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Abstract. This paper proposes the use of structural modeling for the evaluation of 
ecosystem-based practices (e.g. biological control of crop pests) on the basis of data 
collected at the scale of the agricultural plot. In the first part, we present the analytical 
approach used - structural modeling by partial least squares. In the second part, we present 
the field of study and the data considered in this work. In the third part, we present and 
discuss the results from the implementation of the Partial Least Squares - Path Modeling 
(PLS-PM) approach. Finally, we conclude on the validation of this approach and the 
prospiects for its possible extension. 
Keywords: ecosystem-based practices, structural modeling, partial least squares, plot 
scale, biological pest, specific costs, gross margin. 
 
1  Introduction 
The biological control of crop pests and weeds is an example of ecosystem 
services (ES) - the benefits that ecosystems provide to humankind (Millennium 
Ecosystem Assessment[11]) - provided at the farm plot level. The amenities 
provided by ecosystem infrastructures and agro-ecological practices in terms of 
soil protection, water resource management, and preservation of the habitat of 
agricultural auxiliaries constitute productive services that can be evaluated at the 
plot and farm level. For example, the biological control of crop pests and weeds 
by naturally occurring beneficials (such as ladybirds that predate aphids) is one 
of the productive services that can be mobilized at the plot level to reduce the 
dependence of agricultural production systems on pesticides. However, the 
relationships between crop management methods, levels of pest control by 
beneficials and crop yields are still insufficiently assessed (Franck et al.[6]). The 
structure of plot landscapes can also influence the level of pest abundance, so the 
relationship between plot landscape and yield remains to be more 
comprehensively inventoried (Jonsson et al.[8]). The objective of this work is 
therefore to analyze, via a Partial Least Squares - Path Modeling (PLS-PM) 
approach, the relationships between: i) plot landscapes, ii) crop pests and weeds, 
iii) agronomic practices, and iv) economic results. 
The first part of this paper presents the specificity of the PLS-PM approach; the 
second part presents the field of study and describes the data considered in this 
work; the third part presents the results of the implementation of the PLS-PM 
approach; finally, the last part presents the conclusions on the validity of this 
approach and the perspectives of its application. 
  



2  Structural equation modelling using partial least squares 
Structural equation modelling mainly allows the study, via a hypothetical model 
specified in the form of equations, of the causal links (relationships) between 
several variables in order to account for the theoretical functioning of the system 
studied (Hoyle[7]). In this structural equation modelling, the variables can be 
either directly derived from observations or measurements (referred to as 
"manifest" variables) or not directly observable (referred to as "latent" variables).  
The PLS-PM approach is a variant of structural equation modelling that allows 
for the analysis of a complex system of relationships between the different 
variables under study, based on an a priori causal model (Path Modeling - PM) 
describing the relationships between the explanatory or 'exogenous' variables and 
the explained or 'endogenous' variables (Tenenhaus et al.[12]). The particularity 
of the PLS-PM approach lies in the fact that the estimation of the links of the 
structural model (path coefficients) is based on the Partial Least Squares (PLS) 
estimation criterion, rather than the Maximum Likelihood (ML) criterion, 
classically used in structural equation modelling.   
The properties of Partial Least Squares (PLS) regression for estimating 
interdependent systems, established by Wold[13], led Lohmöller[9] to propose 
the PLS approach to structural equation modelling, PLS-Path Modelling (PLS-
PM). Thus, the use of the PLS-PM approach does not require any assumptions on 
the distribution of variables (e.g. normality of the distribution) and is suitable for 
small sample sizes. Recent theoretical and algorithmic developments 
(Tenenhaus et al.[12]) have opened the field of its application more widely to 
multidisciplinary research where many groups of variables are likely to interact 
to condition social phenomena or economic behaviour. Indeed, such 
multidisciplinary research can often only be conducted for data sets where the 
conditions relating to the normality of the distribution, independence between 
observations, or sample size are not met (Chin and Newsteed[3], p. 314). 
The specification of a PLS-PM model involves the following steps: i) 
specification of an initial hypothetical model describing the a priori relationships 
between the latent and manifest variables; ii) estimation of the model parameters 
via appropriate statistical software; iii) assessment of the goodness of fit of the 
structural model to the data (GoF); and iv) when the goodness of fit of the model 
is judged to be satisfactory, a final step is the interpretation of the results.  
In the PLS-PM approach, the structural model is a set of conceptual constructs 
(or 'latent variables') linked by hypothetical causal relationships (the 'internal 
model') that can be estimated by means of measured or observed 'manifest 
variables' reflecting or, respectively, forming the latent variables (external 
model). Figure 1 illustrates the concepts of structural modelling, specifying the 
internal and external models and describing the relationships between latent and 
manifest variables. 



 
Fig. 1. Concepts of structural modelling 

Reading: The beta coefficients represent the 'links' of the internal model; the manifest variables 𝑉𝑉𝑉𝑉ℎ 
are associated with the exogenous 𝑉𝑉𝑉𝑉𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒 or endogenous 𝑉𝑉𝑉𝑉𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 latent variables according to a 
mode that can be either 'reflective' (mode A): manifest variables ‘reflect’ latent variables, or 
‘formative’ (mode B: manifest variables ‘form’ latent variables). 
  
2.1 Specification of the internal model 
The structural relationships between latent 'endogenous' (explained) and 
'exogenous' (explanatory) variables constitute the internal model and are 
formalized by the following linear equations: 
𝑉𝑉𝑉𝑉𝑙𝑙𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 𝛽𝛽𝑙𝑙0 + ∑ 𝛽𝛽𝑙𝑙𝑘𝑘𝐾𝐾

𝑘𝑘=1 𝑉𝑉𝑉𝑉𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒 + 𝜀𝜀𝑙𝑙  
 where  𝛽𝛽𝑙𝑙𝑘𝑘, called the ‘structural link’ (path coefficient), represents the sign and 
strength of the deterministic relationship between the endogenous latent variable 
𝑉𝑉𝑉𝑉𝑙𝑙𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒and the exogenous latent variables 𝑉𝑉𝑉𝑉𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒 . The part not explained by 
the deterministic model of 𝑉𝑉𝑉𝑉𝑙𝑙 is relegated to the residual 𝜀𝜀𝑙𝑙. The structural links 
are estimated by a geometric projection (least squares) procedure whose only 
assumption is the independence between the deterministic part and the residual 
part, imposing that the covariance between each exogenous latent variable and 
the residual is zero (𝑐𝑐𝑐𝑐𝑐𝑐(𝑉𝑉𝑉𝑉𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒, 𝜀𝜀𝑙𝑙) = 0). 
 
2.2 Specification of the external model 
Latent variables are defined by the "manifest variables" (VMs), derived from 
measurements and/or observations whether direct or indirect, via two modes (see 
Figure 1): i) the "reflective" mode where latent variables are reflected through 
their effects or consequences on the observed indicators; the "formative" mode 
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where latent variables are supposed to be formed or constituted by the measured 
variables.  
In the A reflective mode, the 𝑋𝑋𝑘𝑘 manifest variable reflects the 𝑉𝑉𝑉𝑉𝑘𝑘 latent variable 
with mean m and standard deviation 1, according to the following projective 
scheme (least squares regression):  

𝑋𝑋ℎ = 𝜋𝜋ℎ0 + 𝜋𝜋ℎ𝑘𝑘𝑉𝑉𝑉𝑉𝑘𝑘 + εℎ 
where the 𝜋𝜋ℎ𝑘𝑘   coefficient is the "outer weight" of the latent variable influencing 
the manifest variable. The residual εℎhas zero mean and is independent of the 
latent variable (𝑐𝑐𝑐𝑐𝑐𝑐[𝑉𝑉𝑉𝑉𝑘𝑘, εℎ] = 0). 
In the B formative mode, the measured variables "form" the latent variables, 
according to the following equation:  

𝑉𝑉𝑉𝑉𝑘𝑘 = � 𝜔𝜔𝑘𝑘
ℎ

𝐻𝐻

ℎ=1
𝑋𝑋ℎ + δ𝑘𝑘  

where the 𝜔𝜔𝑘𝑘
ℎ coefficient is a "structural loading" contributing to the latent 

variable. The δ𝑘𝑘  residual has zero mean and is independent of each of the 
manifest variables (𝑐𝑐𝑐𝑐𝑐𝑐[𝑋𝑋ℎ,δ𝑘𝑘] = 0). 
The most commonly used mode is the A reflective mode. In estimating the model 
parameters, the PLS-PM approach aims to maximize the overall explained 
variance of the endogenous variables. 
 
2.3 Validation statistics for the external model 
The one-dimensionality of the block of manifest variables corresponding to each 
latent variable is a structural assumption of the external model that should be 
validated using the different criteria presented below. 
i) Difference between the first two eigenvalues of the data block 
First criterion of one-dimensionality, the principal component analysis of the 
block of data corresponding to each of the latent variables (see Table 1) provides 
a first criterion of one-dimensionality adapted from the Kaiser rule: if the first 
eigenvalue of the correlation matrix is greater than 1 and the second eigenvalue 
is much smaller, this means that the vast majority of the manifest variables are 
positively correlated with the first principal component. 
ii) Cronbach's alpha 
The second criterion of one-dimensionality is Cronbach's alpha, the ratio of the 
sum of the co-variances over the variance of the sum of the H manifest variables 
of the data block corresponding to a latent variable, i.e.:  

𝛼𝛼 =
∑ 𝑐𝑐𝑐𝑐𝑐𝑐(𝑋𝑋ℎ,𝑋𝑋ℎ′)𝐻𝐻
ℎ=1

𝑐𝑐𝑣𝑣𝑣𝑣(∑ 𝑋𝑋ℎ)𝐻𝐻
ℎ=1

×
𝐻𝐻

𝐻𝐻 − 1
 

Cronbach's α is widely used in reliability analyses with the following rule: if this 
ratio is greater than 0.7, then the block can be considered unidimensional. 
iii) Dillon-Goldstein rho 
The last criterion used is the Dillon-Goldstein rho, the ratio of the variance of the 
latent variable to the variance of its block of manifest variables, estimable by 



𝜌𝜌� =
[∑ 𝑐𝑐𝑐𝑐𝑣𝑣𝑣𝑣(𝑋𝑋ℎ, 𝑡𝑡1)𝐻𝐻

ℎ=1 ]2

[∑ 𝑐𝑐𝑐𝑐𝑣𝑣𝑣𝑣(𝑋𝑋ℎ, 𝑡𝑡1)𝐻𝐻
ℎ=1 ]2 + ∑ (1 − [𝑐𝑐𝑐𝑐𝑣𝑣𝑣𝑣(𝑋𝑋ℎ, 𝑡𝑡1)]2)𝐻𝐻

ℎ=1
 

where 𝑡𝑡1 is the first principal component of the thematic block of manifest 
variables. 
If the estimate of the Dillon-Goldstein ρ is greater than 0.7, then the block is 
considered one-dimensional. 
The Dillon-Goldstein ρ is considered a better criterion than Cronbach's α by 
Chin[2] because it is based on the structural factors of the internal model, rather 
than on the correlations between the manifest variables of the external model 
implicitly making the assumption that the manifest variables are a priori 
equivalent to each other in defining a latent variable (τ-equivalence assumption). 
iv) Communality 
The 𝑐𝑐𝑐𝑐𝑐𝑐𝑘𝑘 ‘communality’ of the 𝑘𝑘𝑡𝑡ℎ thematic block indicates the extent to 
which the variability of the manifest variables of the 𝑘𝑘𝑡𝑡ℎ block is restored by the 
scores of the 𝑘𝑘𝑡𝑡ℎ latent variable. The 'commonality' of the kth thematic block is 
equal to the weighted sum of the squares of the correlations between the manifest 
variables and the 𝑌𝑌𝑘𝑘 reduced centered latent variable, i.e. : 

𝑐𝑐𝑐𝑐𝑐𝑐𝑘𝑘 =
1
𝐻𝐻𝑘𝑘

� 𝑐𝑐𝑐𝑐𝑣𝑣2(𝑋𝑋ℎ,𝑌𝑌𝑘𝑘)
𝐻𝐻𝑘𝑘

ℎ=1
 

 
2.4 Overall validation of structural modelling 
i) The average redundancy index 
In order to link the predictive performance of the external measurement model to 
the consistency of the internal model components, the redundancy index 
calculated for each endogenous thematic block measures the share of variability 
of the manifest variables related to the 𝑌𝑌ℎ  latent variables explaining the 𝑘𝑘𝑡𝑡ℎ 
endogenous latent variable, 𝑌𝑌𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 , i.e.: 

 𝑅𝑅𝑅𝑅𝑅𝑅𝑘𝑘 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑘𝑘 × 𝑅𝑅2 �𝑌𝑌𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑌𝑌ℎ:𝑌𝑌ℎ→𝑌𝑌𝑘𝑘
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 � 

It interprets like an index of the capacity to predict the observed values of the 𝑘𝑘𝑡𝑡ℎ 
latent endogenous variable. 
The average redundancy index, 𝑅𝑅𝑅𝑅𝑅𝑅, computed on the set of 𝐾𝐾𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 endogenous 
variables, i.e.: 

𝑅𝑅𝑅𝑅𝑅𝑅 =
1

𝐾𝐾𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒� 𝑅𝑅𝑅𝑅𝑅𝑅𝑘𝑘
𝐾𝐾𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

𝑘𝑘=1
 

Gives then a global index of the capacity to predict the observed values of the 
endogenous latent variables of the model. 
ii) The Goodness of Fit  
Proposed by Amato et al.[1], the goodness of fit (GoF) of the model is defined by 
the squared root of the product of the average ‘communality’ over the average 
𝑅𝑅2, i.e. : 



 𝐺𝐺𝑐𝑐𝐺𝐺 = �𝑐𝑐𝑐𝑐𝑐𝑐 × 𝑅𝑅2

= �∑ ∑ 𝑐𝑐𝑐𝑐𝑣𝑣𝑣𝑣2(𝑋𝑋𝑘𝑘ℎ,𝑌𝑌𝑘𝑘)𝐻𝐻𝑘𝑘
ℎ=1

𝐾𝐾
𝑘𝑘=1

∑ 𝐻𝐻𝑘𝑘𝐾𝐾
𝑘𝑘=1

×
∑ 𝑅𝑅2 �𝑌𝑌𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑌𝑌ℎ:𝑌𝑌ℎ→𝑌𝑌𝑘𝑘

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 �
𝐾𝐾∗
𝑘𝑘=1

𝐾𝐾𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  

  
where 𝑐𝑐𝑐𝑐𝑐𝑐, the ‘average communality’ is the weighted mean of the 
communalities of each of the thematic blocks, i.e.: 
 

𝑐𝑐𝑐𝑐𝑐𝑐 =
1

∑ 𝐻𝐻𝑘𝑘𝑘𝑘:𝐻𝐻𝑘𝑘>1
� 𝐻𝐻𝑘𝑘𝑐𝑐𝑐𝑐𝑐𝑐𝑘𝑘

𝑘𝑘:𝐻𝐻𝑘𝑘>1
 

Because for each block, the thematic communalities are the means of square of 
the correlation coefficients, the average communality is the mean of the set of the 
square of the correlation coefficient between the latent variables and their 
manifest variables. 
iii) The Bootstrap 
As the PLS-PM approach is not based on distributional assumptions, the use of 
bootstrap-based validation procedures (Efron and Tibshirani[5]) becomes 
necessary in both an exploratory and confirmatory approach. Bootstrapped 
estimates are computed for external weights, factors, structural links, 
communality and redundancy indices, and overall goodness of fit. The principle 
of the bootstrap procedure is to randomly draw B new samples (usually B<100) 
of N observations (the ‘seeds’) into the initial sample of observations in order to 
obtain an estimate of the quantile function φ, reciprocal of the cumulative 
distribution function. For example, the bootstrapped values of the structural links 
are estimated on a  B bootstrap basis using a Monte-Carlo procedure, yielding 
empirical confidence intervals estimated at the (1-τ) level of the quantile function 
of the bootstrapped communalities 𝜑𝜑�𝑙𝑙𝑙𝑙𝑒𝑒𝑘𝑘𝐵𝐵 , reciprocal of the cumulative 
distribution function, i.e. : 

[𝜑𝜑�𝑙𝑙𝑙𝑙𝑒𝑒𝑘𝑘𝐵𝐵 (𝜏𝜏 2⁄ ) ;𝜑𝜑�𝑙𝑙𝑙𝑙𝑒𝑒𝑘𝑘𝐵𝐵 (1− 𝜏𝜏 2⁄ )] 
 
 
3  Material and Method 
3.1 Agro-ecological context of the study 
In this study, we apply the PLS-PM approach to the agro-ecological context 
defined by the plots of experimental or agricultural fields observed in the research 
framework constituted by four study zones (ZE) (Figure 3). These researches are 
federated by the multidisciplinary project  ‘Predictive Ecological Engineering for 
Landscape Ecosystem Services and Sustainability’ (Peerless), and funded  by the 
French National Research Agency ANR). 
 
𝑉𝑉𝑉𝑉𝑙𝑙𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 𝛽𝛽𝑙𝑙0 + ∑ 𝛽𝛽𝑙𝑙𝑘𝑘𝐾𝐾

𝑘𝑘=1 𝑉𝑉𝑉𝑉𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒 + 𝜀𝜀𝑙𝑙  



 where  𝛽𝛽𝑙𝑙𝑘𝑘, called the ‘structural link’ (path coefficient), represents the sign and 
strength of the deterministic relationship between the endogenous latent variable 
𝑉𝑉𝑉𝑉𝑙𝑙𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒and the exogenous latent variables 𝑉𝑉𝑉𝑉𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒 . The part not explained by 
the deterministic model of 𝑉𝑉𝑉𝑉𝑙𝑙 is relegated into the residual 𝜀𝜀𝑙𝑙. The structural 
links are estimated by a geometric projection (least squares) procedure whose 
only assumption is the independence between the deterministic part and the 
residual part, imposing that the covariance between each exogenous latent 
variable and the residual is zero (𝑐𝑐𝑐𝑐𝑐𝑐(𝑉𝑉𝑉𝑉𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒, 𝜀𝜀𝑙𝑙) = 0). 
 

  
Fig. 2. Agro-ecological practices and infrastructure of the Peerless project 

 
The Peerless project aims to identify the alternate managing strategies enhancing 
the pest control practices based on the functional biodiversity in arboriculture and 
in field crops to optimise the agricultural production systems, at the local 
landscape scales, in a double perspective of durability and economical viability 
of these productions (Franck et al.[6]). Peerless has been structured towards the 
three following objectives: i) the evaluation of agronomical and ecological factors 
of the plant protection; ii) the identification of ecological mecanisms enhancing 
the bio-control of pests;  iii) the landscape conception of viable plant productions. 
the Peerless project aggregate four study zones (Figure 3) with field crops 
(‘Anjou’, ‘Bittany’, and ‘Côte d'Or’), and one study zone with arboriculture 
(‘Low Valley of the Durance’). These study zones (ZE) represent a set of 158 
plots surveyed during 2014 and 2015. 



 

 
Fig. 3. Localization of the study zones in the Peerless project 

 
3.2 Data 
In this study, the Peerless project the data of considered at the scale of the different 
study zones are: i)  agro-ecological measures from the field ; ii) field observations 
about the agronomical practices ; iii) economic estimates based on the agronomic 
practices,  plot yields and the regional or national price references. 

i) The agro-ecological data has been collected in the frame of the T1 
task (landscape structure, field environment and agronomic 
practices) of the project. For each of the study zones, the landscape 
specification has been made within a circle of 1 km2 of unit surface 
according two modalities. First specification of the landscape 
(Paysage1): the landscape contexts are specified by the percentages 
in winter crops, spring crops, summer crops, perennial crops, 
fabaceus, fallow, horticulture, seeds, and the ratios of meadows and 
of wooden areas. Second specification of the landscape (Paysage2), 
two Shannon indexes has been computed between distinct sites 
taking the lowest correspondence level of the common typologies: 
a) the first one computed on field crops; b) the second one computed 
on the whole set of the studied complexes (crops, meadows and 
wooden areas). 

ii) The agronomic practices are documented by the indicators of 
cultural techniques, i.e.: the number of ploughs and soil works (deep 
and superficial); the number of fertilizations generally and 
particularly in nitrogen (N), as minerals as organics; the seedling 
and harvest dates; as well as the frequency treatment indicators 
(IFTs), as conventional as organic farming mode. 

iii) The economic data have been produced in the framework of the 
‘Optimization of viable landscapes’ task (T6) of the Peerless project 

* *
*

* **

* Plots of field crops in Ille et Vilaine: 
belong to the SAR of Central Brittany (35359) 
and to the SAR of the Pays de Redon (35363).

*
Plots of field crops in Maine et Loire: 
are spread over the small agricultural regions of 
Beaugeois (49345), Saumurois (49347), Bocage
Angevin (49356) and Choletais (49373), thus 
covering the whole department except for the SAR 
of the Loire Valley (49344).

*
*

***
**

* Plots of field crops in Côte d'Or:
are shared between the small agricultural regions of 
the Val de Saône (21204) and the Plaine de 
Bourgogne (21440), 
the Plateau Langrois (21311) and the Auxois (21442).

Orchard plots in Vaucluse:
are located in the SAR of Comtat (13467).

*

**

*
*** *

*
****

**

D’après D. Desbois, 2018

Location of the Peerless project plots 
by small agricultural regions (SAR)



and merged with the agro-ecological data (Desbois[4]) using  
together the price references issued from the French statistical 
office, those produced by the technical institutes (Arvalis, Centre 
technique interprofessionnel des Fruits et Légumes) and the 
agricultural offices (FranceAgriMer, Chambres d’Agriculture) to 
compute  gross products,  specific costs and gross margin. 
 

3.3 The structural model and the estimation 
Build from the concepts of the corporate accountancy, the simplified accounting 
relationship 𝐺𝐺𝑣𝑣𝑐𝑐𝐺𝐺𝐺𝐺_𝑉𝑉𝑣𝑣𝑣𝑣𝑀𝑀𝑀𝑀𝑀𝑀  = 𝐺𝐺𝑣𝑣𝑐𝑐𝐺𝐺𝐺𝐺_𝑃𝑃𝑣𝑣𝑐𝑐𝑅𝑅𝑃𝑃𝑐𝑐𝑡𝑡 − 𝑆𝑆𝑆𝑆𝑅𝑅𝑐𝑐𝑀𝑀𝑆𝑆𝑀𝑀𝑐𝑐𝐺𝐺_𝐶𝐶𝑐𝑐𝐺𝐺𝑡𝑡𝐺𝐺 defining 
the concept of gross margin as an algebraic sum of gross product and  specific 
costs, offers a simple example of application not only to the farm holding but also 
to the cropped plots of the concept of internal structural model. 
Once specified, this internal model allows to structure the set of measured or 
observed variables (the ‘manifest’ variables’ - MVs) into several blocks 
corresponding to the conceptual artefacts, each block of manifest variables 
representing a latent variable. The particular composition into manifest variables 
of thematic blocks corresponding to different latent variables (Landscape1, 
Landscape2, Pests, Weeds, SpecCost, GrossProd, Subsidies, Marginpua) is given 
in annex (Table 5). 
In a context of agro-ecological application, the concept of ‘landscape’ for the 
agricultural plot can be specified in a formative mode (B) by the occupation 
profiles of the soil (the different crops, the fabaceus, the fallow, the gardening, 
the seeds, the meadows and the wooden areas) as it can be in reflective mode (A) 
in the various indices de diversity that can be built from its description (« field 
crops » or « every production » Shannon indices). 
Applied to eco-systemic contexts resulting from the conjunction of infrastructures 
and practices, the specification of a structural model of agro-ecological 
interaction and economic impact (Figure 5) allows to analyse the interrelations 
between ecological infrastructures (landscape profiles at the plot level), 
agronomic practices (ploughing, intermediary crops), and the induced results 
(growth of the product, reduction of the costs).  
In this work, the initial structural model takes in the one proposed by 
Mezerette[10], completing it by the business management variables of costs, 
subsidies, product, and margin (Figure 1) and extending its application to the 
Peerless arboreal sites. This initial structural model specifies the a priori 
relationships between the agro-ecological variables describing the landscape 
(Landscape1, Landscape2), the agronomical practices (Practice) as well as the 
occurrence of diseases or pests (Pests) and weeds (Weeds), with the economic 
variables of specific costs (SpecCost), of gross production (GrossProd), of 
subsidies (Subsidies), and of gross margin per unit area (Marginpua) at the plot 
level.  
In the scheme of the Figure 5, the ecological infrastructures (Landscape1, 
Landscape2) influence both the diseases or pests (Pests), the weeds (Weeds) and 
agronomical practices (Practice), in an a priori undetermined way (→). The 
agronomical practices impact a priori the gross products (GrossProd) and the 



specific costs (SpecCost) either directly by strengthening them (→), either 
indirectly by diminishing them (→) the pests and the weeds. The pests and the 
weeds are supposed to have a diminishing impact (→) on the gross products and 
expanding impact (→) on specific costs. The sum of these influences on the gross 
products and on the specific costs determines, with the subsidies (Subsidies), the 
impact in fine of the agro-ecological practices on the gross margin per hectare 
(Marginpua). In this scheme, the conceptual artefacts (Landscape1, Landscape2, 
and Subsidies appear as a priori exogenous (i.e. non determined by other 
phenomena) LVs while the concepts Practice, Pests, Weeds, SpecCost, 
GrossProd, and Marginpua are a priori endogenous (i.e. influenced by other 
phenomena) LVs. 
 

 
Fig. 4. The structural model of agro-ecological interaction and economic impact 
at the plot level 
Reading of the graphical display: in green, the exogenous LVs; in burgundy, the endogenous 
LVs; in blue, the structural links of strengthening ; in red, the structural links of weakening ; in grey, 
the structural links a priori undetermined. 
 
4  Results and discussion 
The initial structural model is estimated on the basis of a set of 158 plots surveyed 
on 2014 and 2015. The setting of the PLS-PM approach has been realised via the 
R statistical software, version 3.6.2 (https://www.r-project.org/), and specifically 
with the ‘pls-pm’ package, version 0.4.9 (Sanchez, Trinchera and Russolillo, 
2017). The estimation of structural links (path coefficients) of the model has been 
conducted using the reflective (A) mode for the set of latent variables. 

Landscape1

Pests

GrossProd
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Marginpua

Subsidies

Practice

Weeds

SpecCost

LV1

LV2

LV4

LV6

LV7

LV9
LV8𝛽𝛽31



Figure 6 displays the whole view of the external model. For example, for the latent 
variable Pests, the manifest variables reflecting this latent variable within the 
thematic block corresponding are: S.avenae, M.dirhodum, Total.aphids, 
Lema.larvae, PctDamage.by.Lema. The value of the structural factors is positive 
for the occurrences of pests (Total.aphids, Lema.larvae) and the index of their 
attacks (PctDamage.by.Lema). However, this value is negative for occurrences of 
the cereal ear aphid Sitobion (S.avenae), in contrast to the other pest occurrences 
of cereal and rose aphids (M.dirhodum) and cereal leaf beetles (Lema). 
 
4.1 Checking the block one-dimensionality 
The one-dimensionality statistics (Cronbach’s alpha and Dillon-Goldstein’s rho) 
computed on the basis of the initial structural model displayed (Figure 6) show 
too low values for the thematic blocks Subsidies, Landscape2, and SpecCost 
(Table 1). In fact, for these blocks, we observe some negatives correlations 
(loadings). 
The blocks Landscape2, Practice, Pests, Weeds and Marginpua are considered as 
one-dimensional because they satisfy all the criterions. The block Landscape1 
and the blocks SpecCost, GrossProd, and Subsidies show values lower than 0.7 
for the Cronbach’s alpha, however the blocks GrossProd and Subsidies can be 
considered as unidimensional because they satisfy to the criterion of the Dillon-
Goldstein’s rho. 
4.2 Fitting the external model and assessing the quality of the fit 
The Goodness of Fit (GoF) value of the initial model is 0.4285. This index can 
be improved by adjusting the external model: indeed, some negatively correlated 
links can be transformed into positive links by appropriate recoding of manifest 
variables (MVs). Thus, in the block Subsidies, the recoding of the CouplAid_pha 
(coupled aid per hectare) MV into the DecouplAid_ha = TotalAid_pha– 
CouplAid_pha variable, makes it possible to obtain a positive correlation. 
Similarly, for the Landscape1 thematic block, the VegCrop_pct (percentage of 
vegetable crop) MV is recoded into the NonVegCrop_pct = 100 – VegCrop_pct 
variable. For the block Practice, the Fung_IFT (index of the frequency of fungal 
treatments) MV is transformed into the NonFung_IFT=Total_IFT – Fung_IFT 
variable. For the block SpecCost, the FungTCost_pha (cost per hectare of fungal 
treatments) MV is transformed into the NonFungTCost_pha =TotalCost_pha – 
FungTCost_pha variable. 
 



  
Tab. 1. One-dimensionality statistics of thematic blocks of the initial model. 

Reading: the values in blue mean that the selected one-dimensionality criterion is satisfied. 
 
After this recoding, the one-dimensionality statistics are enhanced (Table 2): they 
are all greater than 0.7 (acceptance level of the one-dimensionality hypothesis) 
except for the blocks Landscape1, GrossProd, and the Subsidies block with the 
values lower than 0.5 for the Cronbach’s alpha, however near from the acceptance 
level with the Dillon-Goldstein’s rho (>0,6) for Landscape2. The value of the 
Goodness of Fit for the amended model is enhanced in a marginal way, to 0.5078 
(Table 3). 
 

 
Tab. 2. One-dimensionality statistics for the thematic blocks of the amended model. 

Reading: the values in blue mean that the selected one-dimensionality criterion is satisfied. 
 

Landscape1  A 9 0.398 0.073 2.04 1.67
Landscape2    A 10 0.473 0.642 1.84 1.45
Practice A 18 0.943 0.950 9.45 3.20
Pests A 5 0.807 0.874 3.03 0.96
Weeds A 6 0.871 0.904 3.68 1.09
SpecCost    A 10 0.834 0.879 4.75 2.30
GrossProd A 4 0.690 0.805 2.30 1.59
Subsidies    A 4 0.243 0.125 2.09 0.18
Marginpua   A 3 0.986 0.991 2.92 0.07

Blocks   Mode  
Observed 

Var
 Cronbach's 

Alpha
Dillon-

Goldstein's Rho
Eigenvalue 

1
Eigenvalue 

2

Landscape1  A 10 0 0.215 2.10 1,79
Landscape2    A 2 0.829 0.921 1.71 0.29
Practice A 19 0.720 0.741 9.11 3.33
Pests A 5 0.717 0.838 3.03 0.96
Weeds  A 6 0.871 0.904 3.68 1.09
SpecCost    A 10 0.541 0.611 3.02 2.50
GrossProd A 4 0.592 0.790 2.30 1.59
Subsidies    A 4 0.664 0.804 2.08 1.31
Marginpua   A 3 0.986 0.991 2.92 0.07

Blocks   Mode  
Observed 

Var
 Cronbach's 

Alpha
Dillon-

Goldstein's Rho
Eigenvalue 

1
Eigenvalue 

2



 
Tab. 3. Communalities, R2 and redundancies 

Nota bene: the Goodness of Fit is computed from the endogenous blocks. 
 
4.3 The structural model after revision 
Taking in account the correlations between blocks result in the following 
structural model (Figure 4) where the relationships between latent variables are 
of expected sign except for the latent variable « Weeds » issued from the block 
Weeds displaying a negative relationship somewhat of low intensity, with the 
variable ’Specific Costs’ issue du block SpecCost. 
Take notice that the relationship between the latent variable Practice representing 
the agronomic practices and the latent variable Pests representing the occurrence 
of pest is positive while it is negative with the latent variable Weeds representing 
the presence of weeds. It would be interesting to distinguish between the specific 
practices of the pest control from those specific of the weed control. 
The direct and indirect effects are displayed in Figure 6 as a categorical diagram, 
occasionally piled when they are cumulative. With regards to the direct or indirect 
effects, we distinguish those important (greater than 0.4), from those which are 
moderate (greater than 0.2 and lower than 0.4) and those which are low (lower 
than 0.2 and greater than 0.1), even from those which are very low (lower 
than 0.1). 
Among the effects which are important, we have: i) the negative effects of the 
agronomic practices on the weeds; ii) the negative effects of the pest and the 
weeds on the gross product; iii) the positive effects of the gross product on the 
gross margin. The most important indirect effects (greater than 0.4) are those 
negative of the pest on the gross margin.  
Among the moderate direct effects, we distinguish: i) the negative one, the 
specific costs on the gross margin; ii) the positive one, the cover of the landscape 
(Landscape1) of the practices on the weeds, of practices on the pests and the 

Theme block Manifest 
variables

Communality Type R2 Average 
redundancy

Landscape1 9 0.178 Exogeneous 0.0000 0.0000

Landscape2 2 0.850 Exogeneous 0.0000 0.0000

Practice 18 0.517 Endogeneous 0.0921 0.0477

Pests 5 0.606 Endogeneous 0.1254 0.0759

Weeds 6 0.608 Endogeneous 0.2806 0.1707

SpecCost 10 0.462 Endogeneous 0.6764 0.3127

GrossProd 4 0.542 Endogeneous 0.6906 0.3746

Subsidies 4 0.362 Exogeneous 0.0000 0.0000

Marginpua 3 0.972 Endogeneous 0.6391 0.6215

Weighted Mean 0.499
Endogenous block 
Mean 0.618 0.417 0.2579

Goodness of Fit 0.5078



specific costs, also of subsidies on the gross margin. The moderate indirect effects 
are the negative one of weeds on the gross margin. 
Among the low direct effects, we note: i) the negative one of weeds on the specific 
costs; ii) the positive one, by decreasing importance order, of landscape 
complexity (Landscape2) on the pests and of practices on the gross product. The 
lower indirect effects are: i) the negative one, the landscape cover on the gross 
product and the margin; ii) the positive one, of landscape cover on the specifics 
costs and of practices on the product. 
Among the lower direct effects, we notice: the positive ones of the landscape 
complexity on the specific costs and the practices; ii) the negative one of weeds 
on the specific costs. The very low indirect effects are: i) the positive one of 
landscape complexity and of the cover landscape on the pests, and of practices of 
the gross margin; ii) the negative ones of landscape complexity on the gross 
product and the gross margin. 
Hence, the major effects are the ones positive of pests on the specific costs, and 
of gross product on the gross margin. The minor effects which appear as manifest 
are: i) the negative ones of practices on the weeds and the ones of pests and of the 
weeds on the gross product, and indirectly on the gross margin; ii) the positive 
ones of practices on the specific costs. 
The use of random resampling validates these initial findings, particularly with 
regard to the structural links in the internal model (Table 4 and Figure 5). 
  

 
Tab. 4. Bootstrapped estimation of the structural links of the internal model 

Reading: values in blue (respectively in red) indicate that according to the bootstrap estimation the 
value of the structural link is significantly positive, respectively negative. 
 
 

 

Landscape1 -> Practice 0.305 0.249 0.323 -0.521 0.639
Landscape1 -> Pests 0.115 0.203 0.251 -0.380 0.552
Landscape1 -> Weeds 0.398 0.431 0.215 -0.227 0.692
Landscape2 -> Practice -0.005 -0.045 0.188 -0.365 0.297
Landscape2 -> Pests 0.176 0.175 0.120 -0.031 0.359
Landscape2 -> Weeds 0.017 0.017 0.122 -0.233 0.197
Practice -> Pests 0.222 0.182 0.180 -0.186 0.499
Practice -> Weeds -0.487 -0.478 0.209 -0.748 0.097
Practice -> SpecCost  0.229 0.247 0.159 0.016 0.451
Practice -> GrossProd 0.103 0.071 0.131 -0.239 0.234
Pests -> SpecCost 0.739 0.706 0.115 0.496 0.893
Pests -> GrossProd -0.504 -0.482 0.098 -0.651 -0.255
Weeds -> SpecCost -0.096 -0.100 0.139 -0.400 0.156
Weeds -> GrossProd -0.519 -0.506 0.118 -0.640 -0.329
SpecCost -> Marginpua -0.216 -0.204 0.079 -0.341 -0.015
GrossProd -> Marginpua 0.632 0.688 0.107 0.482 0.896
Subsidies -> Marginpua  0.246 0.129 0.227 -0.390 0.447

Q(0.975)Link Estimate
 Bootstrap 
Estimate

Standard-
error Q(0.025)



Fig. 5. Estimated internal scheme of the final structural model after revision 
Reading: blue (respectively red) arrows indicate that the expected value of the structural link is 
positive, respectively negative; values (e.g., 0.398) indicate the strength of the structural link 
connecting the latent variables (e.g., Landscape1->Weeds); dotted structural links (⋯>) are not 
significant according to the bootstrapped estimation. 
 

 
Fig. 6. Distribution of direct and indirect effects 

Reading: direct effects are in dark blue and indirect effects are in light blue; if direct and indirect 
effects co-exist, then the bars are stacked. 
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Thus, according to the estimation initiated with 99 random removals (bootstrap) 
and a confidence level (τ=0.05) at 95%, the only significantly non-zero links turn 
out to be:  

i) on the one hand, the positive influence of practices on specific costs 
(Practice->SpecCost ≈ 0.25), of pests on specific costs 
(Pests->SpecCost ≈ 0.71) and of product on gross margin 
(GrossProd->Marginpua ≈ 0.69); 
ii) on the other hand, the negative influence of pests on production 
(Pests->GrossProd ≈ -0.50), weeds on production 
(Weeds->GrossProd ≈ -0.48) and specific costs on margin 
(SpecCost->Marginpua ≈ -0.20). 
 

Conclusions 
The objective of this work is to propose an introduction to an alternative structural 
modelling method adapted to the evaluation of ecosystem practices, in a context 
characterized by the complexity of the interrelationships between parcel 
landscapes, agronomic practices and economic results, as well as the small size 
of the available observation samples. 
The partial least squares approach revealed statistically significant effects: i) 
negative on products for weeds and pests; ii) positive on specific costs for 
practices and pests; and iii) of opposite sign on margin, negative for specific costs 
and positive for products.  
However, while the effects of agronomic practices on weeds are of the expected 
sign, they are not for pests. The signs of the effects of landscapes on pests and 
weeds are also not of the expected sign. However, these estimated values of these 
effects are not statistically significant. 
Thus, it is necessary to estimate this structural model on a larger sample of 
observations that would allow the extension of this study to a larger spatial scale 
to include other plot landscapes and its continuation over several years in order 
to isolate possible effects of inter-annual variation. 
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