
HAL Id: hal-03423428
https://hal.inrae.fr/hal-03423428v1

Submitted on 10 Nov 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Technical note: PMR – a proxy metric to assess
hydrological model robustness in a changing climate

Paul Royer-Gaspard, Vazken Andréassian, Guillaume Thirel

To cite this version:
Paul Royer-Gaspard, Vazken Andréassian, Guillaume Thirel. Technical note: PMR – a proxy metric
to assess hydrological model robustness in a changing climate. Hydrology and Earth System Sciences,
2021, 25, pp.5703 - 5716. �10.5194/hess-25-5703-2021�. �hal-03423428�

https://hal.inrae.fr/hal-03423428v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Hydrol. Earth Syst. Sci., 25, 5703–5716, 2021
https://doi.org/10.5194/hess-25-5703-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.

Technical note: PMR – a proxy metric to assess hydrological model
robustness in a changing climate
Paul Royer-Gaspard, Vazken Andréassian, and Guillaume Thirel
Université Paris-Saclay, INRAE, HYCAR Research Unit, 92761 Antony, France

Correspondence: Vazken Andréassian (vazken.andreassian@inrae.fr)

Received: 29 January 2021 – Discussion started: 4 February 2021
Revised: 3 August 2021 – Accepted: 22 September 2021 – Published: 8 November 2021

Abstract. The ability of hydrological models to perform in
climatic conditions different from those encountered in cal-
ibration is crucial to ensure a reliable assessment of the im-
pact of climate change on river regimes and water avail-
ability. However, most evaluation studies based on the dif-
ferential split-sample test (DSST) endorsed the consensus
that rainfall–runoff models lack climatic robustness. Models
applied under climatologically different conditions typically
exhibit substantial errors in streamflow volumes. In this tech-
nical note, we propose a new performance metric to evaluate
model robustness without applying the DSST, and it can be
performed with a single hydrological model calibration. The
proxy for model robustness (PMR) is based on the system-
atic computation of model error on sliding sub-periods of
the whole streamflow time series. We demonstrate that the
PMR metric shows patterns similar to those obtained with
the DSST for a conceptual model on a set of 377 French
catchments. An analysis of the sensitivity to the length of
the sub-periods shows that this length influences the values
of the PMR and its equivalency with DSST biases. We rec-
ommend a range of a few years for the choice of sub-period
lengths, although this should be context dependent. Our work
makes it possible to evaluate the temporal transferability of
any hydrological model, including uncalibrated models, at a
very low computational cost.

1 Introduction

In the context of climate change, quantifying the perfor-
mance of the models used for assessing the impact of a
changing climate is essential for informing model selection
and estimating uncertainty. Assessing the impact of a chang-

ing climate typically involves a modelling chain ranging
from general circulation models to impact models such as
catchment hydrological models (Clark et al., 2016). It is now
acknowledged that the contribution of hydrological model
uncertainty to the total uncertainty of projections may be sig-
nificant and should be addressed along with other sources of
uncertainty (e.g. Hagemann et al., 2013; Schewe et al., 2014;
Vidal et al., 2016; Melsen et al., 2018). A key issue in the re-
duction of hydrological model uncertainty is the assessment
of robustness to climatic changes, i.e. their ability to perform
in climatic conditions that differ from those encountered in
calibration.

Advocating that hydrological models needed to be tested
under conditions that would “represent a situation similar
to which the data are to be generated”, Klemeš (1986) sug-
gested a series of tests to evaluate the robustness of hydrolog-
ical models. Among these testing procedures, the most pop-
ular scheme to assess model robustness to varying climatic
conditions is the differential split-sample test (DSST). The
DSST consists in a calibration–evaluation exercise in two
periods of the available time series chosen to be as climat-
ically different as possible. Variants of the DSST have also
been proposed for specific purposes, such as the generalized
split-sample test (Coron et al., 2012), which consists in a sys-
tematic calibration–evaluation experiment on every pair of
independent periods that one can possibly define. However,
these variants all rely on the same principles as the DSST
(e.g. Dakhlaoui et al., 2019).

Many studies report poor model simulations resulting
from the application of the DSST in various modelling con-
texts (e.g. Thirel et al., 2015). Among the deficiencies ob-
served in the tested models, a common feature is their ten-
dency to produce biased streamflow simulations in evaluation
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conditions (e.g. Vaze et al., 2010; Merz et al., 2011; Brod-
erick et al., 2016; Dakhlaoui et al., 2017; Mathevet et al.,
2020). Although changes in catchment temperature and/or
precipitation are usually associated with volume errors, these
errors vary across the tested models and catchments (e.g.
Vaze et al., 2010; Broderick et al., 2016; Dakhlaoui et al.,
2017). The dire need to improve hydrological models is
widely recognized and is considered as being one of the
23 unsolved problems in modern hydrology (Blöschl et al.,
2019, UPH no. 19). However, to improve models, we first
need a good diagnostic method, and the design of alternatives
to the DSST for the evaluation of model robustness could
contribute to these advancements.

The first shortcoming of the DSST is its limited applica-
tion regarding a particular category of hydrological models.
Indeed, Refsgaard et al. (2014) pointed out that split-sample
procedures cannot be applied to models that are not cali-
brated. The evaluation of such models is usually performed
by testing their spatial transferability with data from proxy
sites. It is therefore difficult to compare the robustness of
highly complex hydrological models to simpler models such
as the ones typically tested in the aforementioned DSST stud-
ies. A further limitation is the necessity for determining a set
of climatic variables to inform the definition of different cal-
ibration and evaluation periods. This is, of course, highly rel-
evant in contexts where the direction of future changes is un-
ambiguously predicted. In other situations, however, the ro-
bustness assessment would benefit from evaluating the model
on a wider spectrum of hydro-climatic changes. Variants of
the DSST, such as the generalized split-sample test, may cir-
cumvent this problem, but at a high computational cost that
not all modellers can afford (Coron et al., 2012).

This technical note presents and assesses a way of quan-
tifying model robustness as a mathematical performance cri-
terion computed without splitting time series into calibration
and evaluation periods. This criterion is conceived to be a
proxy for model robustness (PMR), i.e. to reproduce the hy-
drological model average error as obtained by applying the
DSST. It is based on the computation of interannual model
bias derived from graphical considerations in the work of
Coron et al. (2014). In order to be reliable, the PMR must
indicate typical model biases as obtained in DSST on in-
dependent evaluation periods. It should also help to identify
catchments where a model lacks robustness. We summarize
the important aspects that we discuss, in the following, with
two research questions:

– Does the PMR faithfully relate to model robustness as
assessed in DSST experiments?

– How do computation choices (e.g. sub-period length
and sub-period weight) affect the results obtained when
applying the PMR?

It is worth noting that hydrological model robustness is here
considered especially through the prism of model bias. Given

that the biased simulations are one the most common out-
comes of the previous works about model robustness, we
considered that model bias was an adequate metric as a first
approach. Of course, model robustness relates to the stability
of model performance in general and, thus, to every possible
metric assessing model skills. Hence, the PMR as presented
here should be considered as a satisfactory proxy for model
robustness as estimated using the DSST rather that the proxy
for model robustness.

The first question will be addressed by comparing the met-
ric with model bias, as determined by in the DSST for a
conceptual model across a large set of French catchments.
The underpinning mathematical choices will be discussed in
a sensitivity analysis comparing the metric and the results
obtained by applying the DSST. The description of the PMR
is given in Sect. 2. The hydrological model and the data are
presented in Sect. 3. The reliability of the metric is assessed
in Sect. 4, and the opportunities the metric offers for model
evaluation, as well as some inherent computation choices, are
discussed in Sect. 5 and in Appendix B.

2 Description of the proxy for model robustness

2.1 Building the moving bias curve

Hydrological model robustness to climate change lies in the
model’s ability to perform well under different climatic con-
ditions without parameters being recalibrated to match the
changes in the precipitation–streamflow relationship. Perfor-
mance is deemed robust if it is minimally sensitive to the
characteristics of the calibration and evaluation periods. For
instance, if a model calibrated during wet years and vali-
dated during dry years exhibits similar validation bias than
the same model calibrated during dry years and validated
during wet years, then it would be deemed robust to changes
in climate. A robust model should, thus, simulate streamflow
volumes for any type of climatic condition experienced by a
catchment with a stable bias (of course, the lower the bias,
the better). For example, if these two model configurations
both had a percent bias of 20 %, then the model is robust to
changes in climate, even if not particularly accurate. If one
model configuration had a percent bias of 20 % in the vali-
dation period and one of −20 %, then the model is not ro-
bust – it exhibits strong sensitivity to climate conditions. It
should be noted that a model may lack robustness while pro-
viding accurate (i.e. unbiased) estimations of average stream-
flow volumes on a long period of time.

Coron et al. (2014) suggested a simple way to visualize
model robustness by computing the bias of a model sim-
ulation on sliding sub-periods of the available time series
(Fig. 1). The curve of model bias on the moving sub-periods,
named here the moving bias curve, indicates the temporal
evolution of model volumetric errors. Since a robust model
should perform similarly well whatever the considered sub-

Hydrol. Earth Syst. Sci., 25, 5703–5716, 2021 https://doi.org/10.5194/hess-25-5703-2021



P. Royer-Gaspard et al.: PMR – a proxy metric to assess hydrological model robustness in a changing climate 5705

Figure 1. Construction of the moving bias curve. The top panel shows daily simulated (orange line) and observed (black line) streamflow.
The bottom panel shows moving bias curve expressed as the relative error (in percent); each point of the curve corresponds to a 5-year
sub-period of the time series (as exemplified by the brackets).

period, the flatter the moving bias curve, the more robust a
model. Coron et al. (2014) showed that hydrological models
would typically not have the ability to flatten their associated
moving bias curve. The authors indeed calibrated model pa-
rameters on each sub-period of the data and plotted all the
produced moving bias curves on the same graph. One of the
main conclusions of their study was that the obtained mov-
ing bias curves were all almost parallel, and that calibration
conditions had a greater influence on the vertical positioning
of the curves rather than their shape. This observation was
true for models of different complexities across the small set
of catchments used in that study. The phenomenon described
by Coron et al. (2014) is illustrated in Fig. 2.

The moving bias curve obtained with the model calibrated
on the blue sub-period (1984–1988; the coldest sub-period of
the time series) is almost parallel to the moving bias curve de-
rived from the calibration on the total period. The y axis shift
corresponds to a model bias on the calibration sub-period al-
most equal to zero. Calibrating the model on another sub-
period (1999–2003; the warmest sub-period of the time se-
ries; in red) yields a different shift of the moving bias curve,
which corresponds to a null model bias on the red calibration
sub-period. With the shape of the curve being almost iden-
tical, whatever the calibration period in the illustrated case,
it offers an interesting perspective on model robustness. The

flatness of the curve is indeed almost independent of the pe-
riod used for model calibration.

Whether they are perfectly parallel or not, depending on
the modelling context (model, catchment, data, etc.), the
moving bias curves appear to be a relevant tool for analysing
model robustness. Before performing calibration–evaluation
tests, assessing the flatness of the moving bias curve obtained
by calibrating a model as well as possible (i.e. with all avail-
able data) could be seen as a first estimate for model robust-
ness. We, thus, propose a simple mathematical expression to
calculate this flatness, which will be referred to as the PMR
in the following. Please note that the PMR is bias derived
and could thus be named PMRbias, opening the door to other
types of PMR based on alternative metrics. This issue will be
further discussed in Sect. 5.3.

2.2 Computation of the proxy for model robustness

The PMR is based on the computation of the average abso-
lute difference between the actual moving bias curve com-
puted on k-year-long sub-periods and the average bias of
the model, normalized by the average observed streamflow
(Eq. 1). It thus corresponds to the normalized area between
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Figure 2. Moving bias curves of a hydrological model on the Steir river at Guengat (J4313010; in France) for three different calibration
periods. The filled dot of the blue (respectively, red) curves indicates the 1984–1988 (respectively, 1999–2003) calibration period of the
model. The crosses indicate the evaluation bias for 1999–2003 of the 1984–1988 calibration and the evaluation bias for 1984–1988 of the
1999–2003 calibration. The grey moving bias curve is obtained by calibrating the model on the total period. The grey area corresponds to a
proxy for model robustness, as suggested in Sect. 2.2.

the moving bias curve and the average bias of the model.

PMRk= 2×
1
N
×

N∑
i=1

∣∣∣∣ (Qsim,i −Qobs,i
)
−
(
Qsim−Qobs

) ∣∣∣∣
×

1

Qobs
. (1)

Qobs and Qsim are the respective averages of the observed
and of the simulated streamflows on the total period. Qobs,i
and Qsim,i are the respective averages of the observed and
of the simulated streamflows on the k-year-long sub-period
whose index is i. N is the number of sub-periods that can be
defined with a k-year moving window (N = n− k+ 1 when
there are no gaps in the data, with n being the number of
years in the record).

As explained in the Sect. 2.1, the idea behind the PMR is
that the robustness of the model is linked to the variability
in model performance in time. By computing the difference
between the moving bias curve and model average bias, the
metric track changes in model bias across time around its
mean value. It should be noted that, if the evaluated model
is unbiased, as is the case on Fig. 2 for the grey moving bias
curve (model calibrated on the whole data set), then the PMR
reduces to the absolute integral of the moving bias curve
around y = 0. Although the terms in the sum are computed
in absolute terms, this does not mean that changes in sign
in model bias (for example, from 20 % to −20 %) are not ac-
counted for. Indeed, we should recall here that the PMR com-
putes the deviations of model bias from model average bias;
thus, any variations in model bias contribute to the PMR, re-
gardless of whether the actual biases on the sub-periods are
negative or positive.

In order to compare the PMR with model biases in DSST,
we included values multiplied by 2 in the computation of
the PMR, in order to compensate for the smoothing effect
of comparing model biases on sub-periods to the average

model bias (see, for example, the gaps between the red and
blue moving bias curves in Fig. 2 compared to the accounted
deviations from the grey moving bias curve). A normaliza-
tion by the average observed streamflow instead of the av-
erage streamflow of each sub-period was proposed in order
to reduce the weight of very dry years. It also avoids deal-
ing with zeros in the denominator in intermittent catchments.
This choice is further discussed in Appendix B.

In the following, the sub-period length has been set to
k = 5 years. The choice of the sub-period length in the com-
putation of the PMR is discussed in Sect. 4.3.

3 Material and methods

3.1 Data set

The observed hydro-climatic data for the set of 377 French
catchments used in this study (Fig. 3) come from the Hydro-
SAFRAN daily data set (Delaigue et al., 2020). The selected
French catchments cover a variety of physical and hydro-
climatic characteristics and were selected as human activi-
ties have little impact on streamflow, and they have limited
solid precipitation (< 10 % of the total precipitation, on av-
erage). Western France is characterized by an oceanic cli-
mate with no marked wet and dry seasons. The climate of
the eastern part of the country is more continental, with a
larger annual temperature range. Southeastern France has a
Mediterranean climate, with humid springs and autumns and
dry summers. The yearly average precipitation of the catch-
ments ranges from 662 to almost 1926 mm, while the average
temperatures vary from 8 to 14.4 ◦C. Daily streamflow mea-
surements at the outlet of the catchments were retrieved from
Banque HYDRO (http://www.data.eaufrance.fr/, last access:
21 January 2019; Leleu et al., 2014). Daily meteorological
data were supplied by the SAFRAN atmospheric reanaly-
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Figure 3. Map of the French catchments used in this study. The
humidity index is defined as the ratio between average precipitation
and average potential evaporation.

sis (Vidal et al., 2010) aggregated at catchment scale. We
used the temperature- and radiation-based formula proposed
by Oudin et al. (2005) to compute potential evaporation. In
every catchment, streamflow observations cover at least 20
hydrological years (40 years on average). In France, a hydro-
logical year lasts from October to the following September.

3.2 Hydrological model

The tests were performed with GR4J (Perrin et al., 2003),
a daily lumped hydrological model. The model is parsi-
monious (four parameters to calibrate, with two reservoirs
and two unit hydrographs) and has been widely used in re-
search studies focusing on hydrological model robustness
(e.g. Coron et al., 2014; Broderick et al., 2016; Fowler et
al., 2016). The two-parameter CemaNeige degree-day snow
module (Valéry et al., 2014) was used to account for solid
precipitation. The parameters of the snow module were fixed
to median values as recommended by Valéry et al. (2014) for
catchments with a limited impact of snow. The GR4J and Ce-
maNeige models are used with the airGR R package (Coron
et al., 2017, 2018).

The parameters of the hydrological models were calibrated
by optimizing the Kling–Gupta efficiency (KGE; Gupta et
al., 2009) computed on the square root of streamflow in order
to limit error heteroscedasticity (i.e. dependency of model
error variance on streamflow value). The optimization al-
gorithm is a simple procedure consisting in a prior global
screening on a gross predefined grid, followed by a descent

local search from the best parameter set of the grid. The pro-
cedure has been successfully used in multiple studies involv-
ing GR4J (e.g. Mathevet, 2005; Coron et al., 2014).

3.3 DSST experiments

DSST experiments consist in selecting contrasting periods
(according to some hydrologically relevant indicator) and
performing a calibration–evaluation experiment. Our DSST
experiments are based on three hydroclimatic variables. The
procedure consists in dividing the time series into sub-
periods of L consecutive years and selecting six sub-periods
from these. The following sub-periods of the DSST are cho-
sen:

– the driest and the wettest in terms of precipitation

– the warmest and the coldest in terms of temperature

– the least and the most productive in terms of runoff ratio
(computed as the ratio of mean observed streamflow to
mean precipitation).

The model parameters are then calibrated on each sub-period
and transferred to the sub-period of the opposite climate. The
process is summarized in Table 1.

The runoff ratio was preferred to the humidity index since
the latter is highly correlated to average precipitation in
France and would, therefore, be redundant with DSST ex-
periments based on precipitation. Since runoff ratio is com-
puted from average streamflow, it cannot be used for predic-
tive purposes of model biases in future climate conditions.
However, it estimates how catchments respond to precipita-
tion forcings. Its use in the DSST may, thus, indicate how
well a model is able to represent variations in catchment re-
sponse to climatic conditions.

The sub-period length for the DSST experiments has been
fixed at L= 5 years so as to match the length of the sub-
period involved in the computation of the PMR. The length of
sub-periods used in the computation of the PMR is discussed
in Sect. 5. The length of the sub-periods used for the DSST
are discussed in Sect. 4.3. We remind the reader that the PMR
is computed from model simulations obtained by calibrating
the model on the whole time series, while the DSST results
are obtained through calibration evaluation on sub-periods of
the time series. It should also be mentioned that model biases
obtained in DSST were calculated with respect to model bias
in calibration so that they address the stability of bias and,
thus, could be compared to PMR values, as follows:

Absolute Model Bias on sub-period b (in %)

=

∣∣∣∣Qsim,b−Qobs,b

Qobs
−

Qsim,a −Qobs,a

Qobs

∣∣∣∣ . (2)

The index a indicates the calibration period (i.e. the dry pe-
riod when validating on the humid period, etc.). Please note
that, in the case of GR4J, biases in calibration are usually
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Table 1. Summary of the different setups of the DSST. Q, P and T , respectively, stand for average observed streamflow, precipitation and
temperature computed on the sub-periods.

Name of the DSST setup

Dry Humid Warm Cold Unproductive Productive

Calibration Min P Max P Max T Min T Min Q/P Max Q/P

Evaluation Max P Min P Min T Max T Max Q/P Min Q/P

very close to zero because the model is calibrated by op-
timizing the KGE, which explicitly targets model bias, and
because GR4J has the ability to correct water balance with
the free parameters governing inter-catchment groundwater
exchange. Therefore, the term on the right of the subtraction
sign is negligible in practice. It should also be noted that,
since the PMR is positive by definition, model biases were
computed in absolute values. A straightforward drawback is
that it prevents the interpretation of the sign of model errors.
Therefore, it has been analysed in the different DSST setups
in Appendix A. In the following, the model bias obtained
in DSST will systematically be calculated in absolute terms,
unless clearly stated.

The next section presents a comparison between the PMR
and the model biases obtained in DSST. A prior analysis is
devoted to comparing scales of variation in the PMR and
DSST absolute biases. The ability of the PMR to predict
model biases in DSST is then investigated. Finally, the last
results show the influence of the length of sub-periods on
which model errors are computed on the PMR values and on
its predictive ability.

4 Results: reliability of the proxy for model robustness
to indicate model robustness

4.1 Comparison of the distributions of PMR values and
DSST bias

The PMR is designed to quantify the average bias that would
be obtained from DSSTs of the model. The bias obtained
for GR4J for each type of DSST setup is plotted in Fig. 4.
Compared to absolute biases obtained in the different DSST
setups, PMR values have the same order of magnitude as
biases in precipitation- or temperature-based experiments.
However, the distribution of PMR values exhibits less spread
than DSST biases. In the case of DSSTs designed on changes
in runoff ratio, model biases are larger than PMR values.
The PMR thus seems to relate rather well to model biases
observed in typical differential calibration–validation experi-
ments (see Appendix A for more details about DSST results).
In summary, one can say that the results presented in Fig. 4
simply indicate that, on average, PMR is the same order of
magnitude as the model bias in DSST.

Figure 4. Distribution over the catchment set of the absolute value
of model bias in DSST for each type of setup compared to PMR val-
ues. The box plots represent the 5, 25, 50, 75 and 95 quantiles, and
the crosses denote the outliers. Blue, red and green box plots are,
respectively, associated to the DSST setups based on precipitation,
temperature and runoff ratio.

4.2 Assessment of the predictive ability of the PMR for
model robustness

To further investigate the link between the PMR and model
robustness as measured by the DSST, we plotted the aver-
age model bias across the DSST setups for each catchment
against PMR values (Fig. 5). The reader is reminded that
model bias is calculated in absolute values, and thus, there
are no compensations between the averaged six model biases
for each catchment. This comparison was made in order to
assess the ability of the PMR to assess the variations in model
robustness across the catchment set. Figure 5 shows an ac-
ceptable correlation between the two indicators. Overall, the
PMR seems to be a satisfactory approximation for model ro-
bustness, even if the PMR values underestimate model bias
in the worst catchments (and, thus, somewhat overestimate
model robustness). The predictive power of the PMR for
model bias is further confirmed in Table 2 by the fair cor-
relation values, especially when the model bias obtained in
the DSST is averaged. DSST setups based on runoff ratio
also relate better with the PMR. This indicates that the PMR
has a high potential to help identify catchments where the
model struggles in particularly adverse transferability con-
ditions. The fact that the higher correlation is obtained by
averaging model biases in the DSST can be explained by the
fact that the PMR is designed to be an average of model bi-
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ases and is, thus, more representative of an average of model
errors on a few sub-periods rather than model bias on a single
sub-period.

Moreover, although model biases in the DSST based on
runoff ratio and PMR values have quite different spreads, the
good correlation between model biases in the DSST based on
runoff ratio and PMR values indicates that the PMR could be
particularly useful for comparing model robustness in rela-
tive terms rather than in absolute terms. Since it seems mean-
ingful to compare PMR values reached by the model in these
conditions where model errors vary drastically from one
catchment to another, it is likely that the PMR could be used
to relatively compare different models or different model
configurations showing various behaviours. Therefore, the
PMR appears to be a reliable estimator of model robust-
ness, even if it exhibits tighter variations across the catch-
ment set and, thus, underestimates typical biases encountered
in catchments where the hydrological model is less robust. It
should be noted that we did not find any particular differ-
ences in topographic or climatic properties between catch-
ments where PMR values and DSST biases closely match
and catchments where they do not.

Even if the PMR, as defined in Eq. (1), provides satisfac-
tory results and allows a reliable assessment of model ro-
bustness without performing a DSST, the metric could have
been computed in different ways. The chosen length of sub-
periods or the mathematical expression of model bias are
possibly important factors influencing the behaviour of the
metric. In the following, we conducted a sensitivity analysis
with the objective of identifying a way to compute the PMR
that best matches the bias that would be obtained by applying
a DSST procedure. Therefore, we strived to define the met-
ric so that it corresponds as closely as possible to errors on
streamflow volumes typically made by the model in adverse
simulation conditions.

4.3 Influence of sub-period length on the sensitivity
and on the reliability of the PMR

We tested the sensitivity of the metric values to the length
of sub-periods used for its computation in Fig. 6. The PMR
metric values decrease when the sub-period length used
in the computation increases; model interannual errors on
streamflow volumes tend to compensate when the PMR is
computed on longer sub-periods. Therefore, the sub-period
length should preferably not be too long in order to avoid
loss of information about model bias across the years. This
statement is corroborated by the slight decrease in metric
variability when sub-period length increases (standard devi-
ation of the metric on the catchment set decreases from 7 %
to 5 %), which suggests that differences in model robustness
across the catchment set are less clear when sub-periods are
too long.

To be useful and reliable, it is necessary to verify that the
metric relates well to model biases in the DSST, whatever the

length of the sub-periods. Figure 7 displays the evolution of
the average correlation between PMR values and the DSST
biases for various sub-period lengths used for the DSST (hor-
izontal axis) and for the computation of the PMR (vertical
axis). The heat map clearly shows that shorter sub-periods
for the computation of the PMR generally relate better to
shorter calibration periods in the DSST experiments. Con-
versely, longer sub-periods for the computation of the PMR
relate better to longer calibration periods in the DSST exper-
iments. This result is not surprising given that the PMR com-
puted on n-year sub-periods represents the average model
bias as computed on n years and, therefore, should show sim-
ilar patterns to model biases computed in DSST experiments
involving n-year periods.

However, some sub-period lengths for the PMR computa-
tion exhibit a high correlation with a wider range of DSST
setups. By computing row-wise averages in the matrix, we
observed that PMR computations based on 3- to 5-year sub-
periods reach an average correlation of 0.73 with DSST bi-
ases across the range of sub-period lengths. In comparison,
the correlation coefficient of PMR values computed on 1-
year sub-periods is, on average, 0.65. Therefore, defining
sub-periods with lengths between 3 and 5 years may be
the most suitable choice to ensure PMR representativeness
across a wide spectrum of possible DSST experiments.

5 Discussion

5.1 The choice of an adequate sub-period length for the
PMR

Overall, the choice of the best sub-period length for the com-
putation of the PMR must satisfy the following two condi-
tions: (i) be small enough to limit loss of information about
model robustness and (ii) maximize correlation scores with
DSST biases in order to ensure its consistency. The first con-
dition relates to the sensitivity of the PMR to the model’s
actual robustness, while the second condition relates to the
reliability of the PMR in different DSST setups for the eval-
uation of model robustness. We would suggest that the inter-
pretability of the moving bias curve associated with the PMR
accounts for a third condition for the choice of the sub-period
length. In order to be interpreted easily, the curve should be
smooth enough to clearly distinguish periods during which a
model overestimates or underestimates observed streamflow
and, thus, involve long enough sub-periods. Of course, for
cases where only PMR values were to be used without any
analyses of the moving bias curves, this issue is incidental.

Under the conditions of our experiment, we found that
lengths between 2 and 5 years were relevant to fulfil the
second requirement. The sensitivity requirement would lead
to computing the PMR on 2-year sub-periods; however, we
acknowledge from our experience with moving bias curves
that such sub-periods are too short for quick visual analyses.
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Figure 5. Catchment-wise PMR values against catchment-wise DSST absolute bias (one point per catchment) on average (left) and for each
DSST setup (right). The red line corresponds to the fitted linear model relating DSST absolute bias to PMR.

Table 2. Pearson’s correlation between the PMR and model biases obtained in DSST across the catchment set.

DSST setup Dry Humid Warm Cold Unproductive Productive Average bias
Correlation 0.47 0.44 0.58 0.52 0.72 0.65 0.76

Figure 6. Distribution of PMR values on our catchment set for dif-
ferent sub-periods lengths from 1 to 10 years. The model is cali-
brated on the whole time series. Black circles indicate the average
PMR value.

Therefore, we consider 3–5 years to be an adequate length
for the computation of the PMR.

However, it should be pointed out that these results are
likely to be context dependent and may have been different
for other models. For these reasons, the aim of the study was
more the demonstration that it is possible to assess hydrologi-
cal model robustness to climatic changes without performing
a DSST, rather than demonstrating that the PMR is perfectly
reliable and that it should substitute split-sample tests. More-
over, the length of the sub-periods involved in the computa-
tion of the PMR should also reflect the particular needs of
each model evaluation study. One could imagine that it may

Figure 7. Pearson’s correlation between the PMR computed on
varying sub-period lengths (vertical axis) and the average DSST
biases obtained on varying sub-period lengths for calibration and
evaluation (horizontal axis).
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be chosen according to the temporal variability or periodicity
of some climate indices (e.g. the North Atlantic Oscillation
index).

5.2 Predicting model bias in DSST from the moving
bias curve

Although the PMR shows in average a good ability to predict
model biases on average, it also exhibits a poorer match with
model bias in each DSST experiment. Since the PMR is de-
signed to estimate the average deviation of model biases, this
outcome was expected. A further argument against the PMR
is that its value is necessarily positive and, thus, does not
shows whether a model is overestimating or underestimating
streamflow if climatic conditions change.

It should be recalled that the PMR is meant as a synthetic
metric to embrace model robustness and has been designed to
avoid choosing an arbitrary period to perform a split-sample
test or an arbitrary climate variable to perform a DSST. In
the research field of hydrological model robustness, scien-
tists are usually interested in evaluating and improving the
general skills of their models, and they try to avoid skew-
ing their results by accidentally selecting testing conditions
that are too favourable or too unfavourable. However, when it
comes to addressing more specific questions, metrics such as
the PMR may be uninformative. We, thus, suggest additional
metrics, derived from the moving bias curve (see Fig. 2), to
overcome the issues mentioned above.

Given two sub-periods of different climate conditions, a

and b, we define the specific proxy for model robustness (de-
noted as sPMR) as follows:

sPMR(a, b)=
Qsim,b−Qobs,b

Qobs
−

Qsim,a −Qobs,a

Qobs
. (3)

The sPMR(a,b) is simply the difference between the model
error on sub-period a and the model error on sub-period b,
relative to the average streamflow on the whole time series.
It can be computed from a from a single model simulation
and, thus, be applied to models calibrated on the whole data
set or to uncalibrated models. The sPMR can be either pos-
itive or negative and is supposed to assess model bias, as
it would be obtained from a DSST for a model calibrated
on sub-period a and evaluated on sub-period b. Notice that
sPMR(b,a)=−sPMR(a,b). The comparison between the
sPMR and model biases obtained in DSST (without absolute
values from Eq. 2) are shown on Fig. 8.

Our results show a very good fit between model biases in
DSST and the sPMR metric, indicating a good potential to
be used as a substitute for the DSST for models on which
it cannot be applied. In the case of GR4J, the similarity be-
tween sPMR and biases in DSST indicate that the informa-
tion about model bias in extrapolation can be retrieved from
a single calibration on the whole period. In other words, it in-
dicates a strong parallelism between the moving bias curves
(Fig. 2), whatever the calibration period, for periods at least

longer than 5 years, confirming the results of Coron et al.
(2014).

5.3 Generalization of the PMR for the evaluation of
hydrological models

In this study, our approach of hydrological models robustness
was focused on their ability to estimate annual or interan-
nual water volumes. However, motivations for extrapolating
streamflow with hydrological models are manifold and are
not limited to annual resource assessments. In this regard, a
strength of the traditional DSST is that the choice of the per-
formance metrics for model evaluation is unlimited, whereas
the PMR is simply a metric. It is, yet, worth noting that the
PMR is based on a simple idea, namely that model robustness
is associated to the stability of model performance in time
and under a variety of climatic conditions. Hence, it is pos-
sible to extend this principle to other performance metrics,
focusing on other aspects than the simple annual volumes.
One could therefore imagine computing Nash–Sutcliffe effi-
ciency (NSE; Nash and Sutcliffe, 1970) or KGE on multiple
sub-periods of the data and assessing its variability. However,
interpreting the stability of such metrics is not straightfor-
ward because they are both non-linear and highly sensitive
to error heteroscedasticity. In addition, an interesting feature
of the PMR, as it is presented in this study, is that it gives
a rough estimate of what model bias could be in a generic
split-sample test experiment and is, thus, easy to interpret.
This feature is due to the structure of model bias, which is
both linear and centred around zero. Therefore, any metric
respecting these requirements would have the same property
as the PMR.

Adapting the PMR framework to specific modelling is-
sues could be done in various ways. A possibility would, for
example, be to compute model bias on a portion of stream-
flow data above (respectively, below) a given threshold. This
procedure has been applied by Royer-Gaspard (2021) to as-
sess the robustness of GR4J for the simulation of different
ranges of the streamflow (low, intermediate and high flows).
Another option would be to compute model bias on stream-
flow components, such as baseflow and storm flow, derived
from hydrograph separation techniques, to obtain insights of
the models’ ability to represent their interannual variations.
Some authors have already applied common performance
metrics on such streamflow components (e.g. Samuel et al.,
2012). Eventually, streamflow transformations may be use-
fully applied as well to derive alternative PMR focusing on
weighted parts of the streamflow (e.g. with exponent func-
tions).
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Figure 8. Catchment-wise sPMR values against catchment-wise DSST relative bias (one point per catchment) for each DSST setup. The red
line corresponds to the fitted linear model relating DSST relative bias to sPMR for each DSST setup.

6 Conclusions

Traditional methods to assess the robustness of hydrological
models to changes in climatic conditions rely on calibration–
evaluation exercises, preferably performed on climatically
different periods of a time series. Although the DSST or its
variants represent the most appropriate procedure one can
imagine in terms of model-robustness evaluation, they cannot
be used on models that need to be calibrated on all the avail-
able data or to uncalibrated models. Furthermore, the DSST
is based on the selection of hydro-climatic variables whose
change is supposed to place the model in unfavourable con-
ditions to perform but whose actual link with robustness is
strongly context dependent.

In this technical note, we propose a performance metric
able to evaluate model robustness from a single model cal-
ibrated on the entire period of record. The so-called PMR,
thus, does not need multiple calibrations of the model on
sub-periods of the time series and can be used for any kind of
hydrological model. The PMR is constructed as an indicator
of the flatness of the moving bias curve, which is a graphical
representation of the temporal evolution of model bias across
sliding sub-periods of the data.

The reliability of the PMR was compared with the results
obtained by applying different DSST setups on GR4J, a typ-
ical conceptual model, on a data set of 377 French catch-
ments. We tested the predictive ability of the metric to esti-

mate model bias obtained by transferring model parameters
from calibration periods to climatically opposite evaluation
periods, for six types of hydro-climatic changes (changes in
both directions of average precipitation, average temperature
and average runoff ratio).

Our results show that PMR relates well to absolute model
biases in the DSST, especially when these biases derived
from the six DSST setups are averaged. Although the met-
ric values do not vary much across the catchment set, this
sensitivity can be enhanced by reducing the length of the sub-
periods on which the PMR is computed. An analysis of the
correlation between the PMR and model biases in the DSST
for different sub-period lengths pinpointed that the reliability
of PMR was better when the metric was computed on sub-
periods with lengths between 2 and 5 years. Ultimately, the
need to find a balance between metric sensitivity and reliabil-
ity led us to recommend computing the PMR on 3- to 5-year
sub-periods for GR4J.

Our results should encourage hydrological modellers to in-
clude the PMR as part of their panoply of evaluation metrics
to judge their models. The metric addressing models transfer-
ability within the context of observed climate variability can
be useful in model robustness assessments. In the context of
climate change impact assessments, though, it should be re-
called that demonstrating model robustness in the historical
period is a necessary yet insufficient requirement to validate
model robustness in future conditions outside the range of
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past observations. Still, being relevant for any kind of hydro-
logical model, it may be used to inform model selection for
such simulations. Of course, it appears difficult to define ac-
ceptability thresholds for the PMR a model should pass to be
used in extrapolation, since it would be catchment and ob-
jective dependent. However, one could imagine adapting a
standardized PMR by comparing PMR values with a bench-
mark model, as is done for NSE (for example, a simple yearly
Budyko model). Further work should also examine the po-
tential of PMR to be incorporated as a hydrological signature
in multi-objective calibration procedures essentially to con-
strain model parameters governing slow temporal changes in
catchment response.

Appendix A: Characterization of model bias across
DSST setups

Model biases in the DSST have been calculated in an abso-
lute way in the Sect. 4 so that they could be compared with
PMR values. This resulted in a loss of information about the
sign of model errors. In this section, it is shown how the sign
of these errors relates to the different DSST experiments. The
biases obtained for GR4J for each of the six types of DSST
setup are plotted in Fig. A1 without taking their absolute val-
ues.

Model bias follows different patterns, depending on the
climatic variable used to define the calibration and evaluation
periods of the DSST. While the distribution of model errors
seems comparatively even for periods characterized by dif-
ferent average precipitation, transferring model parameters
between periods with different runoff ratios clearly triggers
opposite model bias, whether the transfer is performed in one
way or in another. For most catchments, GR4J indeed un-
derestimates streamflow volumes when runoff ratio increases
and, conversely, overestimates streamflow volumes when
runoff ratio decreases. DSSTs based on temperature yield
situations in between, since median model bias is slightly
negative (respectively, positive) when calibrated on warmer
(respectively, colder) periods. When calculated in absolute
terms, model bias was larger in DSSTs based on runoff ra-
tio than for experiments based on temperature and precipi-
tation (Fig. A1). Therefore, robustness issues for the model
appear to be caused less by changes in climatic changes than
by modification of the catchment response to precipitation.
This result is in line with the conclusion of Saft et al. (2016),
who tested a number of hydrological models in southeastern
Australia during prolonged droughts. The authors observed
that many of these models would produce biased simulations
of streamflow during the drought if, and only if, the catch-
ments had experienced shifts in the rainfall–runoff relation-
ship from pre-drought to drought conditions. Our results ex-
tend this statement for GR4J to situations where the runoff
ratio increases and shows opposite model biases, depending
on the sign of the change.

Figure A1. Distribution of model biases in DSST for each type of
setup. The box plots represent the 5, 25, 50, 75 and 95 quantiles, and
the little crosses denote the outliers. Blue, red and green box plots
are, respectively, associated to DSST setups based on precipitation,
temperature and runoff ratio.

Appendix B: The choice of an adequate mathematical
expression

The mathematical expression of the PMR also results from a
choice that needs to be discussed. For example, Coron et al.
(2014) proposed computing the flatness of the moving bias
curve as the standard deviation of model bias on the sub-
periods.

Alt PMR= 2×
1
N
×

N∑
i=1

(
Qsim,i

Qobs,i
−

Qsim

Qobs

)2

. (B1)

We discussed the mathematical form chosen for the PMR
by comparing the metrics defined in Eqs. (1) and (B1). Fig-
ure B1 shows the differences between the metrics in Pear-
son’s correlation with model biases obtained in the DSST
performed on 5-year periods. The length of the sub-periods
used in the PMR varies from 1 to 10 years. It appears that
short sub-periods confer greater benefit to the reliability of
the PMR (Eq. 1), whereas longer sub-periods benefit the al-
ternative PMR (Eq. B1). Choosing a 5-year sub-period for
the computation of the PMR does not, on average, favour
either the one or the other formulation of the metric. As
mentioned previously, we sought to formulate the PMR so
that it maximizes the correlation with DSST biases while en-
hancing the sensitivity of the metric. For this reason, better
agreement for the PMR, as formulated in Eq. (1), with DSST
biases obtained for shorter sub-periods, where the PMR is
most sensitive to model robustness, makes it more suitable.
Therefore, the PMR computed as the sum of absolute average
model error on 5-year sub-periods is best suited to evaluating
model robustness.

In addition, we note that the alternative PMR corresponds
better overall to DSST experiments based on runoff ratio,
which, we remind the reader, yielded the larger model biases.
The fact that model biases are squared in the computation
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Figure B1. Differences between the correlations of PMR and alter-
native PMR with DSST biases (performed on 6-year calibration and
evaluation periods), depending on the DSST experiment and on the
length of the sub-periods used for the computation of the PMR. Val-
ues above zero indicate better agreement between PMR and DSST
results compared to alternative PMR, and vice versa.

of the alternative PMR enhances the weight of sub-periods
where the model simulations are the worst and, thus, poten-
tially where the observed runoff ratio differs the most from
the average. It is possible that calculating the error differ-
ences in absolute terms rather than squared makes the metric
less dependent on years when the model is drastically worse
or on years with large measurement errors.

Furthermore, the PMR, as defined in Eq. (1), may have
other advantages compared to Eq. (B1). The fact that model
error on each sub-period is normalized by the average ob-
served streamflow during the total period instead of the av-
erage observed streamflow during the sub-period may put
less emphasis on very dry years when observed streamflow
is close to zero. Model bias on such dry years can be unde-
sirably large; thus, the PMR, as defined in Eq. (1), could be
a better option for arid catchments. This also makes it pos-
sible to compute the PMR in catchments where rivers might
eventually cease to flow for long periods of time without any
further adjustments to the data. In addition, the interpretation
of the PMR is perceived as being more straightforward in
Eq. (1) than in Eq. (B1) as model error is simply compared
to the observed streamflow averaged on the whole time series
rather than to a quantity that varies across the sub-periods.
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