixed on a metal support 4.5 m above the

ground, with its lens pointing downward and directly above

each crate to obtain a rear view of the sow with a tilt angle

between approximately 45� and 60� (Fig. 1). The cameras were

connected to a PC via a wire network for data storage. The

videos were manually labelled by three observers, who were

trained in using the same ethogram (Table 1).

Dedicated software was implemented in Python language

to play the recorded videos and manually report postural

changes and the name of the new posture. The function

automatically recorded the frame number of the change and

the posture was derived automatically between two changes.

It was possible to rewind and slow down the video recording

to capture changes in posture accurately, annotating when

the sow was in a transitory posture (sitting or kneeling) be-

tween two main postures (standing and lying). The third

observer analysed videos without the dedicated Python

software and recorded information on the sow's posture
Fig. 1 e Image examples. (a) The initial image captured by the ca

considered for the analysis. (b) Example of the four different so
manually. In this case, rewinding and slowing down the

video recording were again used to capture the information

accurately. For the purpose of annotation, eight different

postures were distinguished: standing, sitting, kneeling,

sternal lying, lateral lying on the right or the left side, and

with udder exposed (i.e., accessible to the piglets) or not. Only

four postures were used for statistical analysis of the signal:

standing, sitting, sternal, and lateral. The sternal posture

includes sternal and lateral lying on the right or the left side.

The lateral posture is used when the sow is lying on its right

or left side with the udder visible (see Fig. 1). The animals

were monitored during staff working hours, i.e., between 8

AM and 6 PM.

2.2. Image processing

As shown in Figure 1(a), the initial images were cropped to

remove the area outside the cage, including piglet creep area,

which was not needed to determine sow posture.
mera. Only the image included between the white lines was

w postures.

https://doi.org/10.1016/j.biosystemseng.2021.09.014
https://doi.org/10.1016/j.biosystemseng.2021.09.014


Table 1 e Description of the ethogram used to label
videos.

Standing Standing up on its four legs

Sitting Sitting with front legs straight and

both front hooves on the ground

Lying sternally Lying with udder hidden under the

belly, including sternally (i.e., with

the backbone visible in the centre of

the body and the front legs under the

sow) or laterally on the right or the

left side with udder not visible

Lying laterally Lying on its right or left side with the

udder visible, i.e., accessible to the

piglets
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The posture prediction model (PPM) has two compart-

ments. First, a feature extraction method (FEM) was used

to extract the features from the images. Second, a SVM

classification model (SCM) was used to estimate the sow

posture, based on the values of the features. Thus, a PPM is

composed of one FEM and one SCM. Two types of FEM were

considered, Seg-FEM, when the features were extracted

using segmentation and CNN-FEM, when the features were

extracted using a CNN model. Note that the parameters of

the CNNs were not retrained. Segmentation also did not

require any training, thus both FEM can be considered as

unsupervised. Only the SCM required training in both

cases.

2.2.1. Extraction of segmentation based features
The image was segmented using an adaptive thresholding

method. The initial RGB image was first converted into an

intensity image and was then shrunk by a factor of 2 using

the bicubic interpolation method. A threshold, denoted t,

was computed for each image, and was defined as the 44%

quantile of the non-zero intensity values of the image. In

other words, 44% of the non-zero pixels had an intensity

value >t. Pixels <t were set to 0 and pixels higher than or

equal to were set to 1. At this stage, a binary image was

created in which only the sow and her piglets were visible.

Unfortunately, the fences were also segmented. To select

only the sow, the area of all the connected components (i.e.

blocks of neighbouring pixels of the same colour) was

computed and only the element with the biggest surface

area, corresponding to the sow, was kept. Before computing

the area, morphological operations (erosion followed by

dilatation) were used with a 10-pixel square filter.

Finally, the following features were computed on the

segmented image: area, convex area, eccentricity, equivalent

diameter, Euler number, extent, filled area, major and minor

axis length, orientation, perimeter and solidity. Also consid-

ered were the number of pixels in the right, left, bottom,

middle and top parts of the image, the number of pixels on the

diagonal, as well as the number of connected components.

The segmentation approach is shown on Figure 2.

2.2.2. Extraction of CNN based features
CNN is a powerful method for detecting and classifying im-

ages. CNNs are a succession of different mathematical
operations, such as convolutions, simple non-linear functions

(activation functions) and dimension reduction (pooling). Con-

volutions are filters applied to the image with a sliding win-

dow. The aim is to extract useful information or features from

the image. The activation and pooling functions select and

summarise themost relevant features. From the initial image,

the CNN consists in one or several parallel flows made with

these mathematical operations that all converge into a final

layer containing all the features extracted from the image. The

CNN then uses these features to classify the images. Unlike

segmentation, the extracted features are not intuitive and

cannot be easily interpreted. Thus, designing and training a

CNN from scratch can be very challenging. Fortunately, for

image analysis, several CNNs, generally designed by com-

panies such as Google, are available free of charge. These

CNNs are trained to recognise common objects, like bikes,

cars, or dogs on more than a million images and evaluated on

hundreds of thousands of images. Even though they cannot be

used directly to recognise a particular type of object or scene,

such as sow postures, the features extracted from CNNs are a

useful source of information, and today such information is

increasingly used to retrain classification methods.

Considered were 11 different CNNs: Xception (Chollet,

2017), InceptionV3 (Szegedy et al., 2016), GoogleNet (Szegedy

et al., 2015), MobileNetV2 (Sandler et al., 2018), ResNet50 and

ResNet18 (He et al., 2016), DarkNet53 (Redmon, n.d.), Dense-

Net201 (Huang et al., 2017), AlexNet (Krizhevsky et al., 2012),

SqueezeNet (Iandola et al., 2016) and ShuffleNet (Zhang et al.,

2018). All the CNN were already pre-trained on the ImageNet

dataset (Deng et al., 2009) and were downloaded thought the

MATLAB 2020b add-on Explorer. For each CNN, the extracted

features were defined as the output value of the last pooling

layer. For SqueezeNet for example, the features was the

output of the layer named pool10. More details on CNN can be

found in the literature, such for example in (Wang et al., 2018)

or in (Khan et al., 2020).

CNNs were already pre-trained on the ImageNet dataset

(Deng et al., 2009) and were downloaded using the MATLAB

2020b add-on explorer. For each CNN, the extracted features

were defined as the output value of the last pooling layer. For

example, for SqueezeNet, the features were the output of the

layer named pool10. More details on CNN can be found for

example in (Wang et al., 2018) and (Khan et al., 2020).

Several characteristics of the FEMs are listed in Table 2.

2.3. Posture prediction from features - SVM
classification model

Segmentation and CNN both provide a set of features, i.e., a

set of variables that are supposed to describe the image and

help differentiate between the different sow postures. To

predict posture from features, we used an SVM classifier. For

the CNN-FEM, we used a multiclass Error-Correcting Output

Codes (ECOC) model, which breaks a k class classification

problem down into kðk�1Þ=2Þ binary classification problems.

A linear SVM classifier is then fitted for each binary classifi-

cation problem (Allwein et al., 2000). For the Seg-FEM, we used

regular SVM, with an order-3 polynomial kernel, as the ECOC

model produced poor results. All the computation in this

article was carried out using MATLAB 2020b.

https://doi.org/10.1016/j.biosystemseng.2021.09.014
https://doi.org/10.1016/j.biosystemseng.2021.09.014


Fig. 2 e Segmentation example. On the left is the initial image together with the segmentation result. What is estimated to

be the sow is delimited with a white line. On the right is the result of the adaptive thresholding method. Bars are deleted by

keeping the connected components with the highest area.

Table 2 e Characteristics of the feature extractionmethods. Computing times are provided for a Precision 3640 Dell Tower,
with an intel(R) Core (TM) i9 CPU at 3.70GhZ, a Quadro P2200 GPU, running on Windows 10 Professional. Algorithms were
developed in MATLAB 2020b. Depth is the number of convolutional and fully connected layers. Training and Testing times
are in seconds for 100 images.

Xception InceptionV3 GoogleNet MobileNetV2 ResNet50 ResNet18

Parameters (106) 22.9 23.9 7 3.5 25.6 11.7

Depth 71 48 22 53 50 18

Features 2048 2048 1024 1280 2048 512

Training Time 2.211 0.925 0.354 0.514 0.646 0.294

Testing Time 2.594 1.672 0.66 1.036 1.117 0.691

DarkNet53 DenseNet201 AlexNet SqueezeNet ShuffleNet Segmentation

Parameters (106) 41.6 20 61 1.24 1.4 .

Depth 53 201 8 18 50 .

Features 1024 1920 9216 1000 544 18

Training Time 1.71 1.854 1.717 0.222 0.25 0.14

Testing Time 2.415 3.076 0.524 0.562 0.758 0.01
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2.4. Training and test datasets

2.4.1. Initial dataset
Video records of the 12 sows were used, which represented a

total of 129 h of manually labelled video. A total of 7.8 h of

video were labelled for Sow 1 on day 16 of lactation, 8.3 h for

Sow 2 on day 20, 8.2 h for Sow 3 on day 14, 8.6 h for Sow 4 on

day 12, 7.8 h for Sow 5 on day 21, 13.4 h for Sow 6 on day 8 and

day 9, 17.5 h for Sow 7 on day 5 and day 6, 26.7 h for Sow 8 from

day 6 to day 8, 7.2 h for Sow 9 on day 12, 7.7 h for Sow 10 on day

16, 7.8 h for Sow 11 on day 20 and 7.8 h for Sow 12 on day 20.

Sows 6 and 7 were labelled for two consecutive days, and Sow

8 was recorded and labelled for three consecutive days.

However, problems were encountered during the second day

of the labelling for Sow 6, and consequently only labelling

done on the first day for this sowwas used. For Sow 2 and Sow

12, a radar was installed on top of the crate to estimate sow

posture with this technology for the purposes of another

study. As a result, these sows' headswere not visible when the

head was outside the zone covered by the radar. Sow 1 and

Sow 4 had blue marks on their bodies. Because the mounting

of the cameras was not standardised, the angle of view

differed slightly for each sow and unfortunately for some
sows the cameras were accidently moved slightly during the

recording period. A sample image for each sow is provided in

supplementary material S2. From the labelled videos, which

were recorded at 10 frames s�1, one imagewas extracted every

10 s. After extraction, the dataset included 41,568 frames. In

general, the sternal and lateral postures (resp. 33.9% and

40.6%) were well represented in the dataset, while the stand-

ing and sitting postures were not (13.4% and 12.1% respec-

tively). The number of images for each posture and animal is

listed in supplementary material S3. This initial dataset was

used to construct different training and testing datasets to

investigate the impact of the training set on the quality of the

posture prediction model.

2.4.2. Baseline scenario: training and testing from the same
bank of images
In this baseline scenario, the posture prediction models were

trained and tested on a set of images chosen randomly from

the initial dataset, without considering the sow number. Two

different training sizes, 5% and 30% of the initial dataset, were

used. In each case, the training images were chosen randomly

and could thus originated from any of themonitored animals,

for any posture. The posture prediction models were then

https://doi.org/10.1016/j.biosystemseng.2021.09.014
https://doi.org/10.1016/j.biosystemseng.2021.09.014
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tested on the remaining images not used for training. Only the

first day of recording of the animals was used. In this scenario

and in the other scenarios, the results obtained were

compared when only one posture prediction model was fitted

for all animals (group-model) and when one posture predic-

tion model was fitted per animal (individual-model).

2.4.3. Temporal variations
The impact of varying environmental conditions during

monitoring was investigate by, for example, small changes in

the camera angle. The experimental set up was very similar to

that in the baseline scenario in that only the testing dataset

was different. In this case, the testing dataset was based on

the second monitoring day of sow 7 and on the second and

third recording days of sow 8. For the individual posture pre-

dictionmodel, the model that was fitted on the same sowwas

used. For example, to evaluate the second day of monitoring

sow 7 in the case of an individual posture prediction model,

we used the model fitted on 5% or 30% of the first day of

monitoring sow 7.

2.4.4. Individual variations
The impact of individual variations on the quality of the

posture predictionmodelwas also investigated. Asmentioned

earlier, the environment differed between sows. For example,

a radar was installed on top of the crate for some sows, which

were consequently not entirely visible in the resulting image.

The camera angles generally differed between sows. Lightning

conditions also varied greatly, for example when a sow was

located near a window, compared to a sow located far from a

window. To investigate the possible impact of these variations

on the quality of a posture prediction model, we propose

separating the sows used for training from the sows used for

testing. In other words, the training image dataset and the

testing image dataset should not contain images of the same

sow.

Firstly, a severe scenario was considered in which the

posture prediction models are trained using the images from

one sow and tested using the images of all the other 11 sows.

Note that in this case, the group-model and individual-model

are the same, in that training is performed using images of the

same sow. Only the case where 30% of the available data were

used for training was considered relevant. Also considered

was the opposite scenario, named the soft scenario, where the

posture predictionmodelswere trained on all but one sow and

tested on the sow not included in the training. In this case, the

group and individual posture prediction models differed.

In each scenario, 30% of the available images were used for

training. All images available for testing were used. For

example, the severe scenario was started by randomly

selecting 30% of the images available for sow number 1 and

trained all the posture prediction models considered. Then all

the images availablewere used for sow 2, sow 3, etc., up to sow

12, to evaluate the posture prediction models.

In any given case, only the first day of monitoring of each

sow was used.

For a given posture p2fStanding;Sitting;Sternal;Lateralg, we

used the f1-score to evaluate the qualities of the posture

prediction model:
f1� scorep ¼ 100 �
 
2� Sensitivityp � Precisionp

Sensitivityp þ Precisionp

!

Sensitivityp ¼ TPp

TPp þ FNp
(1)

Precisionp ¼ TPp

TPp þ FPp

where TPp, TNp, FPp and FNp are the number of true positive,

true negative, false positive and false negative detections for

posture p. The f1-score is the harmonic mean of precision and

sensitivity. Note that a null precision and/or a null sensitivity

gives a null f1-score. The sensitivity, also called recall, is the

true positive rate for a given posture. For example, a sensi-

tivity of 70% for sternal posture meant that if the animal was

in sternal posture, then the model predicted the posture

correctly in 70% of the cases. The precision is the positive

predicted value. For example, a precision of 70% for sternal

posture means that out of all the images predicted as sternal

posture, in 70% of them, the sow was truly in sternal posture;

but in 30% of the images, the animal was in another posture.

To summarise the quality of the method, we calculated the

average f1-score as the average of the four postures f1-scores:

f1� score ¼
P

pf1� scorep
4

: (2)

It should be noted that for all the experimental setups, the

training and testing dataset were the same for all the posture

prediction models. For the experimental setups where the

posture prediction models are trained and tested on several

datasets, the average f1-score was calculated and used in the

statistical analysis. For example, to study temporal variations

with individual model, the f1-score calculated for the second

day of monitoring of sow 7, and for the second and third

monitoring days of sow 8 were averaged.
3. Results

The results of all the posture prediction models and experi-

mental setups are listed in Table 3. Results are also summar-

ised in Figure 3.

3.1. Baseline scenario: training and testing using images
from the same image bank

For the baseline scenario with one model for all animals, the

segmentation model produced the lowest f1-score. The score

was 89% when 5% of the data were used for training and

93.3% when 30% of the data were used for training. Among all

the CNN-PPM, the one based on AlexNet had the highest f1-

score in all cases. With 5% of the data used for training, the

f1-score was 97.1% and with 30% training, it was 97.7%. It

should be noted that increasing the size of the training data

set had only a small impact on the model f1-score, compared

to the segmentation model. With the MobileNetV2-PPM and

ResNet50-PPM, the f1-score did not even change. The

GoogleNet-PPM was the most affected by the increased size
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Table 3eAverage F-Score for the differentmethods and setups. For a given experimental setup, the highest F-Score is bold.

Baseline scenario: training and testing from the same bank of images

Group-PPM: One model for all animals

5% 93.7 94.2 93.8 94.4 95.3 93.9 94 95.3 97.1 94.5 94.4 89

30% 95 95 95.6 94.4 95.3 95.3 94.8 94.5 97.7 95.7 94.9 93.3

Individual-PPM: One model per animal

5% 90.3 89.6 91.9 91.5 91.4 91.4 89.5 92.3 92.6 91.2 91.8 86.9

30% 94.3 94.7 95.4 94.4 95.1 95.7 95 95.8 96.3 95.2 95.7 92.6

Temporal variations: training on one recording day, testing on others

Group-PPM: One model for all animals

5% 80.8 78.7 77.2 82 82.2 75 83.4 78.1 82.4 78.3 80.1 60.7

30% 81.4 77.7 76.9 78.4 79.3 77.4 83.5 76.7 86.7 79.2 81.3 64.9

Individual-PPM: One model per animal

5% 62.3 65 71.1 69 61.2 76.7 65.3 73.1 69.7 68.2 79.8 65.7

30% 65.6 60.1 72.2 74.4 57.4 76.9 62 64.1 61.7 74.9 82.4 67.2

Individual variations: training and testing on different sows

Severe scenario: Training on one sow (30%), test on all other sows

61 61.8 52.4 62.3 60.1 61.1 60.4 63.4 59 55.1 56 38.8

Soft scenario: Training on all animals but one (5% or 30%), test on the non trained animal

5% 77.5 79.1 77.9 78.7 80.2 75 80.2 82.8 86.2 81.2 82.8 59.7

30% 76.8 78.3 78.3 75.1 78.9 76.3 77.6 77 86 76.8 76.1 62.2
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of the training data set. Its f1-score changed from 93.8% with

5% training to 95.6% with 30% training. Finally, the CNN

model based on DenseNet201 was the only one for which the

increased size of the training data set reduced the f1-score.

With 5% training, the f1-score was 95.3% and 94.5% with 30%

training. With the Seg-PPM, the sternal and lateral postures

remained the hardest postures to predict. This is surprising

given that the image of the sow is supposed to be wider when

lying laterally, it should have helped differentiation between

these two postures. However, when the animals were in the

sternal posture, they may tend more to the right or to the left,

which can lead to confusion. Some confusion also appeared

when the sow was sitting. When the sow was perfectly

positioned on its sternum, or sitting or standing, only the

back of the animal was visible and thus may be segmented,

resulting in minimum variation in shape between the

different postures. There was also some confusion between

the sternal and standing postures with the CNN-PPMs,

almost certainly for the same reasons. When one posture

prediction model was fitted per animal, the CNN-PPM based

on AlexNet also produced the best results, with an f1-score of

92.6% with 5% training and of 96.3% with 30% training.

Generally, fitting the posture prediction model for only one

animal lowered the f1-score, certainly due to the fact that

fewer data are available from training. Nonetheless, the f1-

score with 30% training was slightly higher with the CNN-

PPMs based on ResNet18, DarkNet53, DenseNet201 and

SuffleNet.

3.2. Temporal variations

When posture predictionmodel was fitted for all animals with

5% training, the CNN-PPM based on DarkNet53 produced the

best results, with an f1-score of 83.4%. With 30% training, the

CNNMODEL based on AlexNet produced the best results, with
an f1-score of 86.7%. On average across all the posture pre-

diction models, the f1-score decreased by 15.9% compared to

the baseline scenario with one posture prediction model for

all animals and 5% training.With 30% training, it decreased by

16.5%. When one posture prediction model was fitted per

animal, the CNN model based on SuffleNet produced the best

results, with an f1-score of 79.8%with 5% training and of 82.4%

with 30% training. Note that in this experimental setup, with

5% training, the Segmentation model f1-score was 65.7%, i.e.,

higher than in the CNN models based on Xception (62.3%),

InceptionV3 (65%), ResNet50 (61.2%) and DarkNet53 (65.3%).

With 30% training, the Segmentation model f1-score was

67.2%. Again, it was higher than that of 6 of the 11 CNN

models: Xception (65.6%), InceptionV3 (60.1%), ResNet50

(57.4%), DarkNet53 (62%), DenseNet201 (64.1%) and AlexNet

(61.7%). As one can see, there was a difference of nearly 10%

with ResNet50. On average over all the posture prediction

models tested, the f1-score decreased by 22% compared to the

baseline scenario with one posture prediction model per ani-

mal and 5% training; with 30% training, it decreased by 26.8%.

3.3. Individual variations

In the severe scenario, the CNN model based on DenseNet53

produced the highest f1-score: 63.4%. With the Segmentation

model, the score only reached 38.8%, which is significantly

lower than that obtained with the CNN model. Compared to

the baseline scenario with 30% training the f1-score was

reduced by an average of nearly 37.5%with either the baseline

group models or the baseline individual models. In the soft

scenario, the CNN model based on AlexNet produced the

highest f1-score: 86.2% with 5% training and 86% with 30%

training. With most CNN models, increasing the size of the

training dataset reduced the f1-score, whereas this was not

the case with the Segmentation model. With 5% training, the
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Fig. 3 e Summary of the results. The boxplots give the distribution of the f1-score of all the PPM. There is one boxplot per

experimental setup. For each experimental setup, the name of the worst and best posture prediction model is provided. The

blue lines indicates the median value and the orange horizontal lines indicate the 25th and 75 percentiles. Figure (a) gives

the results when 5% of the data was used for training and 30% for Figure (b). (For interpretation of the references to colour in

this figure legend, the reader is referred to the Web version of this article.)
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f1-score decreased by on average, 16%, compared to the

baseline group models, and by 16% with 18.5% training.
4. Discussion

Different ways of extracting features from images have been

investigated. Two type of feature extraction methods (FEM)

were used: Seg-FEM, where the features represented geo-

metric characteristics of the segmented image, and CNN-FEM,

where the features were calculated as the output of the final

pooling layer of the CNN model.
The different f1-scores of the posture prediction models

were in line with those obtained in other similar studies.

Nasirahmadi et al., (2019) developed amethod based on image

segmentation and an SVM classifier, similar to the one that we

used. In their case, posture was estimated on several pigs kept

in a single pen and only the lateral and sternal postures were

considered. One group prediction model was trained using

28,035 images and tested on 12,015 images (i.e., 70% training,

30% testing). The f1-score of the prediction model was esti-

mated to be 94.2%. This is comparable to the segmentation

model in our baseline scenariowith 30% training, in which the

f1-score was 93.3%. Leonard et al., (2019) developed an

https://doi.org/10.1016/j.biosystemseng.2021.09.014
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unsupervised method to distinguish between sitting, stand-

ing, kneeling, and lying, for sows in farrowing stalls, using top

view depth images acquired with a Microsoft Kinect V2 sys-

tem. The f1-score was estimated to be 79.2% on a dataset of 24

individuals, for each of whom 445 images were chosen

randomly. But the f1-score is particularly reduced by the

kneeling posture. Similar to our study, Kasani et al. (2021)

evaluated eight different CNN models, with 7556 training

images and 1776 images used for testing (80% training 20%

testing). They differentiated four postures: lying left, lying

right, sitting and standing. All the CNNs tested provided a f1-

score higher than 99%. The best tested CNNs were Dense-

Net121 and DenseNet201. The difference in the f1-score

compared to our analysis could be explained by the differ-

ence in the postures considered. The sternal posture, which

was regularly confused with the lateral postures, was

accounted for. In the work by Kasani et al. (2021), the sternal

posture was not accounted for. More generally, it is difficult to

compare different works rigorously, because postures were

not necessarily defined in exactly the same way and also

because the environment, the sensors, and the position of the

sensors may differ. As shown in our work, the choice of the

training and test sets can also greatly influence the results.

In the present study, annotation relied on the continuous

analysis of video recordings for several hours per sow. After the

image labelling process, the labelled images were double-

checked to correct any errors. Observed discrepancies

occurred between the behaviour and its annotation on aminor

but substantial proportionof data. To some extent, thiswasdue

to a delay between human observation and pressing the com-

puter key, and the limited use of backtracking. Random sam-

pling of video images would probably have beenmore efficient.

To improve the quality of prediction, future work could

focus on aggregating information from different sensors or

methods. Interestingly, the CNN can also return a probability

for different postures. Therefore, several cameras, with

different angles and axes, can be used and analysed by

different CNNs. The estimated probabilities could then be

combined to estimate the postures. In addition, depending on

the frequency of image acquisition, temporal information can

be added to facilitate the detection of postures; for example,

using the transition probability betweenpostures or to smooth

the postural signal. Finally, features from several FEMs can be

aggregated to construct a meta-posture prediction model.

This work raises two important questions. When does the

posture prediction model need to be retrained when a new

batch of sows ismonitored? Should labelling imageswait until

the monitoring period ends so as to include images from all

the monitoring days in the training dataset? To answer these

questions correctly, a larger dataset is needed.
5. Conclusions

Several conclusions can be drawn from this work. Firstly, in

general it is notnecessary to train onemodel per animal.When

one posture prediction model was used for all sows, the

training dataset was larger in size and more diverse, which

certainly explained the better performance of this approach. In

practice, it is more convenient to build only one training
datasetof labelled images.Secondly, theCNNmodelsgenerally

produced a higher quality of prediction than the Segmentation

model. However, the Segmentationmodelmay bemore robust

to temporal variations thansomeCNNmodelswhen themodel

is trained individually. When the training and testing images

were selected from the same pool of images, the difference

between Segmentationmodel and CNNmodels was relatively

small.TheSegmentationmodel f1-scorewas1% lower than the

worst CNNmodel and 2% lower than the best CNNmodel. The

Segmentation model is thus a good option if the CNN models

are too complex to implement. Thirdly, an average difference

of 9.7% was observed between the f1-score of the best and

worstCNN-PPM. It is thusappropriate to test severalCNNs fora

given application. Fourthly, it is important to train the posture

prediction model on a dataset that includes images similar to

those for which the posture is to be predicted. For example, we

showed that the f1-score decreased on average by 18.5%when

the posture prediction model was used on a sow that was not

present in the training set. For temporal variations, due to, for

example, a change in sowbehaviour, in lightning conditions, or

in the field of view of the camera, it was seen that the f1-score

decreased by an average of 16%.
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