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c Université Paris-Saclay, AgroParisTech, INRAE, UMR MIA-Paris, 75005, Paris, France 
d INRAE, Oniris, BIOEPAR, 44300, Nantes, France 
e Global Technical Services, Boehringer-Ingelheim Animal Health, 69007, Lyon, France   

A R T I C L E  I N F O   

Keywords: 
Expert elicitation 
Hierarchical Bayesian model 
Ixodes ricinus ticks 
Parametric survival model 

A B S T R A C T   

The survival of ectothermic species is heavily dependent on environmental conditions, such as temperature and 
water balance. Understanding their survival responses to abiotic factors could help predict impacts of climate 
change on their population dynamics and human health. However, making a statistical inference and formulating 
a predictive model for mortality rates can be challenging when the observation numbers are limited. This study 
proposed an expert opinion elicitation framework that integrates expert opinions as prior distributions for the 
effects of continuous explanatory variables, through a Bayesian Parametric Survival Model (B-PSM). A historical 
survival dataset of female Ixodes ricinus ticks (Acari: Ixodidae) with small sample size was used. A total of 6 
acarologists were recruited as experts for interactive online interview sessions to provide their opinions on 
average survival time under 4 different temperature and humidity scenarios. Most experts shared similar 
opinions on the effects of abiotic variables, and none of the experts was confident in the interaction effect. The 
variation of the opinions across multiple experts was handled by two approaches: 1) pooling and 2) averaging 
methods. The results showed that the pooling approach retains the variations of expert opinions, it may also 
disregard some irrelevant opinions to the observed data. While the averaging approach forms a numerical 
consensus across all the experts, but it may be less informative when the opinions distinctly diverge. The survival 
time of I. ricinus was found to be best described by the Weibull distribution, suggesting the mortality rate of ticks 
increases over time (aging effects). Also, the posterior predictions revealed that I. ricinus ticks were susceptible to 
desiccation conditions, with an interaction effect with the temperature. Therefore, our results suggested that 
relative humidity is an important factor in the survival of I. ricinus that should not be disregarded when eval-
uating the impacts of climate change on their population dynamics. Finally, this study provided a guideline for 
implementing the B-PSM framework to incorporate expert opinions and develop predictive survival models that 
can be applied in other ecological contexts.   

1. Introduction 

Survival is a fundamental ecological process that defines the de-
mographics of a population. In the face of anthropogenic climate 
change, the survival of invertebrate ectothermic species, such as insects 
and acari, has been considerably impacted by long-term alteration in 
abiotic conditions. Climate change is deemed to have a greater impact 

on these invertebrate ectotherms than other stressors, such as changes in 
land use (Halsch et al., 2021). In order to survive such abiotic stress, 
species are forced to relocate to their remaining climatic niches, adapt to 
accommodate altered climates, or otherwise face extinction (Bates et al., 
2014; Berg et al., 2010; Román-Palacios and Wiens, 2020). The survival 
of ectotherms is heavily dependent on environmental conditions and 
their physiological needs, such as optimal body temperature and 
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adequate water balance (Rozen-Rechels et al., 2019). At the same time, 
rising temperatures may also help accelerate their growth and repro-
duction rates, reducing generation time and favouring evolutionary 
adaptation to the changing climate (Schmalensee et al., 2021). As a 
result, climate change may alter the distribution and community 
composition of ectothermic species globally, potentially affecting 
human well-being (Pecl et al., 2017). Climate change-induced alteration 
in the population dynamics of pollinators, such as bumblebees, and 
arthropod vectors, such as mosquitoes and ticks, may have had a 
negative impact on food security (Giannini et al., 2017) and infectious 
disease distributions (Dumic and Severnini, 2018; Lee et al., 2018), 
respectively. Understanding survival responses of invertebrate ecto-
therms to abiotic factors, particularly the interaction between 
thermo-regulation and hydro-regulation (Rozen-Rechels et al., 2019), 
could help predict climate change impacts on their population dynamics 
and human health (Nadeau et al., 2017). 

A hard tick species Ixodes ricinus (Acari: Ixodidae) plays an important 
role in transmitting Lyme borreliosis, the most prevalent vector-borne 
disease in Europe. They spend the majority of their lives off-host, 
exposing themselves to surrounding environmental conditions. Like 
other tick species and invertebrate ectotherms, temperature and relative 
humidity have been shown to affect their survival (Needham and Teel, 
1991). However, experimental studies reporting the effects of both 
temperature and relative humidity on the survival time of I. ricinus are 
currently limited (Herrmann and Gern, 2010; Lees, 1946; Milne, 1950). 
The most detailed reported dataset could be dated back to 1950, in 
which the sample size per experimental group was small (5 ticks/con-
dition) (Milne, 1950). A predictive survival model that includes both 
temperature and relative humidity is still needed to evaluate the impacts 
of climate change on the population of I. ricinus, and eventually the 
distribution of Lyme borreliosis. 

A Parametric Survival Model (PSM) is a statistical technique for 
analysing time-to-death data where the survival time is assumed to 
follow a probability distribution time, e.g., exponential, Weibull, or log- 
logistic distributions (Kleinbaum and Klein, 2012). PSM can be applied 
to explore the effects of explanatory variables on the survival and haz-
ard/mortality rate as well as biological hypotheses about mortality 
rate’s behavior (constant or time-varying). In the population ecology 
field, PSM has rarely been incorporated to estimate the impacts of 
several environmental factors on the mortality rate (Ergon et al., 2018), 
despite being a well-established statistical tool. One constraint for PSM 
application in certain ecological studies is the quality of available sur-
vival data, e.g., limited observable ranges of environmental variables, 
uncertainty on unobserved survival states, or limited sample sizes. 

When existing observed data are deficient, expert opinion has been 
recognised as an adjunct or supplementary information that could help 
develop a statistical inference in ecological studies (Krueger et al., 
2012). An expert opinion is an information given by knowledgeable 
individuals with in-depth experience in the topic of interest, often 
referred to as experts (Fazey et al., 2006). The variability of the opinions 
is typically handled by including multiple experts in the analyses, while 
the uncertainty around each expert’s opinion can be addressed as 
probabilistic statements through the expert elicitation process (Albert 
et al., 2012; Colson and Cooke, 2018). Bayesian inference is a statistical 
framework that integrates a priori knowledge/belief, called prior dis-
tributions, and observed data to estimate posterior distributions of un-
known parameters. It treats all quantities as random variables and 
handles probability as a measure of uncertainty. Therefore, the Bayesian 
framework could inherently accept elicited expert opinions as prior 
distributions for estimating unknown parameters (Kuhnert et al., 2010). 

Theoretical simulation studies suggested that incorporating infor-
mative prior distributions for Bayesian survival models could improve 
posterior distributions of unknown parameters (Omurlu et al., 2015, 
2009). Although employing expert opinions as prior distributions in 
Bayesian survival analysis is not currently widely used, it has been 
applied in various domains. For example, an expert elicitation 

framework for the scale and shape parameters of the Weibull distribu-
tion has been established and applied in the engineering domain to study 
material degradation and fatigue processes (Bousquet, 2010; Compare 
et al., 2017; Singpurwalla, 1988). In the clinical research domain, expert 
opinions on the proportion of patients who survive within a pre-
determined period have been used to assist in the prediction of survival 
functions in clinical studies, particularly on cancer patients (Cope et al., 
2019; Hiance et al., 2009). In addition, a guideline for expert elicitation 
on clinical studies, including survival analysis, has been recently pub-
lished (Bojke et al., 2019). In the ecological domain, expert opinions 
were used to estimate age-specific survival rates (Johnson et al., 2017) 
and assess the uncertainty of a judgment on the cause-of-death-specific 
mortality rate of wildlife (Walsh et al., 2018). To date, there has never 
been a report on expert opinion elicitation framework for the effects of 
multiple explanatory variables for survival analysis, particularly in 
ecological studies. 

Therefore, this study proposed a hierarchical Bayesian PSM (B-PSM) 
framework that incorporates expert opinion as supplementary infor-
mation for estimating the effects of continuous explanatory variables on 
the mortality rate when the existing survival dataset is limited. We 
explored a historical survival dataset of I. ricinus ticks exposed to various 
combinations of controlled temperature and relative humidity with a 
limitation of small sample size. We conducted online interview sessions 
with multiple experts, eliciting the opinions of the experts, then com-
bined them (by either pooling or averaging the opinions) as prior dis-
tributions of the environmental effects on survival time in the B-PSM. As 
a result, we established expert opinion-guided predictive models for 
survival probability and mortality rate of female I. ricinus based on the 
temperature and relative humidity. 

2. Material and methods 

2.1. Tick survival data 

The published survival dataset of I. ricinus ticks reported by Milne 
(1950) was used. Briefly, survival time T (in days) of female adult 
I. ricinus ticks was observed under a variety of laboratory conditions, 
controlling for temperature Q (5, 11, 19, and 25 ◦C) and relative hu-
midity U (0, 50, 70, 85, and 95%). The age of adult ticks averaged 12 
weeks post-moulting, at the beginning of the experiment. Five ticks were 
assigned to each exposure condition, pairing the temperature and rela-
tive humidity (Q, U). In total, the survival time of 100 ticks was observed 
in 20 different controlled conditions (Table S1). Considering the ex-
pected difficulties in achieving and maintaining a perfect dehydrated 
condition (U = 0%) in the laboratory by the time of the study (~1950), 
we substituted the condition U = 0% with U = 10% in further analysis. 

2.2. Weibull survival model 

We first assessed the most suitable distribution for the tick survival 
data from the exponential, Weibull, log-logistic, log-normal, logistic, 
and normal distributions, using the Frequentist Parametric Survival 
Model (F-PSM) in the survival package (Therneau, 2020; Therneau and 
Grambsch, 2000). Here, temperature Q and relative humidity U were 
treated as categorical explanatory variables. The F-PSM models were 
compared using the Akaike information criterion (AIC). As a preliminary 
result, the Weibull distribution yielded the smallest AIC, suggesting that 
it is the most suitable distribution of the survival data. We subsequently 
validated the suitability of the Weibull distribution by exploring the 
Weibull property of linearity of the natural log of time ln(t) (Kleinbaum 
and Klein, 2012) where the relationship between ln(t) and the log 
negative log of the Kaplan-Meier survival estimates ln(− lnŜ(t)) should 
be linear. 

The Weibull distribution is a generalized form of the exponential 
distribution with two parameters: the scale parameter λ and the shape 
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parameter p, denoted as T ∼ W (λ, p). The probability density function 
of the survival time f(t) can be written as f(t) = S(t)⋅h(t), where the 
survival S(t), and hazard h(t) functions are defined as S(t) = exp( − λtp), 
and h(t) = λptp− 1, respectively (Kleinbaum and Klein, 2012). The scale 
parameter λ reflects the baseline hazard rate at t = 1; a higher λ value 
indicates a higher mortality risk. While the shape parameter p de-
termines whether the hazard rate is constant (p = 1), increasing (p > 1) 
or decreasing (p < 1) over time. In other words, the shape parameter p 
reflects the effects of age on the hazard rate. In our context, the survival 
time T represents time-to-death; therefore, the hazard function h(t) is 
equivalent to the mortality rate μ(t). Here, we described the tick survival 
time T exposed to different conditions as: 

Ti,j ∼ W
(
λj, p

)
(1) 

Ti,j is the survival time of tick i ∈ {1, …, 5}, in an experimental 
condition j ∈ {1, …, 20}, corresponding to an abiotic variable pair (Qj, 
Uj). We assumed that temperature and relative humidity influenced the 
baseline hazard rate while not affecting the aging effects. Therefore, we 
assumed that Qj and Uj have an effect on the scale parameter λ, denoted 
as λj, while p remains constant across all experimental conditions. 

2.3. Relationship between abiotic variables and survival time 

To establish the form of a predictive model, the relationship between 
the tick survival time T and abiotic variables (Q, U) were explored using 
the F-PSM approach. Here, the abiotic variables (Q, U) were treated as 
continuous explanatory variables. According to the preliminary results 
from Section 2.2, the survival time T was assumed to follow a Weibull 
distribution. The AIC value was used to compare the goodness-of-fit of 
different tested F-PSM models. 

According to the characteristics of the Weibull distribution, the 
survival regression model can be formulated in two ways: the propor-
tional hazards and the acceleration failure time approaches (Kleinbaum 
and Klein, 2012). Here, we constructed the model as a proportional 
hazards regression model that estimates temperature and relative hu-
midity effects through a log link function for the subsequent hierarchical 
B-PSM analysis. The proportional hazards approach was chosen for its 
simplicity of interpretation. A value of the survival regression co-
efficients greater than 0 in indicates a higher risk, while a value less than 
0 indicates a protective effect. The model formulation was modified 
from the F-PSM model with the lowest AIC value as: 

lnλj = β0 + β1Uj
k + β2Qj + β3Uj

kQj (2) 

Given a condition j, the log-transformed of the scale parameter lnλj is 
described by a combination of non-linear effects of relative humidity Uj, 
and linear effects of temperature Qj. Let B = [β0, β1, β2, β3] be a vector of 
the survival regression coefficients: β0 indicates the value of lnλj at a 
reference condition (Qj = 0 ◦C, Uj = 0%); β1, β2, and β3 indicate the 
effects of Uj, Qj, and the interactions between Uj and Qj on lnλj, 
respectively. Also, k is a parameter describing the degree of non-linear 
effects of Uj as a continuous variable. Accordingly, we could describe 
the survival time Tij of tick i exposed to the constant temperature Qj and 
relative humidity Uj as: 

Ti,j
⃒
⃒Qj, Uj ∼ W

(
exp

(
β0 + β1Uj

k + β2Qj + β3Uj
kQj

)
, p

)
(3)  

2.4. Expert opinion 

A total of 6 acarologists (N) experienced in handling/breeding 
I. ricinus ticks under laboratory conditions were recruited. The objective 
was to gain a priori expert knowledge on the effects of abiotic variables 
(Q, U) on tick survival time, specifically on the parameter B (β0, β1, β2, 
β3). The experts were requested for their opinions on the average sur-
vival time T of ticks in four different conditions, and they were subse-
quently transformed into B through the elicitation process. Each expert 

was interviewed separately in a 1-hour online session with a Shiny- 
based interactive Web application, developed using the shiny package 
(Chang et al., 2020). 

2.4.1. Expert opinions on the average survival time 
Upon starting the interview session, the interviewers delivered the 

background and objectives of this study. Subsequently, each expert e ∈

{1, …, N} was requested to provide their opinions on the average 
survival time Te,c of 12-week-old unfed female adult I. ricinus ticks 
exposed to 4 controlled constant conditions c ∈ {1, …, 4}, described by 
a couple “temperature Qe,c; relative humidity Ue,c”. As an example, we 
initially proposed default values for “Qe,c; Ue,c” corresponding to each 
condition c and their brief descriptions as: 1) “Qe,1; Ue,1” = “5 ◦C; 10%” 
(cold; dry); 2) “Qe,2; Ue,2” = “25 ◦C; 10%” (warm; dry); 3) “Qe,3; Ue,3” =
“5 ◦C; 95%” (cold; humid); 4) “Qe,4; Ue,4” = “25 ◦C; 95%” (warm; 
humid). We allowed the experts to adjust the default values and give 
their opinions on conditions most compatible with their prior experi-
ence, within the range of observed temperature (5 – 25 ◦C) and relative 
humidity (10 – 95%). 

In each condition c, the experts were asked for the following pa-
rameters: 1) The mean of Te,c, denoted as Tm

e,c; 2) The high, and 3) The 

low values of Te,c, denoted as Th
e,c and Tl

e,c, respectively; 4) A confidence 
level Ce,c, ranging from 0 to 1, corresponding to the degree of confidence 
on their opinions. 

2.4.2. Optimization of the expert opinions into distribution 

During the interview session, the parameters Tm
e,c, T

h
e,c, T

l
e,c, and Ce,c 

given by the experts were simultaneously optimized to find a corre-
sponding log-normal distribution describing the uncertainty of the 
average survival time; Te,c ∼ L N (μe,c, σe,c). The distributions were 
optimized with the following properties: 1) An average of the log-normal 

distribution equals Tm
e,c; 2) The probability of having Te,c between Tl

e,c 

and Th
e,c equals Ce,c. Then, the Shiny-based Web application instanta-

neously visualized the probability density curves of Te,c corresponding to 
expert’s answers (Fig. 1). The experts could adjust the answers until the 
density curves agree with their opinions. 

Upon finishing the interview, the Web application displayed the 
density curves of all four conditions side-by-side. The interviewers asked 
the experts to revise their answers (if necessary) before final submission. 

Then, the expert data Qe,c, Ue,c, T
m
e,c, T

h
e,c, T

l
e,c and Ce,c, and their optimized 

parameters μe,c, and σe,c were recorded. 

2.5. Hierarchical Bayesian model without expert opinions 

Initially, a hierarchical B-PSM was employed to estimate the pa-
rameters B, p, and k, shown in (1) – (3), explicitly from the observed data 
without the information from the experts, referred as Model 1. All the 
parameters were provided with uniform prior distributions (Fig. 2A): 
each element of B ∼ U [ − 50, 50]; p ∼ U [0, 5]; k ∼ U [1, 6]. 
Without expert opinions, all values within the given ranges were 
assigned an equal probability to be included in the model. Ranges of 
uniform distributions were guided by the preliminary estimates of the F- 
PSM. The value of k should lie between 3 and 4, therefore the lower and 
upper bounds of the uniform distribution were extended to 1 and 6, 
respectively. Besides, the intrinsic characteristic of the shape parameter 
p defined the lower boundaries of the prior as it cannot be a negative 
value. Furthermore, statistical hypotheses can be evaluated by including 
critical values into the prior distributions: 1) A value of B = 0 indicates 
that the corresponding covariate does not affect the survival; 2) a value 
of p = 1 implies that the mortality rate is constant, whereas values of p 
greater and less than 1 indicate that the mortality rate is increasing and 
decreasing over time, respectively. 

P. Wongnak et al.                                                                                                                                                                                                                               



Ecological Modelling 464 (2022) 109821

4

Fig. 1. An interface of Shiny-based Web application used for the expert opinion interview. The experts were asked to provide their opinion on the average 
survival time of female I. ricinus ticks exposed to 4 constant laboratory conditions. The user-input panel (left) allows the experts to give the average survival time 
corresponding to conditions (predetermined or user-adjusted). Expert’s inputs were simultaneously optimized for a log-normal distribution, with a density curve 
(upper right) and its parameters (lower right) displayed. The shaded area represents the probability under the curve between the lower and the higher value of , 
which is equal to the confidence level . The red vertical dashed line indicates the expected value of the optimized probability distribution, which is equal to the 
expert’s average survival time. 

Fig. 2. Directed acyclic graphs (DAGs) of the hierarchical Bayesian models. The Bayesian models estimate the parameters B (β0, β1, β2, and β3), p, and k; (A) 
Model 1: without expert opinions; (B) Model 2: pooling expert opinions; (C) Model 3: averaging expert opinions. Arrows indicate the relationship between parameters 
(eclipse), observed data (double-bordered eclipse), covariates (small rectangle), and prior distributions (rounded rectangle): stochastic relationship (solid arrow); 
deterministic relationship (dashed arrow). Ti,j denoted the survival time of tick i exposed to experimental condition j (Qj, Uj); λj and p denoted the Weibull distri-
bution’s scale and shape parameters, respectively; k denoted a parameter describing the degree of non-linear effects of Uj. Expert opinion e on condition c was 
optimized for hyperparameters μl

e,c and σl
e,c, describing the average survival time Te,c at temperature Qe,c and relative humidity Ue,c. The relationship between the 

elicited expert data Be and B could be expressed as: 1) B = Be=ε, where ε represents an expert, whose opinions were accounted in the model (Model 2); 2) B =
1
N
∑N

e=1Be, where N is the number of experts (Model 3). 
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2.6. Hierarchical Bayesian model including expert opinions 

In this section, the parameters B, p, and k, shown in (1) – (3) were 
estimated using expert opinions incorporated in the hierarchical B-PSM 
framework. 

2.6.1. Expert opinion elicitation 
The expert opinion elicitation process transformed concrete biolog-

ical quantities provided by experts, such as the average tick survival 
time Te,c, into theoretical quantities, such as the model parameters B. 
Here, the average tick survival time Te,c provided by the experts were 
linked to the parameters of a Weibull distribution describing the tick 
survival time Te,c ∼ W (λe,c, p) through the following relationship: 

E
[
Te,c

]
= Te,c = λ− 1/p

e,c ⋅Γ(1+ 1 / p) (4) 

Which is equivalent to: 

lnλe,c = − p⋅ln
Te,c

Γ(1 + 1/p)
(5) 

Also, lnλe,c is linked to the regression parameters through Eq. (2) as 
follows: 

lnλe,c = β0,e + β1,eUk
e,c + β2,eQe,c + β3,eUk

e,cQe,c (6) 

The relationship in Eq. (6) across all conditions c ∈ {1, …, 4} given 
by expert e can be expressed in a form of matrix multiplication as: 

⎡

⎢
⎢
⎣

lnλe,1
lnλe,2
lnλe,3
lnλe,4

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 Uk
e,1 Qe,1 Uk

e,1Qe,1

1 Uk
e,2 Qe,2 Uk

e,2Qe,2

1 Uk
e,3 Qe,3 Uk

e,3Qe,3

1 Uk
e,4 Qe,4 Uk

e,4Qe,4

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

×

⎡

⎢
⎢
⎣

β0,e
β1,e
β2,e
β3,e

⎤

⎥
⎥
⎦ (7) 

Therefore, we can express β0,e, β1,e, β2,e, and β3,e by as a function of 
lnλe,c through Eq. (8). 

⎡

⎢
⎢
⎣

β0,e
β1,e
β2,e
β3,e

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 Uk
e,1 Qe,1 Uk

e,1Qe,1

1 Uk
e,2 Qe,2 Uk

e,2Qe,2

1 Uk
e,3 Qe,3 Uk

e,3Qe,3

1 Uk
e,4 Qe,4 Uk

e,4Qe,4

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

− 1

×

⎡

⎢
⎢
⎣

lnλe,1
lnλe,2
lnλe,3
lnλe,4

⎤

⎥
⎥
⎦ (8) 

Finally, let Be =

⎡

⎢
⎢
⎣

β0,e
β1,e
β2,e
β3,e

⎤

⎥
⎥
⎦, Xe =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 Uk
e,1 Qe,1 Uk

e,1Qe,1

1 Uk
e,2 Qe,2 Uk

e,2Qe,2

1 Uk
e,3 Qe,3 Uk

e,3Qe,3

1 Uk
e,4 Qe,4 Uk

e,4Qe,4

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

and Λe =

⎡

⎢
⎢
⎣

lnλe,1
lnλe,2
lnλe,3
lnλe,4

⎤

⎥
⎥
⎦, Eqs. (5) and (9) provided a simplified expression of Eq. (8) 

with uncertain components (Te,c, p, and k) indicated as: 

Be = [Xe|k]− 1
×

[

Λe

⃒
⃒
⃒
⃒Te,c, p

]

(9) 

Consequentially, the elicited expert opinion Be provides the a priori 
information for the model parameter B, where Te,c ∼ L N (μe,c, σe,c); 
p ∼ U [0, 5]; k ∼ U [1, 6] (Figs. 2B and 2C). 

2.6.2. Pooling expert opinion 
The Bayesian Model 2 accepted the variation of expert opinions by 

pooling different experts as prior distributions. Elicited opinions Be from 
expert ε ∈ {1, ⋯, N} were chosen as prior distribution with equal 

initial probability π = {π1, …, πN} =

{
1
N, …, 1

N

}

, where N is the total 

number of experts and experts were chosen using a categorical distri-
bution as ε ∼ Cat(π). Therefore, the relationship between the unknown 
parameter B and Be could be expressed as B = Be=ε (Fig. 2B). The final 
results of this model may take more into account the elicited opinions of 
some experts, while others may be disregarded. 

2.6.3. Averaging expert opinion 
The Bayesian Model 3 consolidated expert opinions by averaging the 

elicited expert data Be across all N experts. The relationship between the 
unknown parameter B and Be could be expressed as: B = 1

N
∑N

e=1Be 

(Fig. 2C). 

2.7. Implementation of Markov chain Monte Carlo algorithm 

All the analyses in our study were performed using R programming 
language version 3.6.0 (R Core Team, 2019). The hierarchical Bayesian 
models were run by the Markov chain Monte Carlo (MCMC) algorithms 
in JAGS (Plummer, 2003) using rjags package (Plummer, 2019). For 
each Bayesian model, we run three independent MCMC chains consist-
ing of 10,500,000 iterations in total, with a burn-in period of 50,000. 
The autocorrelation was controlled by thinning out the MCMC samples, 
keeping every 700 values. The convergence of MCMC chains was 
inspected by trace plots and the Gelman-Rubin convergence test. Prob-
ability of direction (p-direction) was used as an index of effect existence 
for each parameter using bayestestR package (Makowski et al., 2019). 

2.8. Model evaluation and validation 

The posterior distributions were evaluated by simulating survival 
time of 100 ticks in 20 conditions, then compared with the observed 
data. Subsequently, the validity of the Bayesian estimations was evalu-
ated using posterior predictions. For each Bayesian model, a total of 
15,000 values of each posterior estimates (B, p, and k) were used to 
simulate the replication of other previously published data: 1) Survival 
time of 30 female I. ricinus ticks in 6 conditions (5 ticks/condition), 
compared to survival time ranges by Lees (1946); 2) Survival pro-
portions of female I. ricinus ticks after 2- and 3-days post-exposure to 5 
conditions (100 ticks/condition), compared against the survival pro-
portion after 2 days reported by Herrmann and Gern (2010). The 95% 
confidence intervals for the Herrmann and Gern data were calculated by 
assuming a binomial distribution. 

2.9. Posterior predictions 

Median survival time and the log of scale parameter lnλ were pre-
dicted across the observed range of temperature (5 to 25 ◦C) and relative 
humidity (10% – 95%), using the median of posterior distributions from 
all 3 models. Additionally, behaviours of the survival probability S(t)
and the mortality rate μ(t) of female I. ricinus ticks exposed to unob-
served conditions (relative humidity of 55%, 65%, 75%, 85% and 95% 
at temperature of 5, 15 and 25 ◦C) were predicted following Eqs. (10) 
and (11), respectively. 

S(t|Q, U) = exp
(
− exp

(
β0 + β1Uk + β2Q + β3UkQ

)
⋅tp) (10)  

μ(t|Q, U) = exp
(
β0 + β1Uk + β2Q + β3UkQ

)
⋅ptp− 1 (11)  

3. Results 

3.1. Descriptive analysis 

The survival data of female I. ricinus ticks reported by Milne (1950) 
revealed a clear positive relationship between relative humidity and 
survival time (Fig. 3), while the negative effect of temperature on the 
survival time was less pronounced (Figure S1). The Kaplan-Meier anal-
ysis (Figure S2) showed that the tick survival time was significantly 
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longer in the conditions with higher relative humidity (log-rank test: 
p-value < 0.001, degree of freedom (df) = 4), while the effects of tem-
perature were not statistically significant (log-rank test: p-value = 0.6, 
df = 3). 

3.2. Exploring the distributions for survival time 

The AIC values of survival regression models with categorical abiotic 
variables showed that the survival time T was best described by the 
Weibull distribution (Model A2; AIC = 822.91), followed by the log- 
logistic (Model A3; AIC = 843.30), and the log-normal (Model A4; 
AIC = 852.24) distributions (Table S2). The suitability for assuming the 
Weibull distribution to describe the survival time was supported by the 
property of linearity of ln(t). The relationship between ln(t) and ln( −

lnŜ(t)), treating relative humidity as categorical variables, was 
approximately linear (Figure S3). 

3.3. Exploring the effects of abiotic variables 

The AIC values of survival regression models assuming a Weibull 
distribution suggested that the survival time T could be explained by a 
combination of non-linear effect of relative humidity (raised to the 
power of 4), liner effect of temperature, and their interaction (Model 
B11; AIC 815.54; Table S3). 

3.4. Expert opinions 

The expert opinions on the average survival time Te,c of female 
I. ricinus ticks exposed various experimental conditions (Table 1) were 
elicited for the distributions of B (β0, β1, β2, and β3) as shown in Fig. 4. 
Most experts shared similar opinions on the abiotic effects on tick sur-
vival. Experts 1, 2, 4, and 5 suggested a protective effect of relative 
humidity with β1 significantly less than 0 (p < 0.05). While none of the 
experts was confident in the effect of temperature and the interactions 
with 0 included in 95% confidence intervals. In contrast, the average 
opinion across all 6 experts suggested a significant protective effect of 
relative humidity and a significant negative effect of temperature on tick 
survival (Table S4). 

3.5. Hierarchical Bayesian parametric survival models 

Fig. 5 shows the posterior distributions of B, k, and p and their 
summary statistics estimated from the Bayesian models. All the pa-
rameters from all 3 models converged to similar values. Providing Model 
2 with mixed experts opinion as prior distributions reduced the size of 
95% credible intervals for β0 and β1, while Model 3 reduced the size of 
95% credible intervals for β0, β1, and β3. The credible intervals of pa-
rameters p and k of Models 2 and 3 were slightly bigger than Model 1. All 
models estimated the negative value of β1 (p-direction = 1.00), positive 
value of β2 (p-direction = 1.00), and the shape parameter of the Weibull 
distribution p greater than 1 (p-direction = 1.00). The interaction effect 

Fig. 3. Relationship between relative humidity and survival time of fe-
male adult I. ricinus ticks exposed 4 temperature conditions (Q = 5 ◦C, 
11 ◦C, 19 ◦C, and 25 ◦C). The vertical axes displayed the survival time T on a 
logarithmic scale. The data were originally reported by Milne (1950). 

Table 1 
The opinions of experts e on the average survival time Te,c of female I. ricinus ticks exposed to experimental conditions c of temperature Qe,c and relative humidity Ue,c. 

Tm
e,c denoted the mean of average survival time; Th

e,c, and Tl
e,c denoted the high and low range of Te,c; Ce,c denoted the confidence level of the experts on their opinions. 

The expert data were optimized to log-normal distribution describing the uncertainty of Te,c ∼ LN (μe,c, σe,c).  

Expert Condition Temperature ( ◦C) Relative humidity Average survival time (days) Confidence level Optimized parameter 
e  c  Qe,c  Ue,c  Tm

e,c  Th
e,c  Tl

e,c  
Ce,c  μe,c  σe,c  

1 1 5 0.30 42 14 50 0.60 3.73 0.73 
2 25 0.30 10 5 20 0.80 2.29 0.52 
3 5 0.95 90 60 120 0.90 4.50 0.21 
4 25 0.95 150 120 180 0.95 5.01 0.10 

2 1 5 0.10 10 5 15 0.90 2.30 0.32 
2 25 0.10 5 3 8 0.90 1.60 0.30 
3 7 0.90 250 120 360 0.90 5.52 0.30 
4 20 0.90 60 30 120 0.80 4.09 0.52 

3 1 5 0.10 15 7 30 0.60 2.69 0.81 
2 25 0.10 7 4 15 0.90 1.94 0.37 
3 5 0.95 305 244 365 0.80 5.72 0.16 
4 20 0.95 365 275 397 0.95 5.90 0.05 

4 1 5 0.30 180 30 365 0.50 5.19 1.00 
2 20 0.30 30 7 60 0.70 3.38 1.00 
3 5 0.95 1277.5 700 2190 0.95 7.15 0.29 
4 20 0.80 547.5 270 912.5 0.80 6.31 0.47 

5 1 5 0.10 2 1 3 0.95 0.68 0.26 
2 25 0.10 2 1 3 0.95 0.68 0.26 
3 5 0.95 365 270 545 0.95 5.90 0.17 
4 25 0.95 270 180 365 0.95 5.60 0.18 

6 1 5 0.10 8 5 15 0.50 2.05 0.73 
2 25 0.10 2 1 5 0.70 0.57 0.69 
3 8 0.95 120 90 180 0.80 4.79 0.25 
4 25 0.95 18 15 30 0.50 2.89 0.43  
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between relative humidity and temperature (β3) was estimated to be 
significant by Model 1 (p-direction = 0.986), Model 2 (p-direction =
0.973), and Model 3 (p-direction = 0.998). Additionally, most of the 
posterior estimates from Model 2 were taken from the prior distributions 
of Expert 5 (51.86%), followed by Expert 4 (48.11%), and Expert 2 
(0.03%), respectively. 

3.6. Model evaluation and validation 

The 95% credible interval of posterior predictions by all 3 models 
captured the observed survival time of female I. ricinus ticks in all 20 
conditions (Figure S4). The posterior predictions were similar across all 
the Bayesian models with some remarkable exceptions: the predicted 
survival times from Models 2 and 3 were slightly longer at high humidity 
and high temperature than those of Models 1. Besides, the posterior 
estimates were validated against the survival time ranges in all 6 con-
ditions reported by Lees (1946) (Figure S5), and they adeptly repro-
duced the proportion of tick survival after 2-days exposure to 4 of 5 
conditions reported by Herrmann and Gern (2010), except for one 
condition at Q = 25 ◦C and U = 89% (Figure S6). 

3.7. Predicted survival probability and mortality rate 

Predicted median survival time and log scale parameter of the Wei-
bull distribution lnλ from all 3 Bayesian models were similar, except for 
conditions with the relative humidity close to 95% (Fig. 6). At high 
humidity, the predictions from Models 2 and 3 were less sensitive to the 
negative effects of high temperature. In general, the predicted lnλ and 
μ(t) were considerably sensitive to the temperature in dry conditions 
(Fig. 6 and S7). However, while the excessively high μ(t) induces rapid 
death, it does not contribute to notable differences in predicted S(t) at 
low humidity (Figure S7). In contrast, S(t) is susceptible to minor 
changes in μ(t) at high humidity. Additionally, the predicted tick sur-
vivals at a relative humidity of 95% were noticeably longer than at 85%. 

4. Discussion 

Disentangling the impacts of temperature and water regulations on 
the physiological performance and survival of ectotherms, both in the 
laboratory and in the field, is an important first step toward predicting 
the effects of climate change on their populations (Rozen-Rechels et al., 

2019). However, formulating a predictive model for the survival rate 
involving several external factors can be challenging when the observed 
data is limited. The present study proposed a hierarchical Bayesian 
parametric survival modeling (B-PSM) framework that incorporates 
expert opinions as supplementary information on temperature and 
relative humidity effects on the survival time of female I. ricinus ticks. In 
previous expert elicitation studies across various domains, the quantities 
to elicit were primarily the parameters describing the probability dis-
tribution of the survival time, specifically the shape and scale parame-
ters for the Weibull distribution, without considering the effects of 
covariates (Bousquet, 2010; Compare et al., 2017; Cope et al., 2019; 
Singpurwalla, 1988). To our knowledge, this study was the first to 
demonstrate an expert opinion elicitation framework on the survival 
regression coefficients for the effects of multiple continuous covariates 
and their interaction, explicitly in the ecological domain. 

Despite having a small sample size, tick survival data were initially 
assessed with frequentist parametric survival models (F-PSMs) to un-
cover the most suitable probability distribution and model formulation. 
This preliminary step was important for guiding the formulation of 
biological hypothesis, questions for expert opinion interviews, expert 
opinion elicitation, and hierarchical Bayesian framework. As suggested 
by the best-fitted F-PSM model, we designed the interview questions and 
elicitation scheme to capture the expert opinions on the effects of rela-
tive humidity, temperature, and their ambiguous interaction. Therefore, 
experts were asked to provide their opinions on 4 different conditions, 
corresponding to the number of equations needed to solve a linear 
algebraic system with 4 variables (β0, β1, β2 and β3) as in Eq. (8). 

Experts are often defined as individuals with the relevance and 
extent of their experience in a topic of interest (Fazey et al., 2006). This 
definition can be rather subjective. In some domains, expert status can 
also be officially certified through a specified training program. In our 
context, however, a certified expert in the biology of I. ricinus ticks 
exposed to different environmental conditions does not exist. Therefore, 
we invited acarologists who have been handling I. ricinus colonies for 
years to provide their opinions principally based on their experience 
together with existing publications. 

During the interview, the uncertainty that might arise was managed 
by 1) Conducting the expert interview as an interactive online session. 
The interactive conversation between experts and the interviewers was 
made to reduce any linguistic uncertainty that would result in misun-
derstanding the questions; 2) Requesting the opinions on parameters 

Fig. 4. Probability distributions of 
elicited expert opinions on each 
element of B.The distributions from 
Experts 1 to 6 were used as prior dis-
tributions for Bayesian Model 2, while 
the averaged distributions were used for 
Bayesian Model 3. Given a condition j 
with temperature Qj and relative hu-
midity Uj, the logarithm of scale 
parameter of the Weibull distribution 
lnλj is expressed as: lnλj = β0 + β1Uj

k +

β2Qj + β3Uj
kQj; A) β0 indicates the 

value of log scale parameter lnλj at a 
reference condition; B) β1, C) β2, and D) 
β3 indicate the effects of Uj, Qj, and the 
interactions between Uj and Qj on lnλj, 
respectively. Red vertical dashed lines 
mark the value of 0.   
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Fig. 5. Posterior distributions of the parameters B (β0, β1, β2, and β3), k, and p: Model 1, without expert opinions (A to F); Model 2, pooling expert opinions (G to L); Model 3, averaging expert opinions (M to R). 
Histograms represent posterior distributions. Solid lines indicate prior distributions. Vertical solid and dashed lines show median and the 95% credible interval, respectively. 
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Fig. 6. Predictions for effects of relative humidity and temperature from 3 Bayesian models: A) Median survival time (days); B) Log of scale parameter of the 
Weibull distribution, lnλ. The predictions were calculated using the median values from posterior distributions. Values of relative humidity were truncated between 
50% and 95%. 
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that are easily understandable and do not require an advance statistical 
background. This practice has been addressed in most elicitation 
frameworks for survival modeling, as model parameters do not always 
have straightforward physical or biological interpretations (Bousquet, 
2010; Compare et al., 2017; Cope et al., 2019; Singpurwalla, 1988). For 
example, we asked for the average survival time Te,c instead of the 
parameter reflecting the effects of relative humidity on the survival time 
β1. The expert opinions were later transformed to the desired unknown 
parameters during the elicitation process; 3) Allowing the experts to give 
their opinions on the conditions (Qe,c; Ue,c) that are compatible with 
their experience. Forcing the experts to opine on unfamiliar pre-defined 
conditions would have created uncertainty and reduced the validity of 
their opinions; 4) Providing graphical representations of their answers, 
in real-time. Here, we displayed the probability density curves for the 
average survival time Te,c and allowed the experts to adjust their an-
swers until the final curves agreed with their opinions. This allows the 
experts to validate and avoid over/underestimating their opinions. An 
interactive web-based application displaying the Kaplan-Meier curve 
was also demonstrated to help with the expert opinion interview on the 
expected survival time of leukaemia patients (Cope et al., 2019); 5) 
Allowing the experts to recheck their opinions before submitting the 
final answers. 

Several experts were recruited to avoid uncertainty and ultimately 
minimize the variability and identify potential outliers. We did not strive 
to form a consensus among the experts as reviewed by Kuhnert et al. 
(2010), neither through a consensus meeting (Cope et al., 2019) nor the 
Delphi process (MacMillan and Marshall, 2006) for the following rea-
sons: 1) Each expert delivered their opinions based on different condi-
tions and backgrounds 2) We avoided influencing the opinions across all 
experts. As a result, the variability among experts was addressed by 
pooling their opinions (Model 2) or forming a numerical consensus by 
averaging across all experts (Model 3). Medians of posterior distribu-
tions of each parameter were similar across all 3 Bayesian models. The 
pooling approach (Model 2) retains the diversity among the experts and 
allows them to be incorporated in the model with different weights. This 
approach could disregard the opinions of some experts that are irrele-
vant to the observed data (Experts 1, 3, 6). Nonetheless, the expert 
opinions chosen by the model (Experts 2, 4, and 5) did not agree 
entirely, particularly on the interaction between relative humidity and 
temperature β3. The posterior distributions of Model 2 converged by 
compromising the different opinions on the parameters, resulting in the 
larger posterior distribution of β3 than Models 1 and 3. While the 
averaging approach (Model 3) ignores the variability and the uncer-
tainty that may arise from different experts (Albert et al., 2012). Among 
the 3 models, Model 3 generated the smallest posterior distributions of 
the parameter set indicating the effects of abiotic factors on tick survival 
B (β0, β1, β2, and β3). However, the averaging approach may not be 
appropriate when the elicited opinions distinctly diverge across all the 
experts. Averaging multiple distributions with wide variations in modes 
could result in a consensus distribution with a large variance and a 
non-representative expected value. 

The posterior distribution of the shape parameter p converged to 
values greater than 1, indicating the mortality rate μ(t) increases over 
time (aging effects). As ixodid ticks only feed once per life stage, the 
energy stored in their bodies as lipid contents is limited during the off- 
host period and diminishes over time (Herrmann et al., 2013; Pool 
et al., 2017). The depletion of lipid resources is a critical limiting factor 
in their survival (Alasmari and Wall, 2021). As a result, aging ticks with 
lower energy reserves are more susceptible to death. 

Posterior distributions of parameters B reflect how abiotic factors 
(relative humidity, temperature) and their interaction affect the scale 
parameter λ and the mortality rate μ(t). The parameter β1 less than 
0 indicated a protective effect of relative humidity on tick survival, 
while the parameter β2 greater than 0 showed that temperature confers 
an increased risk of mortality. Interestingly, the parameter β3 (interac-

tion effect) converged to − β2, suggesting that higher temperature 
contributes higher scale parameter λ and mortality rate μ(t) only when 
the relative humidity is low (Fig. 6B and Figure S7D to F). The predicted 
survival time, however, is predominately influenced by the relative 
humidity (Fig. 6A and Figure S7A to C). For example, despite the mor-
tality rate being markedly different in dry conditions across temperature 
ranges, ticks are predicted to rapidly die out within a few days in all 
temperature conditions. In addition, the predicted tick survival at high 
humidity was greatly sensitive to a small change in the mortality 
rate μ(t) (Figure S7). 

The models predicted that survival time would become notably 
shorter when the relative humidity dropped from 95% to 85% (Fig. 6A 
and Figure S7). This reflects the critical equilibrium humidity for adults 
I. ricinus of 86% – 96% (Lees, 1946), at which the relative humidity 
drops below ticks’ ability to adsorb water vapor from unsaturated air 
(Needham and Teel, 1991). Posterior predictions of all 3 models 
reproduced well the survival data of female adult I. ricinus in most 
conditions of previous studies (Herrmann and Gern, 2010; Lees, 1946). 
Disagreement on the predictions was found in one condition reported 
briefly by Herrmann and Gern (2010), where our model overestimated 
the tick survival at Q = 25 ◦C and U = 89%. In general, the relationship 
between temperature and performance of an organism, such as survival 
or locomotor, should exhibit an optimal condition (Rozen-Rechels et al., 
2019). However, the historical data used in this study did not capture 
the optimal and lethal temperatures for I. ricinus. Therefore, the survival 
at high-temperature conditions could be overestimated by our model. In 
addition, the model prediction concisely captures the high sensitivity to 
the desiccation trait of I. ricinus. In comparison to other ixodid tick 
species, I. ricinus has a higher water loss rate. Based on the classification 
system of Hadley (1994), I. ricinus, along with Ixodes reticulatus and 
Ixodes uriae are classified as “mesic” species having a moderate water 
loss rate (0.8 – 2.0%/h). While Amblyomma cajennense, Amblyomma 
maculatum, Amblyomma americanum, Hyalomma dromedarii, Dermacentor 
andersoni, Dermacentor variabilis, Dermacentor albipictus, and Rhipice-
phalus sanguineus are “xeric” species with a low water loss rate 
(<0.8%/h) (Benoit and Denlinger, 2010). Besides, the significant 
interaction effects in our model suggested that the thermo-regulatory 
and hydro-regulatory systems of I. ricinus are not independent. The hy-
dration status of ectotherms could modify the thermal sensitivity of cell 
and tissue metabolism, protect against thermal stress (Rozen-Rechels 
et al., 2019). Therefore, future studies on the impacts of abiotic factors 
and climate change on the survival and population dynamics of I. ricinus 
should consider the non-additive effects of temperature and relative 
humidity. 

Finally, before applying our predictive model for a population dy-
namics study of I. ricinus, one should consider the following limitations: 
1) The model is valid within the observed range of abiotic conditions (Q 
between 5 ◦C and 25 ◦C, U between 10% and 95%). Freezing or high 
temperatures could induce instant mortality (MacLeod, 1935); 2) The 
model parameters were based on limited historical data. The available 
methodology for observation in 1950 may have affected the data ac-
curacy. Ticks in the present day could have adapted to survive in the 
current environment, which may be different from ticks in 1950. 
Moreover, ticks from different locations could also respond differently to 
the environment; 3) The mortality rates predicted from our model were 
based on ticks that were constantly exposed to the controlled environ-
ment. In the natural setting, however, they could change their behavior 
and avoid unfavorable conditions to improve their survival, e.g., moving 
toward humid air. 

5. Conclusion 

We demonstrated an expert opinion elicitation framework that in-
tegrates expert opinions as prior distributions for the effects of contin-
uous explanatory variables on the survival process of I. ricinus ticks. 
Here, we summarized the key processes and considerations for applying 
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our framework to other contexts:  

1) Defining the most suitable probability distribution for the survival 
data, such as the exponential, Weibull, or log-logistic distribution, is 
an important initial step. It not only defines the subsequent mathe-
matical framework in the elicitation process, but also allows us to 
formulate biological hypotheses on the nature of mortality/hazard 
rate. 

2) Subsequently, the mathematical relationship between the parame-
ters to elicit (survival regression coefficients of the covariates) and 
the quantity to interview the experts should be well defined. To help 
the expert accurately provide their opinions, the quantity to inter-
view should have a straightforward biological meaning that does not 
require high statistical background knowledge to understand. Also, 
the number of the parameters to elicit determines the number of 
questions required to ask the experts.  

3) A flexible elicitation framework could assist the expert in providing 
their opinions on the survival time that corresponds to their expe-
rience while avoiding their opinions on unfamiliar conditions.  

4) Using an interactive web-based application during the interview 
could visually assist the experts and allow them to revise their 
opinions.  

5) With multiple experts, we demonstrated two approaches to 
combining opinions: pooling (Model 2) and averaging (Model 3). The 
pooling approach considers the variations in expert opinions, but it 
may also disregard some opinions that are irrelevant to the observed 
data. The averaging approach, on the other hand, simplifies the 
calculation by achieving a numerical consensus of the opinions, but 
it may be less informative when the opinions distinctly diverge. 

Our model predictions also highlighted the importance of the com-
bined effects of relative humidity and temperature on the survival of 
I. ricinus ticks. Although the survival of I. ricinus is deemed to be more 
dependent on relative humidity, the historical data used in our study did 
not include the upper and lower lethal temperature ranges. Therefore, 
additional studies on the survival of I. ricinus ticks, involving more 
sample size and a wider range of experimental conditions, is still 
required to improve our understanding of the impacts of climate change 
on the dynamics of their populations and Lyme borreliosis. Finally, 
when the available survival data of ectotherms in several abiotic con-
ditions are limited, the elicitation framework proposed in this study 
could be applied to help acquire and incorporate expert opinions to 
develop predictive survival models in other ecological contexts. 
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