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ABSTRACT
A two-step model of the anaerobic digestion process is mathematically and numer-
ically studied. The focus of the paper is put on the hydrolysis and methanogenesis
phases when applied to the digestion of waste with a high content in solid matter:
existence and stability properties of the equilibrium points are investigated. The hy-
drolysis step is considered as a limiting step in this process using the Contois growth
function for the bacteria responsible for the first degradation step. The methano-
genesis step being inhibited by the product of the first reaction (which is also the
substrate for the second one), the Haldane growth rate is used for the second reac-
tion step. The operating diagrams with respect to the dilution rate and the input
substrate concentrations are established and discussed.

KEYWORDS
Commensal system; Anaerobic digestion; Steady state; Mortality; Stability;
Operating diagrams.

1. Introduction

Two-step models are very common in the environmental engineering literature to de-
scribe engineered biological systems. They are of particular interest to design feedback
control laws since they are usually enough complex to capture the most important pro-
cess dynamics while mathematically tractable.

The most common two-step model is used to describe the so called ‘commensal
ecological relationship’: it takes the form of a cascade of two biological reactions where
one limiting substrate S1 is consumed by one microorganism/ecosystem X1 to produce
S2 which serves as the main limiting substrate for a second microorganism/ecosystem
X2 as schematically represented by the following reaction :

S1
µ1(.)−→ X1 + S2, S2

µ2(.)−→ X2 + CO2 + CH4
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This model is given by the following general dynamical system:

Ṡ1 = D(Sin1 − S1)− µ1(.)X1

Y1
,

Ẋ1 = [µ1(.)− αD − k1]X1,

Ṡ2 = D(Sin2 − S2) + µ1(.)X1

Y3
− µ2(.)X2

Y2
,

Ẋ2 = [µ2(.)− αD − k2]X2

(1)

where D is the dilution rate, while Sin1 and Sin2 are the input substrate concentrations,
respectively. Parameters Yi are yield coefficients associated to the bio-reactions, ki
are the mortality terms while α ∈ [0, 1] is a term allowing to decouple the retention
time applied to substrates (supposed to be soluble) and biomass (supposed to be
particulate). The kinetics µ1 and µ2 are the growth rate functions associated to X1

and X2, respectively.
The different analyses of the class of models (1) available in the literature essen-

tially differ on the growth rate functions used and whether a specific input for S2 is
considered or not (i.e. if there is a source term Sin2 in the dynamic equation of S2 or
not). They differ also on the values i) of the coefficient α (allowing to decouple the
solid and liquid retention times) and ii) of the mortality terms ki. For details on the
various models of this type considered in the literature the reader can refer to Tables
2 and 3 of the review paper Wade et al. (2016).

Among the numerous biological systems used in environmental engineering, the
anaerobic systems are among those which are the most studied. Anaerobic digestion
(AD) is the biological degradation of organic matter in the absence of oxygen. The
final product is methane, a renewable energy source. This is why this process is more
and more used for the treatment of liquid and solid wastes. Because of its relative
instability due to the possible accumulation of intermediate products however, notably
the volatile fatty acids (VFA), the modeling of this process has been extensively studied
over these last years. Their complexity highly depends on the objectives pursued by
the modeler. On the one hand, when the objective is to develop models for integrating
and formalize the available knowledge - typically to better understand bioprocesses -
models are generally of high order and not tractable from a mathematical viewpoint,
cf. for instance the ADM1 developed by the International Water Association or IWA
Batstone et al. (2002). On the other hand, as already mentioned hereabove, when the
aim of the modeling is to develop decision tools or control systems, low order models
are better suited, as for instance the well known ‘AM2’, cf. Bernard, Hadj-Sadock,
Dochain, Genovesi, and Steyer (2001). Considering a system where the second step
was limiting and subject to inhibition, the authors considered a Monod function for
µ1 and a Haldane function for µ2. In Sbarciog, Loccufier, and Nolus (2010), this model
was studied for α = 1 while the most interesting case where 0 < α < 1 and where
growth functions were characterized by qualitative properties was studied in Benyahia,
Sari, Cherki, and Harmand (2012).

On the one hand, it is particularly important to underline here that such a model
has been validated many times on experimental data and that it has been used in
a large number of studies related to the AD of wastes notably as a basis for control
design, cf. Bernard et al. (2001), Lopez and Borzacconi (2009) or still Arzate et al.
(2017) and related references. On the other hand, using real data, several authors
have shown that such low-order models are appropriate to describe the AD processes
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(cf. Garcia-Dieguez, Bernard, and Roca (2013) or Weedermann, Seo, and Wolkowicz
(2013)). Following this idea, a method has even been proposed to easily, directly and
systematically calibrate AM2 parameters from real data or data obtained by simulating
a complex model like the ADM1, cf. Hassam, Ficara, Leva, and Harmand (2015).

Most of the wastes treated in the anaerobic systems studied in the above-mentioned
studies are liquid wastes. Depending on the nature of the wastes, and in particular
whether they are liquid or solid, the limiting step of the AD is not the same. If the
treated waste is liquid, the main limiting step is usually considered to be the methano-
genesis: in such a case, simple models including only acidogenesis and methanogenesis
can be used as in the AM2. If the waste contains a high proportion of solid matter
however, it is the rule rather than the exception to consider that the hydrolysis is the
main limiting step of the AD. In such a case, a model including only hydrolysis and
methanogenesis can be used. As proposed in Vavilin, Fernandez, Palatsi, and Flotats
(2008), when hydrolysis is the limiting step, rates depending only on substrate con-
centrations, such as the Monod function, are not the most appropriate. It is better
to describe such complex phenomena by density-dependent models, such as density
dependent kinetics, a family in which Contois models falls, cf. Ramirez et al. (2009).
Using this model, the rate of the hydrolysis step is modeled as

µ1(S1, X1) =
m1S1

K1X1 + S1
=

m1
S1

X1

K1 + S1

X1

which exhibits the following properties specific to hydrolysis, cf. Ramirez et al. (2009):
S1

X1
� K1 ⇒ µ1(S1, X1)X1 ≈ m1X1 ∝ X1,

S1

X1
� K1 ⇒ µ1(S1, X1)X1 ≈ m1

K1
S1 ∝ S1

(2)

While the analysis of the general model of AD initially purposed in Bernard et
al. (2001) (representing acidogenesis and methanogenesis steps) has been realized in
Benyahia et al. (2012), from the best of authors knowledge, a two-step model where the
kinetic of the first step is modeled by a generic density-dependent kinetics while the
second step exhibits a Haldane-type function has never been studied in the literature.
It is the aim of the actual paper to study such a generic model. This analysis in realized
in taking advantage of the fact that the system has a cascade structure: known results
are then applied to study the whole 4th order system as the coupling of two 2nd order
chemostat models. The main contribution of the paper is the set of operating diagrams
of the 4th order system that are provided in section 4.

The paper is organized as follows. In section 2 the two-step model with two in-
put substrate concentrations is presented and the general hypotheses on the growth
functions are given. In section 3 the expressions of the steady states are given and
their stability properties are established. In section 4, the effect of the second input
substrate concentration on the steady states is illustrated in designing the operating
diagrams, firstly, with respect to the first input substrate concentration and the dilu-
tion rate and secondly, with respect to the second input substrate concentration and
the dilution rate.
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2. Mathematical model

The two-step model reads:

Ṡ1 = D(Sin1 − S1)− µ1(S1, X1)X1

Y1
,

Ẋ1 = [µ1(S1, X1)−D1]X1,

Ṡ2 = D(Sin2 − S2) + µ1(S1, X1)X1

Y3
− µ2(S2)X2

Y2
,

Ẋ2 = [µ2(S2)−D2]X2

(3)

where S1 and S2 are the substrate concentrations introduced in the chemostat with
input concentrations Sin1 and Sin2 . D1 = αD+k1 and D2 = αD+k2 are the sink terms
of biomass dynamics where D is the dilution rate, k1 and k2 represent maintenance
terms and parameter α ∈ [0, 1] represents the fraction of the biomass affected by the
dilution rate while Yi are the yield coefficients. X1 and X2 are the hydrolytic bacteria
and methanogenic bacteria concentrations, respectively. The functions µ1 : (S1, X1)→
µ1(S1, X1) and µ2 : (S2)→ µ2(S2) are the specific growth rates of the bacteria.

To ease the mathematical analysis of the system, it is rescaled. Notice that it is
simply equivalent to changing units of variables:

s1 = S1, x1 =
1

Y1
X1, s2 =

Y3

Y1
S2, x2 =

Y3

Y1Y2
X2

The following system is obtained:

ṡ1 = D(sin1 − s1)− f1(s1, x1)x1,

ẋ1 = [f1(s1, x1)−D1]x1,

ṡ2 = D(sin2 − s2) + f1(s1, x1)x1 − f2(s2)x2,

ẋ2 = [f2(s2)−D2]x2

(4)

where sin2 = Y3

Y1
Sin2 , f1 and f2 are defined by

f1(s1, x1) = µ1(s1, Y1x1) and f2(s2) = µ2

(
Y1

Y3
s2

)
It is assumed that the functions µ1(., .) and µ2(.) satisfy the following hypotheses.

H1. µ1(s1, x1) is positive for s1 > 0, x1 > 0, and satisfies µ1(0, x1) = 0 and
µ1(+∞, x1) = m1(x1). Moreover µ1(s1, x1) is strictly increasing in s1, and decreas-

ing in x1 that is to say ∂µ1

∂s1
> 0 and ∂µ1

∂x1
≤ 0 for s1 > 0, x1 > 0.

H2. µ2(s2) is positive for s2 > 0, and satisfies µ2(0) = 0 and µ2(+∞) = 0. Moreover
µ2(s2) increases until a concentration sM2 and then decreases; thus µ

′

2(s2) > 0 for
0 ≤ s2 < sM2 , and µ

′

2(s2) < 0 for s2 > sM2 .

As underlined in the introduction, particular kinetics models as Contois function
verify H1 while the Haldane function verifies H2. Since the functions µ1 and µ2 satisfy
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the hypotheses H1 and H2, it follows from the above that functions f1 and f2 satisfy
the following assumptions.

A1. f1(s1, x1) is positive for s1 > 0, x1 > 0, and satisfies f1(0, x1) = 0 and

f1(+∞, x1) = m1(x1). Moreover ∂f1
∂s1

> 0 and ∂f1
∂x1
≤ 0 for s1 > 0, x1 > 0.

A2. f2(s2) is positive for s2 > 0, and satisfies f2(0) = 0 and f2(+∞) = 0. Moreover
f2(s2) increases until a concentration sM2 and then decreases, with f

′

2(s2) > 0 for
0 < s2 < sM2 , and f

′

2(s2) < 0 for s2 > sM2 .

3. Analysis of the model

3.1. The dynamics of s1 and x1

3.1.1. Study of the steady states of system (5)

Model (4) has a cascade structure which renders its analysis easier. In other terms s1

and x1 are not influenced by variables s2 and x2 and their dynamics are given by:

 ṡ1 = D(sin1 − s1)− f1(s1, x1)x1,

ẋ1 = [f1(s1, x1)−D1]x1.
(5)

The behaviour of this system is well-known, cf. Harmand, J. and C. Lobry and A.
Rapaport and T. Sari (2016). A steady state (s∗1, x

∗
1) must be solution of the system 0 = D(sin1 − s1)− f1(s1, x1)x1,

0 = [f1(s1, x1)−D1]x1

(6)

From the second equation it is deduced that x∗1 = 0, which corresponds to the
washout E0 = (sin1 , 0), or s∗1 and x∗1 must satisfy both equations

f1(s∗1, x
∗
1) = D1 and x∗1 =

D

D1
(sin1 − s∗1). (7)

Let γ a function defined by :

γ(s1) = f1

(
s1,

D

D1
(sin1 − s1)

)
,

so s∗1 is a solution of γ(s1) = D1, and it is noticed that γ
′
(s1) =

∂f1

∂s1
− D

D1

∂f1

∂x1
.

According to the hypothesis A1, γ(s1) is strictly increasing over the interval ]0, sin1 [,
with γ(0) = 0 and γ(sin1 ) = f1(sin1 , 0). According to the theorem of intermediate values,
the equation γ(s1) = D1 has a solution between 0 and sin1 if and only if D1 < γ(sin1 ),
that is to say if D1 < f1(sin1 , 0), cf. Figure 1.

Hence, for x∗1 6= 0, the equilibrium E1(s∗1, x
∗
1) exists if and only if D1 < f1(sin1 , 0).

The local stability of the steady state is given by the sign of the real part of eigen-
values of the Jacobian matrix evaluated at this steady state. In the following, the
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Figure 1. The existence of the solution of γ(s1) = D1.

abbreviations LES for locally exponentially stable is used.

Proposition 3.1. Assume that Assumptions A1 and A2 hold. Then, the local sta-
bility of steady states of (5) is given by :

(1) E0 = (sin1 , 0) is LES if and only if f1(sin1 , 0) < D1 ( i.e. sin1 < s∗1).
(2) E1 = (s∗1, x

∗
1) is LES if and only if f1(sin1 , 0) > D1 ( i.e. sin1 > s∗1), (E1 is stable

if it exists)

The reader may refer to Harmand, J. and C. Lobry and A. Rapaport and T. Sari
(2016) for the proof of this proposition. In the same book, notice that global stability
results for system (5) are also provided. When E0 and E1 coincide, the equilibrium
is attractive (the eigenvalues are equal to zero). The results of Proposition 3.1 are
summarized in the following table.

Table 1. Summary of the results of Proposition 3.1

Steady state Existence condition Stability condition
E0 Always exists f1(sin1 , 0) < D1

E1 f1(sin1 , 0) > D1 Stable when it exists

3.1.2. Operating diagram of the system (5)

Apart from the two operating (or control) parameters, which are the input substrate
concentration sin1 and the dilution rate D - that can vary - all others parameters (α, k1

and the parameters of the growth function f1(s1, x1)) have biological meaning and are
fixed depending on the organisms and substrate considered. The operating diagram
shows how the steady states of the system behave when the two control parameters
sin1 and D are varied. The operating diagram for the system (5) is shown in Figure 2.
The condition f1(sin1 , 0) > D1 of existence of E1 is equivalent to D < 1

α [f1(sin1 , 0)−k1].
Therefore, the curve

Γ :

{
(sin1 , D) : D =

1

α
[f1(sin1 , 0)− k1]

}
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separates the operating plan in two regions as defined in Figure 2.

Figure 2. Operating diagram of (5)

The curve Γ is the border which makes E0 unstable and at the same time E1 exists.
Table 2 indicates the stability properties of steady states of the system (5) in each
region where S and U read for LES and unstable respectively and no letter means
that the steady state does not exist.

Table 2. Stability properties of steady
states of system (5) in each region

Region Equ. E0 Equ. E1

(sin1 , D) ∈ R0 S
(sin1 , D) ∈ R1 U S

Except for small values of D and sin1 , notice that the operating diagram of this first
part of the twop-step system under study is qualitatively similar to that one of the
first part of the AM2 model, that is when a Monod-like growth function is considered,
cf. Bernard et al. (2001).

3.2. The dynamics of s2 and x2

3.2.1. Study of the steady states of system (8)

Due to the cascade structure of (4), the dynamics of the state variables s2 and x2 are
given by  ṡ2 = D(F (t)− s2)− f2(s2)x2,

ẋ2 = [f2(s2)−D2]x2,
(8)

with

F (t) = sin2 +
1

D
f1(s1(t), x1(t))x1(t)

where s1(t), x1(t) are a solution of (5). A steady state (s∗1, x
∗
1, s
∗
2, x
∗
2) of (4) corresponds

to a steady state (s∗2, x
∗
2) of (8) where either (s1(t), x1(t)) = E0 or (s1(t), x1(t)) = E1.
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Therefore (s∗2, x
∗
2) must be a steady state of the system ṡ2 = D(sin∗2 − s2)− f2(s2)x2,

ẋ2 = [f2(s2)−D2]x2

(9)

where

sin∗2 = sin2 or sin∗2 = sin2 +
D1

D
x∗1. (10)

The first case corresponds to (s∗1, x
∗
1) = E0 and the second to (s∗1, x

∗
1) = E1.

The system (9) corresponds to a classical chemostat model with Haldane-type ki-
netics, including a mortality term for x2 and an input substrate concentration. Notice
that sin∗2 , given by (10), depends explicitly on the input flow rate. For a given D, the
long term behaviour of such a system is well-know, cf. Harmand, J. and C. Lobry and
A. Rapaport and T. Sari (2016).

A steady state (s∗2, x
∗
2) must be a solution of the system 0 = D(sin∗2 − s2)− f2(s2)x2,

0 = [f2(s2)−D2]x2.
(11)

From the second equation it is deduced that x∗2 = 0, which correspond to the washout
F0 = (sin∗2 , 0) or s∗2 must satisfy the equation

f2(s2) = D2. (12)

Under hypothesis A2, and if

D2 < f2(sM2 ) (13)

this equation has two solutions which satisfy s1
2 < s2

2. Therefore the system has two
positive steady states F1 = (s1

2, x
1∗
2 ) and F2 = (s2

2, x
2∗
2 ), where

xi∗2 =
D

D2
(sin∗2 − si2), i = 1, 2. (14)

For i = 1, 2, the steady states Fi exist if and only if sin∗2 > si2.

Proposition 3.2. Assume that Assumptions A1, A2 and condition (13) hold. Then,
the local stability of steady states of (9) is given by :

(1) F0 is LES if and only if sin∗2 < s1
2 or sin∗2 > s2

2.
(2) F1 is LES if and only if sin∗2 > s1

2 (stable if it exists ).
(3) F2 is unstable if it exists (unstable if sin∗2 > s2

2).

The reader may refer to Harmand, J. and C. Lobry and A. Rapaport and T. Sari
(2016) for the proof of this proposition.

The results of Proposition 3.2 are summarized in the following table.
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Table 3. Summary of the results of Proposition 3.2

Steady-state Existence condition Stability condition
F0 Always exists sin∗

2 < s12 or sin∗
2 > s22

F1 sin∗
2 > s12 Stable if it exists

F2 sin∗
2 > s22 Unstable if it exists

3.2.2. Operating diagram of the system (8)

Now, the operating diagram shows how the system behaves when the two control
parameters sin∗2 and D are varied. The operating diagram is shown in Figure 3. The
conditions sin∗2 = s1

2 or sin∗2 = s2
2 are equivalent to f2(sin∗2 ) = D2, that is to say

D = 1
α(f2(sin∗2 )− k2). Therefore, the horizontal line

Γ1 :

{
(sin∗2 , D) : D =

1

α
(f2(sM2 )− k2), sin∗2 > sM2

}
together with the curve

Γ2 :

{
(sin∗2 , D) : D =

1

α
(f2(sin∗2 )− k2)

}
separate the operating diagram plane in three regions as defined in Figure 3.

Figure 3. Operating diagram of (9)

The following table indicates the stability properties of steady states of system (8).

Table 4. Stability properties of the steady states
of system (8)

Region Equ. F0 Equ. F1 Equ. F2

(sin∗
2 , D) ∈ R2 S

(sin∗
2 , D) ∈ R3 U S

(sin∗
2 , D) ∈ R4 S S U

3.3. Analysis of the whole system (4)

3.3.1. Steady states

The aim of this section is to study the dependence of the steady state of (4) with
respect to the operating parameters D, sin1 and sin2 . Let (s∗1, x

∗
1, s
∗
2, x
∗
2) be a steady

9



state of (4), then (s∗1, x
∗
1) is a steady state of (5) and (s∗2, x

∗
2) is a steady state of (9)

where sin∗2 is given by (10).

If (s∗1, x
∗
1) = E0 = (sin1 , 0) then sin∗2 = sin2 and three possibilities can occur

(1) (s∗2, x
∗
2) = (sin2 , 0), and E0

1 := (sin1 , 0, s
in
2 , 0).

(2) (s∗2, x
∗
2) = (s1

2, x
1
2), and E1

1 := (sin1 , 0, s
1
2, x

1
2)

(3) (s∗2, x
∗
2) = (s2

2, x
2
2), and E2

1 := (sin1 , 0, s
2
2, x

2
2).

If (s∗1, x
∗
1) = E1 = (s∗1, x

∗
1) then three others possibilities can occur

(1) (s∗2, x
∗
2) = (sin∗2 , 0), and E0

2 := (s∗1, x
∗
1, s

in∗
2 , 0).

(2) (s∗2, x
∗
2) = (s1

2, x
1∗
2 ), and E1

2 := (s∗1, x
∗
1, s

1
2, x

1∗
2 ).

(3) (s∗2, x
∗
2) = (s2

2, x
2∗
2 ), and E2

2 := (s∗1, x
∗
1, s

2
2, x

2∗
2 ).

These results are summarized in the following proposition.

Proposition 3.3. The system (4) has at most six steady states :

• E0
1 = (sin1 , 0, s

in
2 , 0), always exists.

• E1
1 = (sin1 , 0, s

1
2, x

1
2), exists if and only if sin2 > s1

2.
• E2

1 = (sin1 , 0, s
2
2, x

2
2), exists if and only if sin2 > s2

2.
• E0

2 = (s∗1, x
∗
1, s

in∗
2 , 0), exists if and only if f1(sin1 , 0) > D1.

• E1
2 = (s∗1, x

∗
1, s

1
2, x

1∗
2 ), exists if and only if f1(sin1 , 0) > D1 and sin∗2 > s1

2.
• E2

2 = (s∗1, x
∗
1, s

2
2, x

2∗
2 ), exists if and only if f1(sin1 , 0) > D1 and sin∗2 > s2

2.

3.3.2. Steady states stability of the system (4)

In this section, the stability of the steady states given in the Proposition 3.3 is studied.
For this the following Jacobian matrix is considered:

J =

[
J11 J12

0 J22

]
,

where J11 and J22 are defined by (15) and (16), respectively given by :

J =

−D −Mx1 −Nx1 − f1(s1, x1)

Mx1 Nx1 + [f1(s1, x1)−D1]

 , (15)

and

J =

−D − f ′

2(s2)x2 −f2(s2)

f
′

2(s2)x2 f2(s2)−D2

 . (16)

This matrix has a block-triangular structure. Hence, the eigenvalues of J are the
eigenvalues of J11 and the eigenvalues of J22. The existence of steady states depends
only on the relative positions of the two numbers sin1 and s∗1 defined by (7) with
respect to the four numbers s1

2 and s2
2, defined by (12) on the one hand, and sin2 and

sin∗2 , solutions of (10) on the other hand. Equilibrium stability is summarized in Table
5 while the different regions of the operating diagram are synthesized in Tables 6 and
7.
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Table 5. The stability conditions for the steady states of the system (4)

Equ. Matrices J11 and J22 Conditions of stability

E0
1 Tr(J11) < 0 if f1(sin1 , 0) < D1,

J11 =

[
−D −f1(sin1 , 0)

0 f1(sin1 , 0)−D1

]
Tr(J22) < 0 if sin2 < s12 or sin2 > s22,

det(J11) > 0 and det(J22) > 0

J22 =

[
−D −f2(sin2 )

0 f2(sin2 )−D2

]
⇒


E0

1 is stable if f1(sin1 , 0) ≤ D1 and

(sin2 < s12 or sin2 > s22),
E0

1 is unstable if f1(sin1 ) > D1 or

s12 < sin2 < s22).

Ei
1 (i = 1, 2) Tr(J11) < 0 and det(J11) > 0 if f1(sin1 , 0) < D1

J11 =

[
−D −f1(sin1 , 0)

0 f1(sin1 , 0)−D1

]
Tr(J22) < 0 and det(J22) > 0 at E1

1 ,

det(J22) < 0 at E2
1

J22 =

[
−[D + f

′
2(si2)xi2] −D2

f
′
2(si2)xi2 0

]
⇒


E1

1 is stable,

E2
1 is unstable

Ei
1 are both unstable if sin1 > s∗1.

E0
2 Tr(J11) < 0 and det(J11) > 0 by A1

J11 =

[
−[D + ( ∂f1

∂s1
)x∗1] −[D1 + ( ∂f1

∂x1
)x∗1]

( ∂f1
∂s1

)x∗1 ( ∂f1
∂x1

)x∗1

]
Tr(J22) < 0 and det(J22) > 0

if sin∗
2 < s12 or sin∗

2 > s22

J22 =

[
−D −f2(sin∗

2 )
0 [f2(sin∗

2 )−D2]

]
⇒


E0

2 is stable if sin1 ≥ s∗1 and

(sin∗
2 < s12 or sin∗

2 > s22),
E0

2 is unstable if sin1 > s∗1 and

s12 < sin∗
2 < s22.

Ei
2 (i = 1, 2) Tr(J11) < 0 and det(J11) > 0

J11 =

[
−[D + ( ∂f1

∂s1
)x∗1] −[D1 + ( ∂f1

∂x1
)x∗1]

( ∂f1
∂s1

)x∗1 ( ∂f1
∂x1

)x∗1

]
Tr(J22) < 0 and det(J22) > 0 at E1

2 ,

det(J22) < 0 at E2
2

J22 =

−[D + f
′
2(si2)xi∗2 ] −D2

f
′
2(si2)xi∗2 0

 ⇒
{

E1
2 is stable,

E2
2 is unstable

Table 6. The three cases when sin1 < s∗1

Case Area Condition E0
1 E1

1 E2
1 E0

2 E1
2 E2

2
1.1 A1 sin2 < s12 < s22 S
1.2 A2 s12 < sin2 < s22 U S
1.3 A3 s12 < s22 < sin2 S S U

Table 7. The six cases when sin1 > s∗1

Case Area Condition E0
1 E1

1 E2
1 E0

2 E1
2 E2

2
2.1 A4 sin2 < sin∗

2 < s12 < s22 U S
2.2 A5 sin2 < s12 < sin∗

2 < s22 U U S
2.3 A6 sin2 < s12 < s22 < sin∗

2 U S S U
2.4 A7 s12 < sin2 < sin∗

2 < s22 U U U S
2.5 A8 s12 < sin2 < s22 < sin∗

2 U U S S U
2.6 A9 s12 < s22 < sin2 < sin∗

2 U U U S S U

Remark 1. Here the limit values in the stability condition (Ex: sin2 = s1
2 or sin2 = s2

2)
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are excluded. These limit cases are related to the eigenvalues of the Jacobian matrix
with a real part equal to 0 in which case the corresponding states are named non-
hyperbolic stationary states. Otherwise, they are named hyperbolic steady states.

The different possible cases of non-hyperbolic (NH) equilibrium are summarized in
the theorem 3.4.

Theorem 3.4. If sin1 < s∗1, then there are three sub-cases:

Case Condition NH S U
1.4 sin2 = s1

2 < s2
2 E0

1 = E1
1

1.5 s1
2 < sin2 = s2

2 E0
1 = E2

1 E1
1

1.6 s1
2 = s2

2 < sin2 E1
1 = E2

1 E0
1

If sin1 > s∗1, then there are nine sub-cases

Case Condition NH S U
2.7 sin2 < sin∗2 = s1

2 < s2
2 E0

2 = E1
2 E0

1

2.8 sin2 < s1
2 < s2

2 = sin∗2 E0
2 = E2

2 E1
2 E0

1

2.9 sin2 = s1
2 < sin∗2 < s2

2 E0
1 = E1

1 E1
2 E0

2

2.10 sin2 = s1
2 < s2

2 < sin∗2 E0
1 = E1

1 E1
2 ,E

0
2 E2

2

2.11 sin2 = s1
2 < s2

2 = sin∗2 E0
1 = E1

1 ,E
0
2 = E1

2 E1
2

2.12 s1
2 < sin2 = s2

2 < sin∗2 E1
2 = E2

2 E0
2 E0

1

2.13 s1
2 < sin2 < s2

2 = sin∗2 E0
2 = E2

2 E1
2 E0

1 ,E
1
1

2.14 s1
2 < sin2 = s2

2 < sin∗2 E0
1 = E2

1 E0
2 ,E

1
2 E0

1 ,E
2
2

2.15 s1
2 = s2

2 < sin2 < sin∗2 E1
1 = E2

1 ,E
1
2 = E2

2 E0
2 E0

1

Proof. Let us give the details of the proof in the case 2.9. The other cases can be
studied similarly. Assume that sin2 = s1

2 < sin∗2 < s2
2, then x1

2 = 0, x∗1 > 0 and x1∗
2 > 0

by (14). Therefore (cf. Proposition 3.3), the system has three equilibria E0
1 = E1

1 , E0
2

and E1
2 . Using the linearization, it is established that E0

2 and E1
2 are hyperbolic.

Remark 2. In each case among those cited in the Tables 6, 7 and in the previous
Theorem 3.4, a corresponding figure which represents the relative position of s1

2, s2
2,

sin2 and sin∗2 Benyahia et al. (2012) can be associated.

4. Simulations

To illustrate these results, the operating diagrams of the system (3) under hypothesis
H1 and H2 in a number of situations are plotted. Recall that operating diagram
summarizes the existence and the nature of the the steady states of a dynamical
system as a function of its input variables. Here, the control inputs are D, Sin1 and
Sin2 . More particularly, either the operating diagrams in the plan {Sin1 , D} for a fixed
value of Sin2 or in the plan {Sin2 , D} for a fixed value of Sin1 are plotted. All simulations
are performed with the following growth functions:

µ1(S1, X1) =
m1S1

K1X1 + S1
, µ2(S2) =

m2S2

S2
2

I + S2 +K2

.

Of course, these operating diagrams depend on the model parameters. The choice of
their values is a difficult task. Indeed, our objective here is not to match a set of data
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but rather to highlight interesting qualitative properties of the model under interest.
To do so, most parameters are taken from Bernard et al. (2001), while others are
changed significantly as the inhibition coefficient I of the Haldane function. Indeed,
as underlined in Khedim, Benyahia, Cherki, Sari, and Harmand (2018), inhibition
of the second reaction is not visible if original parameters proposed in Bernard et
al. (2001) are used considering reasonable ranges of variations for S1 and S2. With
respect to this later, the Haldane parameter I was thus significantly decreased to
willingly increase the inhibition effect of S2 on the growth of X2. Finally, parameter
values used are summarized in the following table To compute the different regions

Table 8. Parameters values for the simu-

lations

Parameter Unit Nominal value
m1 d−1 0.5
K1 g/L 2.1
m2 d−1 1
I mmol/L 60
K2 mmol/L 24
k1 d−1 0.1
k2 d−1 0.06
α in [0, 1) 0.5
Y1 g/g 1/25
Y2 g/mmol 1/250
Y3 g/mmol 1/268

of the operating diagrams, the numerical method reported in Khedim et al. (2018) is
used. The algorithm is recalled hereafter.

4.1. Algorithm for the determination of the operating diagrams

The algorithm is as follows: for each value of input variables chosen on a grid, the
equilibria are computed. The eigenvalues of the Jacobian matrix are then calculated
for each equilibrium. Finally, according to the conditions of existence and the sign of
the real parts of the eigenvalues, a ‘flag’ is assigned to each of the 6 equilibria: ‘S’ for
stable, ‘U’ for unstable or nothing if the steady state does not exist. This procedure
stops when all the values of the grid {Sin, D} have been scanned. As a result, a number
of ‘signatures’ composed of sequences of ‘S’, ‘U’ or ‘nothing’ are obtained. These cases
code for the existence and stability of the equilibria that are grouped into regions
as summarized in the tables at the end of sections 3.1 and 3.2, respectively. This
algorithm may be formalized as follows: let N1, N2 be two integers in N∗ and h1 = D

N1

and h2 = Sin

N2
the two iteration steps:

4.2. Operating diagrams

In this part the results are illustrated by plotting the operating diagrams and are
discussed.

Figure 4 represents the operating diagram of model (1) in the plan {Sin1 , D} for
Sin2 = 1.5 mmol/L. The regions are defined as follows. A1 (in green) is the stability
region of the washout E0

1 , A5 (in blue) is the stability region of steady-state E1
2 , A6

(in red) is the bi-stability region of the steady-states E0
2 and E1

2 , and A7 (in dark blue)
is the stability region of steady-state E1

2 , the difference between the regions A5 and
A7 being that the equilibrium E1

1 does not exist in the region A5 but exists and is
unstable in A7, cf. Tables 6 and 7.
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Algorithm 1 Operating diagram
for i varying from 1 to N1 do;

for j varying from 1 to N2;
determine 6 equilibria of the model E1...E6

for k varying from 1 to 6 do
calculate the Jacobian matrix at Ek (JEk

)
calculate the eigenvalues of (JEk

)
if all the conditions of existence of Ek are fulfilled and all real parts of

the eigenvalues of (JEk
) are non-positive then Ek is stable

else if all conditions of existence of Ek are fulfilled and at least one
real part of eigenvalue of (JEk

) is positive then Ek is unstable
else Ek does not exist
end if

end for (k)
end for (j)

end for (i)

Figure 4. The operating diagram for Sin
2 = 1.5 mmol/L.

Figure 5 represents the operating diagram of model (1) in the plan {Sin2 , D} for
Sin1 = 0.8 g/L.. The regions are defined as follows. A2 (in yellow) is the stability
region of steady-state E1

1 , A3 (in orange) is the bi-stability region of the washout E0
1

and the steady-state E1
1 , A8 and A9 (in pink) and (in dark pink), respectively, are

the bi-stability regions of the steady-states E0
2 and E1

2 , the difference between A8 and
A9 being that the equilibrium E2

1 does not exist in the region A8 but exists and is
unstable in A9, cf. Tables 6 and 7.

Figure 6 represents the operating diagram of model (1) in the plan {Sin2 , D} for
Sin1 = 0.03 g/L., that is a smaller value of Sin1 than before. The differences with the
previous case are i) the appearance of a little region A4 (in dark orange) which is the
stability region of steady-state E0

2 and ii) a sharp decrease of the size of region A8

which almost disappears (it is reduced to a very narrow surface along the frontier with
the region A9 as can seen in Figure 6).

The region A8 becomes very small and narrow compared to Figure 5 because it
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Figure 5. The operating diagram for Sin
1 = 0.8 g/L.

is numerically linked to the value of Sin1 . Indeed, when reducing the value of Sin1 ,
the region A4 appears while the size of the region A8 is getting smaller and smaller
(compare Figures 5 and 6). In other words, in decreasing Sin1 , the attraction basin of
the positive stable equilibrium of A7 (E1

2) increases. It is equivalent to say that, given
two values of Sin1 , say Sin 1

1 and Sin 2
1 where Sin 2

1 > Sin 1
1 , a greater dilution rate is

needed to destabilize the process if Sin1 = Sin 2
1 than if Sin1 = Sin 1

1 , thus the shard
decrease of A8 observed in Figure 6.

Figure 6. The operating diagram for Sin
1 = 0.03 g/L.

4.3. Practical interpretations of the operating diagrams

Here below, it is explained how the operating diagrams may be used in practice. First,
notice that the operator must avoid the process to operate in regions where either
E0

1 and/or E0
2 would be the only stable equilibrium points. Indeed, in such regions,

x∗2 = 0 and the process does not produce any methane: then A1 and A4 must be
avoided. In addition, a particular attention must be paid to operating conditions in
which there is bi-stability with one of the stable equilibrium point is E0

1 or E0
2 , that

are A3, A6, A8 and A9. In the following, what may happen within regions A6 and A7
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that are methane-producing areas is analyzed. To illustrate their practical interest, let
us consider the operating diagram pictured in Figure 4 (that is for Sin2 = 1.5 g/L) and
let us browse it for increasing values of D at a fixed value of Sin1 .

Example 1: Let Sin1 = 18 g/L. In such a situation, the following regions are browsed

Figure 7. Biological interpretation for Sin
1 = 18 g/L

in considering successive equilibrium when increasing D: A7 99K A6 99K A5 99K A1,
cf. Figure 7. To better interpret whose ‘steady states the system passes through’, the
bifurcation diagram is plotted in Figure 8.

S1(D) X1(D)

S2(D) X2(D)

Figure 8. The bifurcation diagram for the input control D for Sin
1 = 18g/L.

This last diagram allows us to see the appearance/disappearance of steady states
as a function of the input variable D (recall that Sin1 and Sin2 are fixed). As long as
D is small enough (i.e. such that αD + k2 < d1), the quantity of substrate entering
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the second step of the reaction is very important: the system is in the region A7

where the positive equilibrium is the only stable equilibrium. As D increases the size
of the attraction basin of this equilibrium decreases until D reaches a critical value
(corresponding to the point P1 in Figure 7, which is situated on the frontier between
regions A7 and A6). This critical value corresponds to that one for which the term
Sin∗2 becomes exactly the largest solution of the equation µ2(S2) = D2 (equivalent to
equation (12) for the system (4)): the system enters then in the region A6. From a
biological point of view, the interpretation is as follows: as D increases, X∗1 decreases
and thus Sin∗2 decreases as can be seen from equation (10). When D2 = d2, the
quantity of available resource necessary to X2 to grow may become limiting for some
initial conditions, leading the system to enter a bi-stability zone. With the values of
the parameters chosen, further increasing D leads definitely X2 to the washout: the
system enters into A5 in crossing the point P2 of Figure 7. Finally, if D is such that
D1 = d2 (the critical value corresponding to the maximum growth rate of X1) X1 goes
also to extinction and the system enters into A1.

Example 2: Let Sin1 = 14 g/L. This case is even more interesting since, when D

Figure 9. Biological interpretation for Sin
1 = 14 g/L

increases, the system goes back to A5 once before leaving it definitely in browsing
the following regions: A7 99K A6 99K A7 99K A5 99K A1. While D is small enough
(i.e. such that αD+k2 < d3, cf. Figure 9), the reasoning remains the same than before.
The only difference is that the value of D leading the system to enter into A6 through
P3 is a little bit higher than in the previous case (d3 > d1). It is due to the fact that
the second step of the reaction receives less input from the first step when compared
to the case where Sin1 = 18g/L, thus enlarging the attraction basin of the stable
positive equilibrium. Then, when D is further increased, it may happen an interesting
phenomenon: the system enters back into A7 through point P4 instead of entering A5

as it was the case before. In fact, this strongly depends on model parameters and in
particular on the relative rate at which Sin∗2 and the largest solution of the equation
(10) vary as functions of D, cf. Figure 10. In other words, it depends on how the input
concentration of the second step Sin∗2 – which includes the part of S1 transformed into
S2 during the first reaction – is affected by D. On the one hand, if the system is in a
‘flat’ zone of the growth rate µ2 assuming concentrations at the right of the maximum
of µ2 are considered, a small variation of D (and thus of D2) will change very much the
largest solution of the equation (10) while Sin∗2 may almost remain constant. On the
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other hand, if D is such that D2 crosses µ2 in a sharper zone of the Haldane function
(typically around the inflexion point, still considering S2 evolves at concentrations
such as the system is on the right of the maximum of µ2), a small change on D (and
thus on D2) will affect much more the solution of the equation (10) than before. In
any of these situations, the relative positions of the largest solution of the equation
(10) and of Sin∗2 determine whether the system will evolve in the region A7 or A6 and,
as D increases to a value such αD + k2 = d4 a return of the system from A7 into A6

can be observed. It goes through P3 and then goes back into A7 through P4. It is well
illustrated in the bifurcation diagram plotted in Figure 10.

S1(D) X1(D)

S2(D) X2(D)

Figure 10. The bifurcation diagram of the operating diagram shown in Figure 4 for Sin
1 = 14g/L.

5. Conclusions

In this paper, a model of the AD has been studied. A two stages mass-balance model,
corresponding to hydrolysis and methanogenesis phases, is considered. A non usual
growth function for the hydrolysis step that is a generic density-dependent growth
rate has been used while a Haldane-type function is considered for the methanogenesis
step. From the best of authors knowledge, it is the first time such a model including
the association of Contois-Haldane-type growth functions in a two-step model of the
AD is considered. In this analysis it has been shown that this model has six steady
states (E0

1 , E
1
1 , E

2
1 , E

0
2 , E

1
2 , E

2
2). Conditions under which they exist and are stable or

unstable have been highlighted. The regions of stability of these equilibria have been
established with the help of the operating diagrams and their practical use in a number
of situations has been discussed. Finally, it should be underlined that the proposed
change in the growth rate function of the first reaction step when considering the AD
of solid wastes - using a density function instead of a substrate-dependent function -
changes the qualitative properties of the system when compared to systems treating
liquid wastes.
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