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This paper proposes the use of structural modeling for the evaluation of ecosystem-based practices (e.g. biological control of crop pests) on the basis of data collected at the scale of the agricultural plot. In the first part, we present the analytical approach used -structural modeling by partial least squares. In the second part, we present the field of study and the data considered in this work. In the third part, we present and discuss the results from the implementation of the Partial Least Squares -Path Modeling (PLS-PM) approach. Finally, we conclude on the validation of this approach and the prosp i ects for its possible extension.

Introduction

The biological control of crop pests and weeds is an example of ecosystem services (ES) -the benefits that ecosystems provide to humankind (Millennium Ecosystem Assessment [START_REF]Millennium Ecosystem Assessment. Ecosystems and human well-being: synthesis[END_REF]) -provided at the farm plot level. The amenities provided by ecosystem infrastructures and agro-ecological practices in terms of soil protection, water resource management, and preservation of the habitat of agricultural auxiliaries constitute productive services that can be evaluated at the plot and farm level. For example, the biological control of crop pests and weeds by naturally occurring beneficials (such as ladybirds that predate aphids) is one of the productive services that can be mobilized at the plot level to reduce the dependence of agricultural production systems on pesticides. However, the relationships between crop management methods, levels of pest control by beneficials and crop yields are still insufficiently assessed (Franck et al. [START_REF] Franck | Le projet PEERLESS : Viabilité d'une gestion écologique renforcée de la santé des plantes dans les paysages agricoles[END_REF]). The structure of plot landscapes can also influence the level of pest abundance, so the relationship between plot landscape and yield remains to be more comprehensively inventoried (Jonsson et al.[8]). The objective of this work is therefore to analyze, via a Partial Least Squares -Path Modeling (PLS-PM) approach, the relationships between: i) plot landscapes, ii) crop pests and weeds, iii) agronomic practices, and iv) economic results. The first part of this paper presents the specificity of the PLS-PM approach; the second part presents the field of study and describes the data considered in this work; the third part presents the results of the implementation of the PLS-PM approach; finally, the last part presents the conclusions on the validity of this approach and the perspectives of its application.

Structural equation modelling using partial least squares

Structural equation modelling mainly allows the study, via a hypothetical model specified in the form of equations, of the causal links (relationships) between several variables in order to account for the theoretical functioning of the system studied (Hoyle [START_REF] Hoyle | Structural Equation Modeling: Concepts, Issues, and Applications[END_REF]). In this structural equation modelling, the variables can be either directly derived from observations or measurements (referred to as "manifest" variables) or not directly observable (referred to as "latent" variables). The PLS-PM approach is a variant of structural equation modelling that allows for the analysis of a complex system of relationships between the different variables under study, based on an a priori causal model (Path Modeling -PM) describing the relationships between the explanatory or 'exogenous' variables and the explained or 'endogenous' variables (Tenenhaus et al. [START_REF] Tenenhaus | PLS Path Modelling[END_REF]). The particularity of the PLS-PM approach lies in the fact that the estimation of the links of the structural model (path coefficients) is based on the Partial Least Squares (PLS) estimation criterion, rather than the Maximum Likelihood (ML) criterion, classically used in structural equation modelling. The properties of Partial Least Squares (PLS) regression for estimating interdependent systems, established by Wold [START_REF] Wold | The Fix-Point Approach to Interdependent Systems[END_REF], led Lohmöller [START_REF] Lohmöller | Latent Variable Path Modeling with Partial Least Squares[END_REF] to propose the PLS approach to structural equation modelling, PLS-Path Modelling (PLS-PM). Thus, the use of the PLS-PM approach does not require any assumptions on the distribution of variables (e.g. normality of the distribution) and is suitable for small sample sizes. Recent theoretical and algorithmic developments (Tenenhaus et al. [START_REF] Tenenhaus | PLS Path Modelling[END_REF]) have opened the field of its application more widely to multidisciplinary research where many groups of variables are likely to interact to condition social phenomena or economic behaviour. Indeed, such multidisciplinary research can often only be conducted for data sets where the conditions relating to the normality of the distribution, independence between observations, or sample size are not met (Chin and Newsteed [START_REF] Chin | Structural Equation Modeling Analysis with Small Samples using Partial Least Squares[END_REF], p. 314). The specification of a PLS-PM model involves the following steps: i) specification of an initial hypothetical model describing the a priori relationships between the latent and manifest variables; ii) estimation of the model parameters via appropriate statistical software; iii) assessment of the goodness of fit of the structural model to the data (GoF); and iv) when the goodness of fit of the model is judged to be satisfactory, a final step is the interpretation of the results. In the PLS-PM approach, the structural model is a set of conceptual constructs (or 'latent variables') linked by hypothetical causal relationships (the 'internal model') that can be estimated by means of measured or observed 'manifest variables' reflecting or, respectively, forming the latent variables (external model). Figure 1 illustrates the concepts of structural modelling, specifying the internal and external models and describing the relationships between latent and manifest variables.

Fig. 1. Concepts of structural modelling

Reading: The beta coefficients represent the 'links' of the internal model; the manifest variables 𝑉𝑉𝑉𝑉 ℎ are associated with the exogenous 𝑉𝑉𝑉𝑉 𝑘𝑘 𝑒𝑒𝑒𝑒𝑒𝑒 or endogenous 𝑉𝑉𝑉𝑉 𝑘𝑘 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 latent variables according to a mode that can be either 'reflective' (mode A): manifest variables 'reflect' latent variables, or 'formative' (mode B: manifest variables 'form' latent variables).

2.1

Specification of the internal model The structural relationships between latent 'endogenous' (explained) and 'exogenous' (explanatory) variables constitute the internal model and are formalized by the following linear equations:

𝑉𝑉𝑉𝑉 𝑙𝑙 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 𝛽𝛽 𝑙𝑙 0 + ∑ 𝛽𝛽 𝑙𝑙 𝑘𝑘 𝐾𝐾 𝑘𝑘=1 𝑉𝑉𝑉𝑉 𝑘𝑘 𝑒𝑒𝑒𝑒𝑒𝑒 + 𝜀𝜀 𝑙𝑙
where 𝛽𝛽 𝑙𝑙 𝑘𝑘 , called the 'structural link' (path coefficient), represents the sign and strength of the deterministic relationship between the endogenous latent variable 𝑉𝑉𝑉𝑉 𝑙𝑙 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 and the exogenous latent variables 𝑉𝑉𝑉𝑉 𝑘𝑘 𝑒𝑒𝑒𝑒𝑒𝑒 . The part not explained by the deterministic model of 𝑉𝑉𝑉𝑉 𝑙𝑙 is relegated to the residual 𝜀𝜀 𝑙𝑙 . The structural links are estimated by a geometric projection (least squares) procedure whose only assumption is the independence between the deterministic part and the residual part, imposing that the covariance between each exogenous latent variable and the residual is zero (𝑐𝑐𝑐𝑐𝑐𝑐(𝑉𝑉𝑉𝑉 𝑘𝑘 𝑒𝑒𝑒𝑒𝑒𝑒 , 𝜀𝜀 𝑙𝑙 ) = 0).

2.2

Specification of the external model Latent variables are defined by the "manifest variables" (VMs), derived from measurements and/or observations whether direct or indirect, via two modes (see Figure 1): i) the "reflective" mode where latent variables are reflected through their effects or consequences on the observed indicators; the "formative" mode where latent variables are supposed to be formed or constituted by the measured variables.

In the A reflective mode, the 𝑋𝑋 𝑘𝑘 manifest variable reflects the 𝑉𝑉𝑉𝑉 𝑘𝑘 latent variable with mean m and standard deviation 1, according to the following projective scheme (least squares regression):

𝑋𝑋 ℎ = 𝜋𝜋 ℎ 0 + 𝜋𝜋 ℎ 𝑘𝑘 𝑉𝑉𝑉𝑉 𝑘𝑘 + ε ℎ
where the 𝜋𝜋 ℎ 𝑘𝑘 coefficient is the "outer weight" of the latent variable influencing the manifest variable. The residual ε ℎ has zero mean and is independent of the latent variable (𝑐𝑐𝑐𝑐𝑐𝑐[𝑉𝑉𝑉𝑉 𝑘𝑘 , ε ℎ ] = 0).

In the B formative mode, the measured variables "form" the latent variables, according to the following equation:

𝑉𝑉𝑉𝑉 𝑘𝑘 = � 𝜔𝜔 𝑘𝑘 ℎ 𝐻𝐻 ℎ=1 𝑋𝑋 ℎ + δ 𝑘𝑘
where the 𝜔𝜔 𝑘𝑘 ℎ coefficient is a "structural loading" contributing to the latent variable. The δ 𝑘𝑘 residual has zero mean and is independent of each of the manifest variables (𝑐𝑐𝑐𝑐𝑐𝑐[𝑋𝑋 ℎ , δ 𝑘𝑘 ] = 0).

The most commonly used mode is the A reflective mode. In estimating the model parameters, the PLS-PM approach aims to maximize the overall explained variance of the endogenous variables.

2.3

Validation statistics for the external model The one-dimensionality of the block of manifest variables corresponding to each latent variable is a structural assumption of the external model that should be validated using the different criteria presented below. i) Difference between the first two eigenvalues of the data block First criterion of one-dimensionality, the principal component analysis of the block of data corresponding to each of the latent variables (see Table 1) provides a first criterion of one-dimensionality adapted from the Kaiser rule: if the first eigenvalue of the correlation matrix is greater than 1 and the second eigenvalue is much smaller, this means that the vast majority of the manifest variables are positively correlated with the first principal component. ii) Cronbach's alpha The second criterion of one-dimensionality is Cronbach's alpha, the ratio of the sum of the co-variances over the variance of the sum of the H manifest variables of the data block corresponding to a latent variable, i.e.:

𝛼𝛼 = ∑ 𝑐𝑐𝑐𝑐𝑐𝑐(𝑋𝑋 ℎ , 𝑋𝑋 ℎ ′ ) 𝐻𝐻 ℎ=1 𝑐𝑐𝑣𝑣𝑣𝑣(∑ 𝑋𝑋 ℎ ) 𝐻𝐻 ℎ=1 × 𝐻𝐻 𝐻𝐻 -1
Cronbach's α is widely used in reliability analyses with the following rule: if this ratio is greater than 0.7, then the block can be considered unidimensional. iii) Dillon-Goldstein rho The last criterion used is the Dillon-Goldstein rho, the ratio of the variance of the latent variable to the variance of its block of manifest variables, estimable by

𝜌𝜌 � = [∑ 𝑐𝑐𝑐𝑐𝑣𝑣𝑣𝑣(𝑋𝑋 ℎ , 𝑡𝑡 1 ) 𝐻𝐻 ℎ=1 ] 2 [∑ 𝑐𝑐𝑐𝑐𝑣𝑣𝑣𝑣(𝑋𝑋 ℎ , 𝑡𝑡 1 ) 𝐻𝐻 ℎ=1 ] 2 + ∑ (1 -[𝑐𝑐𝑐𝑐𝑣𝑣𝑣𝑣(𝑋𝑋 ℎ , 𝑡𝑡 1 )] 2 ) 𝐻𝐻 ℎ=1
where 𝑡𝑡 1 is the first principal component of the thematic block of manifest variables.

If the estimate of the Dillon-Goldstein ρ is greater than 0.7, then the block is considered one-dimensional. The Dillon-Goldstein ρ is considered a better criterion than Cronbach's α by Chin [START_REF] Chin | The partial least squares approach for structural equation modeling[END_REF] because it is based on the structural factors of the internal model, rather than on the correlations between the manifest variables of the external model implicitly making the assumption that the manifest variables are a priori equivalent to each other in defining a latent variable (τ-equivalence assumption). iv) Communality

The 𝑐𝑐𝑐𝑐𝑐𝑐 𝑘𝑘 'communality' of the 𝑘𝑘 𝑡𝑡ℎ thematic block indicates the extent to which the variability of the manifest variables of the 𝑘𝑘 𝑡𝑡ℎ block is restored by the scores of the 𝑘𝑘 𝑡𝑡ℎ latent variable. The 'commonality' of the kth thematic block is equal to the weighted sum of the squares of the correlations between the manifest variables and the 𝑌𝑌 𝑘𝑘 reduced centered latent variable, i.e. :

𝑐𝑐𝑐𝑐𝑐𝑐 𝑘𝑘 = 1 𝐻𝐻 𝑘𝑘 � 𝑐𝑐𝑐𝑐𝑣𝑣 2 (𝑋𝑋 ℎ , 𝑌𝑌 𝑘𝑘 ) 𝐻𝐻 𝑘𝑘 ℎ=1 2.4
Overall validation of structural modelling i) The average redundancy index In order to link the predictive performance of the external measurement model to the consistency of the internal model components, the redundancy index calculated for each endogenous thematic block measures the share of variability of the manifest variables related to the 𝑌𝑌 ℎ latent variables explaining the 𝑘𝑘 𝑡𝑡ℎ endogenous latent variable, 𝑌𝑌 𝑘𝑘 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 , i.e.:

𝑅𝑅𝑅𝑅𝑅𝑅 𝑘𝑘 = 𝑐𝑐𝑐𝑐𝑐𝑐 𝑘𝑘 × 𝑅𝑅 2 �𝑌𝑌 𝑘𝑘 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 , 𝑌𝑌 ℎ:𝑌𝑌 ℎ →𝑌𝑌 𝑘𝑘 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 � It interprets like an index of the capacity to predict the observed values of the 𝑘𝑘 𝑡𝑡ℎ latent endogenous variable.

The average redundancy index, 𝑅𝑅𝑅𝑅𝑅𝑅, computed on the set of 𝐾𝐾 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 endogenous variables, i.e.:

𝑅𝑅𝑅𝑅𝑅𝑅 = 1 𝐾𝐾 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 � 𝑅𝑅𝑅𝑅𝑅𝑅 𝑘𝑘 𝐾𝐾 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑘𝑘=1
Gives then a global index of the capacity to predict the observed values of the endogenous latent variables of the model.

ii) The Goodness of Fit Proposed by Amato et al. [START_REF] Amato | A global goodness-of-fit index for PLS structural equation modeling[END_REF], the goodness of fit (GoF) of the model is defined by the squared root of the product of the average 'communality' over the average 𝑅𝑅 2 , i.e. :

𝐺𝐺𝑐𝑐𝐺𝐺 = � 𝑐𝑐𝑐𝑐𝑐𝑐 × 𝑅𝑅 2 = � ∑ ∑ 𝑐𝑐𝑐𝑐𝑣𝑣𝑣𝑣 2 (𝑋𝑋 𝑘𝑘 ℎ , 𝑌𝑌 𝑘𝑘 ) 𝐻𝐻 𝑘𝑘 ℎ=1 𝐾𝐾 𝑘𝑘=1 ∑ 𝐻𝐻 𝑘𝑘 𝐾𝐾 𝑘𝑘=1 × ∑ 𝑅𝑅 2 �𝑌𝑌 𝑘𝑘 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 , 𝑌𝑌 ℎ:𝑌𝑌 ℎ →𝑌𝑌 𝑘𝑘 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 � 𝐾𝐾 * 𝑘𝑘=1 𝐾𝐾 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
where 𝑐𝑐𝑐𝑐𝑐𝑐, the 'average communality' is the weighted mean of the communalities of each of the thematic blocks, i.e.:

𝑐𝑐𝑐𝑐𝑐𝑐 = 1 ∑ 𝐻𝐻 𝑘𝑘 𝑘𝑘:𝐻𝐻 𝑘𝑘 >1 � 𝐻𝐻 𝑘𝑘 𝑐𝑐𝑐𝑐𝑐𝑐 𝑘𝑘 𝑘𝑘:𝐻𝐻 𝑘𝑘 >1
Because for each block, the thematic communalities are the means of square of the correlation coefficients, the average communality is the mean of the set of the square of the correlation coefficient between the latent variables and their manifest variables.

iii) The Bootstrap As the PLS-PM approach is not based on distributional assumptions, the use of bootstrap-based validation procedures (Efron and Tibshirani [START_REF] Efron | An introduction to the bootstrap[END_REF]) becomes necessary in both an exploratory and confirmatory approach. 

[𝜑𝜑 � 𝑙𝑙𝑙𝑙𝑒𝑒𝑘𝑘 𝐵𝐵 (𝜏𝜏 2 ⁄ ) ; 𝜑𝜑 � 𝑙𝑙𝑙𝑙𝑒𝑒𝑘𝑘 𝐵𝐵 (1 -𝜏𝜏 2 ⁄ )]
3 Material and Method

Agro-ecological context of the study

In this study, we apply the PLS-PM approach to the agro-ecological context defined by the plots of experimental or agricultural fields observed in the research framework constituted by four study zones (ZE) (Figure 3). These researches are federated by the multidisciplinary project 'Predictive Ecological Engineering for Landscape Ecosystem Services and Sustainability' (Peerless), and funded by the French National Research Agency ANR). and merged with the agro-ecological data (Desbois [START_REF] Desbois | PEERLESS D1-2 : constitution et validation de la base de données agroécologiques et économiques[END_REF]) using together the price references issued from the French statistical office, those produced by the technical institutes (Arvalis, Centre technique interprofessionnel des Fruits et Légumes) and the agricultural offices (FranceAgriMer, Chambres d'Agriculture) to compute gross products, specific costs and gross margin.

3.3

The structural model and the estimation Build from the concepts of the corporate accountancy, the simplified accounting relationship 𝐺𝐺𝑣𝑣𝑐𝑐𝐺𝐺𝐺𝐺_𝑉𝑉𝑣𝑣𝑣𝑣𝑀𝑀𝑀𝑀𝑀𝑀 = 𝐺𝐺𝑣𝑣𝑐𝑐𝐺𝐺𝐺𝐺_𝑃𝑃𝑣𝑣𝑐𝑐𝑅𝑅𝑃𝑃𝑐𝑐𝑡𝑡 -𝑆𝑆𝑆𝑆𝑅𝑅𝑐𝑐𝑀𝑀𝑆𝑆𝑀𝑀𝑐𝑐𝐺𝐺_𝐶𝐶𝑐𝑐𝐺𝐺𝑡𝑡𝐺𝐺 defining the concept of gross margin as an algebraic sum of gross product and specific costs, offers a simple example of application not only to the holding but also to the cropped plots of the concept of internal structural model. Once specified, this internal model allows to structure the set of measured or observed variables (the 'manifest' variables' -MVs) into several blocks corresponding to the conceptual artefacts, each block of manifest variables representing a latent variable. The particular composition into manifest variables of thematic blocks corresponding to different latent variables (Landscape1, Landscape2, Pests, Weeds, SpecCost, GrossProd, Subsidies, Marginpua) is given in annex (Table 5). In a context of agro-ecological application, the concept of 'landscape' for the agricultural plot can be specified in a formative mode (B) by the occupation profiles of the soil (the different crops, the fabaceus, the fallow, the gardening, the seeds, the meadows and the wooden areas) as it can be in reflective mode (A) in the various indices de diversity that can be built from its description (« field crops » or « every production » Shannon indices). Applied to eco-systemic contexts resulting from the conjunction of infrastructures and practices, the specification of a structural model of agro-ecological interaction and economic impact (Figure 5) allows to analyse the interrelations between ecological infrastructures (landscape profiles at the plot level), agronomic practices (ploughing, intermediary crops), and the induced results (growth of the product, reduction of the costs). In this work, the initial structural model takes in the one proposed by Mezerette [START_REF] Mezerette | Quels effets de la gestion agricole et du paysage sur l'abondance de bioagresseurs et le rendement ?[END_REF], completing it by the business management variables of costs, subsidies, product, and margin (Figure 1) and extending its application to the Peerless arboreal sites. This initial structural model specifies the a priori relationships between the agro-ecological variables describing the landscape (Landscape1, Landscape2), the agronomical practices (Practice) as well as the occurrence of diseases or pests (Pests) and weeds (Weeds), with the economic variables of specific costs (SpecCost), of gross production (GrossProd), of subsidies (Subsidies), and of gross margin per unit area (Marginpua) at the plot level. In the scheme of the Figure 5, the ecological infrastructures (Landscape1, Landscape2) influence both the diseases or pests (Pests), the weeds (Weeds) and agronomical practices (Practice), in an a priori undetermined way (→). The agronomical practices impact a priori the gross products (GrossProd) and the specific costs (SpecCost) either directly by strengthening them (→), either indirectly by diminishing them (→) the pests and the weeds. The pests and the weeds are supposed to have a diminishing impact (→) on the gross products and expanding impact (→) on specific costs. The sum of these influences on the gross products and on the specific costs determines, with the subsidies (Subsidies), the impact in fine of the agro-ecological practices on the gross margin per hectare (Marginpua). In this scheme, the conceptual artefacts (Landscape1, Landscape2, and Subsidies appear as a priori exogenous (i.e. non determined by other phenomena) LVs while the concepts Practice, Pests, Weeds, SpecCost, GrossProd, and Marginpua are a priori endogenous (i.e. influenced by other phenomena) LVs.

Fig. 4. The structural model of agro-ecological interaction and economic impact at the plot level

Reading of the graphical display: in green, the exogenous LVs; in burgundy, the endogenous LVs; in blue, the structural links of strengthening ; in red, the structural links of weakening ; in grey, the structural links a priori undetermined.

Results and discussion

The initial structural model is estimated on the basis of a set of 158 plots surveyed on 2014 and 2015. The setting of the PLS-PM approach has been realised via the R statistical software, version 3.6.2 (https://www.r-project.org/), and specifically with the 'pls-pm' package, version 0.4.9 (Sanchez, Trinchera and Russolillo, 2017). The estimation of structural links (path coefficients) of the model has been conducted using the reflective (A) mode for the set of latent variables. Figure 6 displays the whole view of the external model. For example, for the latent variable Pests, the manifest variables reflecting this latent variable within the thematic block corresponding are: S.avenae, M.dirhodum, Total.aphids, Lema.larvae, PctDamage.by.Lema. The value of the structural factors is positive for the occurrences of pests (Total.aphids, Lema.larvae) and the index of their attacks (PctDamage.by.Lema). However, this value is negative for occurrences of the cereal ear aphid Sitobion (S.avenae), in contrast to the other pest occurrences of cereal and rose aphids (M.dirhodum) and cereal leaf beetles (Lema).

4.1

Checking the block one-dimensionality The one-dimensionality statistics (Cronbach's alpha and Dillon-Goldstein's rho) computed on the basis of the initial structural model displayed (Figure 6) show too low values for the thematic blocks Subsidies, Landscape2, and SpecCost (Table 1). In fact, for these blocks, we observe some negatives correlations (loadings). The blocks Landscape2, Practice, Pests, Weeds and Marginpua are considered as one-dimensional because they satisfy all the criterions. The block Landscape1 and the blocks SpecCost, GrossProd, and Subsidies show values lower than 0.7 for the Cronbach's alpha, however the blocks GrossProd and Subsidies can be considered as unidimensional because they satisfy to the criterion of the Dillon-Goldstein's rho.

Fitting the external model and assessing the quality of the fit

The Goodness of Fit (GoF) value of the initial model is 0.4285. This index can be improved by adjusting the external model: indeed, some negatively correlated links can be transformed into positive links by appropriate recoding of manifest variables (MVs). Thus, in the block Subsidies, the recoding of the CouplAid_pha (coupled aid per hectare) MV into the DecouplAid_ha = TotalAid_pha-CouplAid_pha variable, makes it possible to obtain a positive correlation. Similarly, for the Landscape1 thematic block, the VegCrop_pct (percentage of vegetable crop) MV is recoded into the NonVegCrop_pct = 100 -VegCrop_pct variable. For the block Practice, the Fung_IFT (index of the frequency of fungal treatments) MV is transformed into the NonFung_IFT=Total_IFT -Fung_IFT variable. For the block SpecCost, the FungTCost_pha (cost per hectare of fungal treatments) MV is transformed into the NonFungTCost_pha =TotalCost_pha -FungTCost_pha variable.

Tab. 1. One-dimensionality statistics of thematic blocks of the initial model.

Reading: the values in blue mean that the selected one-dimensionality criterion is satisfied.

After this recoding, the one-dimensionality statistics are enhanced (Table 2): they are all greater than 0.7 (acceptance level of the one-dimensionality hypothesis) except for the blocks Landscape1, GrossProd, and the Subsidies block with the values lower than 0.5 for the Cronbach's alpha, however near from the acceptance level with the Dillon-Goldstein's rho (>0,6) for Landscape2. The value of the Goodness of Fit for the amended model is enhanced in a marginal way, to 0.5078 (Table 3). Tab. 2. One-dimensionality statistics for the thematic blocks of the amended model.

Reading: the values in blue mean that the selected one-dimensionality criterion is satisfied. 

Landscape1

The structural model after revision

Taking in account the correlations between blocks result in the following structural model (Figure 4) where the relationships between latent variables are of expected sign except for the latent variable « Weeds » issued from the block Weeds displaying a negative relationship somewhat of low intensity, with the variable 'Specific Costs' issue du block SpecCost. Take notice that the relationship between the latent variable Practice representing the agronomic practices and the latent variable Pests representing the occurrence of pest is positive while it is negative with the latent variable Weeds representing the presence of weeds. It would be interesting to distinguish between the specific practices of the pest control from those specific of the weed control. The direct and indirect effects are displayed in Figure 6 as a categorical diagram, occasionally piled when they are cumulative. With regards to the direct or indirect effects, we distinguish those important (greater than 0.4), from those which are moderate (greater than 0.2 and lower than 0.4) and those which are low (lower than 0.2 and greater than 0.1), even from those which are very low (lower than 0.1). Among the effects which are important, we have: i) the negative effects of the agronomic practices on the weeds; ii) the negative effects of the pest and the weeds on the gross product; iii) the positive effects of the gross product on the gross margin. The most important indirect effects (greater than 0.4) are those negative of the pest on the gross margin. Among the moderate direct effects, we distinguish: i) the negative one, the specific costs on the gross margin; ii) the positive one, the cover of the landscape (Landscape1) of the practices on the weeds, of practices on the pests and the specific costs, also of subsidies on the gross margin. The moderate indirect effects are the negative one of weeds on the gross margin. Among the low direct effects, we note: i) the negative one of weeds on the specific costs; ii) the positive one, by decreasing importance order, of landscape complexity (Landscape2) on the pests and of practices on the gross product. The lower indirect effects are: i) the negative one, the landscape cover on the gross product and the margin; ii) the positive one, of landscape cover on the specifics costs and of practices on the product. Among the lower direct effects, we notice: the positive ones of the landscape complexity on the specific costs and the practices; ii) the negative one of weeds on the specific costs. The very low indirect effects are: i) the positive one of landscape complexity and of the cover landscape on the pests, and of practices of the gross margin; ii) the negative ones of landscape complexity on the gross product and the gross margin. Hence, the major effects are the ones positive of pests on the specific costs, and of gross product on the gross margin. The minor effects which appear as manifest are: i) the negative ones of practices on the weeds and the ones of pests and of the weeds on the gross product, and indirectly on the gross margin; ii) the positive ones of practices on the specific costs. The use of random resampling validates these initial findings, particularly with regard to the structural links in the internal model (Table 4 and Figure 5).

Tab. 4. Bootstrapped estimation of the structural links of the internal model

Reading: values in blue (respectively in red) indicate that according to the bootstrap estimation the value of the structural link is significantly positive, respectively negative. Thus, according to the estimation initiated with 99 random removals (bootstrap) and a confidence level (τ=0.05) at 95%, the only significantly non-zero links turn out to be: i) on the one hand, the positive influence of practices on specific costs (Practice->SpecCost ≈ 0.25), of pests on specific costs (Pests->SpecCost ≈ 0.71) and of product on gross margin (GrossProd->Marginpua ≈ 0.69); ii) on the other hand, the negative influence of pests on production (Pests->GrossProd ≈ -0.50), weeds on production (Weeds->GrossProd ≈ -0.48) and specific costs on margin (SpecCost->Marginpua ≈ -0.20).

Landscape1

Conclusions

The objective of this work is to propose an introduction to an alternative structural modelling method adapted to the evaluation of ecosystem practices, in a context characterized by the complexity of the interrelationships between parcel landscapes, agronomic practices and economic results, as well as the small size of the available observation samples. The partial least squares approach revealed statistically significant effects: i) negative on products for weeds and pests; ii) positive on specific costs for practices and pests; and iii) of opposite sign on margin, negative for specific costs and positive for products. However, while the effects of agronomic practices on weeds are of the expected sign, they are not for pests. The signs of the effects of landscapes on pests and weeds are also not of the expected sign. However, these estimated values of these effects are not statistically significant. Thus, it is necessary to estimate this structural model on a larger sample of observations that would allow the extension of this study to a larger spatial scale to include other plot landscapes and its continuation over several years in order to isolate possible effects of inter-annual variation.

  Bootstrapped estimates are computed for external weights, factors, structural links, communality and redundancy indices, and overall goodness of fit. The principle of the bootstrap procedure is to randomly draw B new samples (usually B<100) of N observations (the 'seeds') into the initial sample of observations in order to obtain an estimate of the quantile function φ, reciprocal of the cumulative distribution function. For example, the bootstrapped values of the structural links are estimated on a B bootstrap basis using a Monte-Carlo procedure, yielding empirical confidence intervals estimated at the (1-τ) level of the quantile function of the bootstrapped communalities 𝜑𝜑 � 𝑙𝑙𝑙𝑙𝑒𝑒𝑘𝑘 𝐵𝐵 , reciprocal of the cumulative distribution function, i.e. :

  where 𝛽𝛽 𝑙𝑙 𝑘𝑘 , called the 'structural link' (path coefficient), represents the sign and strength of the deterministic relationship between the endogenous latent variable 𝑉𝑉𝑉𝑉 𝑙𝑙 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 and the exogenous latent variables 𝑉𝑉𝑉𝑉 𝑘𝑘 𝑒𝑒𝑒𝑒𝑒𝑒 . The part not explained by the deterministic model of 𝑉𝑉𝑉𝑉 𝑙𝑙 is relegated into the residual 𝜀𝜀 𝑙𝑙 . The structural links are estimated by a geometric projection (least squares) procedure whose only assumption is the independence between the deterministic part and the residual part, imposing that the covariance between each exogenous latent variable and the residual is zero (𝑐𝑐𝑐𝑐𝑐𝑐(𝑉𝑉𝑉𝑉 𝑘𝑘 𝑒𝑒𝑒𝑒𝑒𝑒 , 𝜀𝜀 𝑙𝑙 ) = 0).

Fig. 2 .Fig. 3 .*

 23 Fig. 2. Agro-ecological practices and infrastructure of the Peerless project

Fig. 5 .

 5 Fig. 5. Estimated internal scheme of the final structural model after revision Reading: blue (respectively red) arrows indicate that the expected value of the structural link is positive, respectively negative; values (e.g., 0.398) indicate the strength of the structural link connecting the latent variables (e.g., Landscape1->Weeds); dotted structural links (⋯>) are not significant according to the bootstrapped estimation.

Fig. 6 .

 6 Fig. 6. Distribution of direct and indirect effects Reading: direct effects are in dark blue and indirect effects are in light blue; if direct and indirect effects co-exist, then the bars are stacked.

  Nota bene: the Goodness of Fit is computed from the endogenous blocks.

			Observed	Cronbach's	Dillon-	Eigenvalue	Eigenvalue
	Blocks	Mode	Var	Alpha	Goldstein's Rho	1	2
		A	9	0.398	0.073	2.04	1.67
	Landscape2 A	10	0.473	0.642	1.84	1.45
	Practice	A	18	0.943	0.950	9.45	3.20
	Pests	A	5	0.807	0.874	3.03	0.96
	Weeds	A	6	0.871	0.904	3.68	1.09
	SpecCost	A	10	0.834	0.879	4.75	2.30
	GrossProd	A	4	0.690	0.805	2.30	1.59
	Subsidies	A	4	0.243	0.125	2.09	0.18
	Marginpua	A	3	0.986	0.991	2.92	0.07
			Observed Eigenvalue Tab. 3. Communalities, R 2 and redundancies Cronbach's Dillon-Eigenvalue
	Blocks	Mode	Var	Alpha	Goldstein's Rho	1	
	Landscape1 A	10	0	0.215	2.10	1,79
	Landscape2 A	2	0.829	0.921	1.71	0.29
	Practice	A	19	0.720	0.741	9.11	3.33
	Pests	A	5	0.717	0.838	3.03	0.96
	Weeds	A	6	0.871	0.904	3.68	1.09
	SpecCost	A	10	0.541	0.611	3.02	2.50
	GrossProd	A	4	0.592	0.790	2.30	1.59
	Subsidies	A	4	0.664	0.804	2.08	1.31
	Marginpua	A	3	0.986	0.991	2.92	0.07

i This paper is dedicated to the memory of Jean-Paul Benzécri (1932-2019), emeritus professor at 'Université Pierre et Marie Curie'.