> Can NMR become a tool of choice to study ecosystems directly in the fields?

Guilhem Pagés

Fraternité

\checkmark Critical to limit global warming

> Carbon sequestration

Critical to limit global warming

✓ Forest and grasslands are playing a major role in the sequestration of carbon

(Pg C, 10⁹† C)

> Carbon sequestration

Critical to limit global warming

11th – 13th October 2021 / Compact NMR conference / Guilhem Pagés

✓ Forest and grasslands are playing a major role in the sequestration of carbon

Critical to have knowledge on water content/flux in plants

What are the analytical methods to estimate sap flows?

INRA

In situ NMR

> Sap flow measurements

✓ In situ measurements

- Indirect methods (gravimetric measurements, lysimeters)
- > Direct methods (heat balance, gas exchange)

> Sap flow measurements

✓ In situ measurements

- Indirect methods (gravimetric measurements, lysimeters)
- > Direct methods (heat balance, gas exchange)
- Laboratory analytical methods
 - > X-ray
 - > MRI

> Sap flow measurements

\checkmark In situ measurements

- \succ Indirect methods (gravimetric measurements, lysimeters)
- > Direct methods (heat balance, gas exchange)
- ✓ Laboratory analytical methods
 - > X-ray
 - > MRI

There is a need to develop new sensor performing localized measurements directly in situ

> Going outside with an MRI

> Portable MRI

 Chose commercial solution able to match our needs

- > Spatial localization
- NMR MOUSE => Background gradient perpendicular to the magnet surface

> 1D Images

- MRI signal in function of the measurement depth (lift position)
 - > CPMG pulse train to record signal decay
 - Increase SNR
 - > Signal might be T_2 -weighted

INRA@

Design of a vector to position the magnet against the plant

> Magnet temperature changes

 Magnetic field intensity of permanent magnet is temperature dependent

Slice position is moving with magnet temperature changes

11th – 13th October 2021 / Compact NMR conference / Guilhem Pagés

INRA

In situ NMR

> Magnet temperature changes

 Magnetic field intensity of permanent magnet is temperature dependent

Slice position is moving with magnet temperature changes

Collaboration AgroScan, INRAE Rennes

11th – 13th October 2021 / Compact NMR conference / Guilhem Pagés

INRA

In situ NMR

✓ Insulation to delay magnet temperature variation

✓ Insulation to delay magnet temperature variation

INRAØ

In situ NMR

✓ Insulation to delay magnet temperature variation

INRAØ

In situ NMR

- ✓ Insulation to delay magnet temperature variation
- ✓ Retroaction on the magnet position when temperature changes detected

- ✓ Insulation to delay magnet temperature variation
- ✓ Retroaction on the magnet position when temperature changes detected

INRA

> Studying agroecosystems

Article

Circadian Variation of Root Water Status in Three Herbaceous Species Assessed by Portable NMR

Magali Nuixe ^{1,2,3}, Amidou Sissou Traoré ^{1,2,*}, Shannan Blystone ^{1,2,3}, Jean-Marie Bonny ^{1,2}, Robert Falcimagne ³, Guilhem Pagès ^{1,2}, and Catherine Picon-Cochard ^{3,*}

Plants **2021**, *10*, 782. https://doi.org/10.3390/plants10040782

- ✓ Roots: 1st organ involved to meet plant water demand
- \checkmark Key to know their hydration conditions
- ✓ Three species in rhizotrons inside a climatic chamber
 - > 1D profile (NMR signal vs depth)
 - \succ T_2 at 1 depth

> Rhizotron NMR profile analysis Dactylis

✓ Differentiate the different rhizotron compartments

INRAe

> Rhizotron NMR profile analysis

 ✓ Differentiate the different rhizotron compartments

 ✓ ~200 µm shift due to 3°C temperature difference between day and night

 ✓ Signal intensity weighted by water diffusion and transpiratory flux

INRAØ

INRA@

In situ NMR

Comparison NMR and ecophysiological parameters

Relaxation analysis

> Relaxation analysis

> Wood hydration

> Take-home message

- NMR-MOUSE is a useful magnet to characterize agroecoressources directly into the fields
- ✓ Needs development to take into account daily temperature variations
- ✓ Despite possible sensitivity issues, first results are highly encouraging

