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• Implementation of 3D POD on a mesh with a stationary zone and a rotating zone without 30 

zone separation. 31 

• Accuracy computation through instantaneous and localized error for 3D POD reconstruction. 32 

1. Introduction 33 

Stirred tank reactors are widely used in chemical and biochemical industrial applications. The 34 

hydrodynamics of such systems has been the subject of numerous experimental (Ng & Yianneskis, 35 

2000; Bugay et al., 2002; Baldi et al., 2004; Escudié & Liné, 2004; Ducci & M, 2007) and 36 

Computational Fluid Dynamic (CFD) studies that revealed its complexity (Hartmann et al., 2004; 37 

Delafosse et al., 2008, 2009). Besides the hydrodynamic aspects, additional models describing the 38 

chemical or biochemical reactions have to be implemented in the CFD software in order to couple 39 

mixing and reaction and perform predictive simulations. In some applications, it is important to 40 

consider the time varying flow field but the computational cost for solving simultaneously 41 

momentum and chemical equations is often prohibitive. In such situations, it is advantageous to find 42 

a way to access the spatio temporal variation for the velocity field without solving the Reynolds-43 

Averaged Navier-Stokes equations throughout the process duration. Since the flow in a stirred tank is 44 

periodic and organized, the reduced order model approaches, such as Proper Orthogonal 45 

Decomposition (POD), can be used to achieve this objective.  46 

Due to its elegance and practicality, this mathematical procedure has been used to identify, study 47 

and model the dynamics of large-scale average spatial structures of the fluctuating velocity field for 48 

turbulent flow (Sirovich, 1987a, 1987c, 1987b; Berkooz et al., 1993; Borée, 2003; Joshi et al., 2009; 49 

Tirunagari et al., 2012; Du et al., 2013; El-Adawy et al., 2018). In terms of average kinetic energy, 50 

these large structures (named coherent structures) dominate in the fluctuating flow, it follows that 51 

their identification is crucial in the study of fluid dynamics. This fact evidences the relevance and 52 

convenience of the POD to identify such organized structures.   53 



 

 

Specifically, POD allows the most energetic structures or modes (on average) of an ensemble of 54 

functions or experimental or numerical data to be extracted. Each of these modes will have a spatial 55 

part or field (topos, eigenvectors) and a temporal part (chronos). In this way, it is possible to identify 56 

and study the spatial organization and temporal variations of each POD mode. Such a decomposition 57 

is very convenient because it allows understanding the role of each component individually or in 58 

combination with other modes. Indeed, a linear superposition of selected POD modes can be used to 59 

represent all the members of the ensemble. The selection of modes to be used depends on the 60 

temporal and spatial scale of interest. It can also be shown that such a reduced order method is 61 

optimal in terms of minimizing the mean-square error between the input data and its modal 62 

decomposition. This fact represents an extremely attractive numerical advantage (Holmes et al., 63 

1996).  64 

The POD methodology has also been shown to be effective for studying instabilities (Hasal, 2000; 65 

Hasal et al., 2004) and the transition to the turbulent regime in fluids (Knight & Sirovich, 1990; 66 

Holmes et al., 1996). In Arányi et al., (2013) the technique was also used to study complex flows. This 67 

technique has also proved to be very useful for the analysis of turbulent flow fields in mixing tanks 68 

(Raju et al., 2005; Gabelle et al., 2013; de Lamotte et al., 2018b; Janiga, 2019; Fernandes del Pozo et 69 

al., 2020; Mikhaylov et al., 2021). For example Raju et al., (2005) implemented the POD algorithm to 70 

study the structures associated to the fluctuations about the mean flow induced by the impeller in a 71 

stirred tank. In this work, experimental PIV (particle image velocimetry) data were used as input to 72 

the method for different diameters of a Rushton-type turbine, and Reynolds numbers between 4,000 73 

and 80,000. Moreover  (Liné et al., 2013) used experimental PIV data from a mixing tank to study the 74 

presence of coherent structures and the turbulent phenomena associated. In addition, the kinetic 75 

energy and its viscous dissipation were successfully obtained from the POD methodology. Likewise 76 

(Gabelle et al., 2013, 2017; Fernandes del Pozo et al., 2020) used the decomposition method in 2D 77 

PIV data to reconstruct organized motion induced by impeller blades without performing angle-78 

averaged sampling. The manner in which energy was transferred between the POD modes was also 79 



 

 

studied. Also it is reported in the literature the application of the POD on CFD data for the study of 80 

turbulent swirling flow in an axisymmetric sudden pipe expansion (Howard et al., 2017). The order 81 

reduction technique used proved to be quite robust in reducing the transient database, showing its 82 

potential to provide valuable insights into the flow structure. By using a large array of pressure and 83 

velocity data, POD was able to pick out several key flow features, including the movement of 84 

vortices, and the structure and period of the precessing flow. This was followed by the 85 

reconstruction of the flow field de Lamotte et al., 2018a, 2018b assessed the dynamics for a stirred 86 

tank by applying POD to a 2D domain using CFD and PIV data. As reported in this work, the reduced 87 

order method was able to decompose the fluid flow into different structures: mean flow, coherent 88 

structures, and turbulent flow. Also (Janiga, 2019) applied the POD algorithm for the analysis of 89 

coherent structures and macro-stability present in a 3D (3-dimensional), 3C (3-component velocity) 90 

LES (Large Eddy Simulation) simulation for an unbaffled stirred tank. In this numerical experiment the 91 

sliding meshing technique was implemented, thus the simulation domain was divided into a fixed 92 

part and a rotating part. A similar work was recently published by (Mikhaylov et al., 2021b). The data 93 

was created through a Direct Numerical Simulation (DNS) with a “frozen rotor” approach and 94 

Reynolds numbers of 500, 600 and 700.  In this research, POD was useful to reconstruct the temporal 95 

evolution of large-scale organized vortical structures behind the blades of a Rushton impeller in a 96 

non-baffled stirred tank. It was found that the first two modes dominate the energy spectrum by 97 

carrying 90% of the total mean kinetic energy. It also is relevant to mention that some higher modes 98 

(3rd, 4th and 5th, 6th) came in pairs in the energy ranking. 99 

These two latest remarkable works show the feasibility of the numerical recipe for model order 100 

reduction in very complex flow fields. However, some important points were not addressed. For 101 

example in (Janiga, 2019), the POD decomposition was applied to each part of the mesh separately 102 

but a reconstruction of the 3D, 3C velocity field for the bulk was not performed. In general, it is 103 

neither simple nor straightforward to determine the relationship and similarity between the POD 104 

method for separate parts of the domain and the POD method corresponding to taking the domain 105 



 

 

as a whole. This is due to the essentially statistical nature of the method.  Additionally an analysis of 106 

the efficiency of the POD method in terms of calculation time, global and localized error was not 107 

provided. (Mikhaylov et al., 2021b) performed the reconstruction of coherent structures just in the 108 

zone around the impeller blades at low Reynolds number through the POD treatment of the velocity 109 

field expressed in a rotating frame. Finally, in both investigations the presence of baffles in the 110 

simulated stirred tanks was not considered. The incorporation of these elements is of great 111 

importance due to their contribution to the mean flow (circulation loops) and their decisive role in 112 

mixing phenomena. To sum up, running time-resolved CFD (Large Eddy Simulation or U-RANS) and 113 

applying Reduced Order Modeling  such as POD (Proper Orthogonal Decomposition or Karhunen-114 

Loève decomposition) is  appealing because it generates a time-varying velocity fields at a moderate 115 

expense while preserving the spatial resolution (Du et al., 2013; de Lamotte et al., 2018b). This opens 116 

the route to both refined and cost-effective description of the unsteady velocity fields. From this 117 

brief review of the existing literature on the subject, it appears that the POD analysis of the flow field 118 

in a baffled stirred tank, in the fully turbulent regime (at a Reynolds number > 104), using CFD data 119 

computed with a sliding mesh approach has not been considered yet.  120 

The main objective of the present work is to perform a numerical reconstruction of a three-121 

dimensional velocity field in a four-baffled stirred tank, operated in a turbulent regime, making use of 122 

the Proper Orthogonal Decomposition. In that regime, DNS and LES are time consuming and POD 123 

post-processing relies on a huge set of instantaneous 3D velocity fields. In contrast, the unsteady 124 

RANS method addresses the calculation of the transient mean flow and, despite the filtering of 125 

turbulence scales; it was preferred here since our prior objective is to establish the methodology for 126 

the velocity field reconstruction in the entire domain. Whatever the approach used to produce CFD 127 

results, a major difficulty resides in the presence of a fixed and a rotating mesh zone. It is shown that 128 

the velocity field reconstruction using a per-zone treatment of the CFD data is complex and 129 

cumbersome whilst a global treatment of the entire volume offers significant advantages. Originally, 130 

it appears that the main flow features of the 3D velocity fields are correctly recovered with the global 131 



 

 

treatment but the eigenvectors do not correspond to spatial modes, as is typically the case in POD 132 

treatment. In order to assess the relevancy of our reconstruction method in terms of efficiency and 133 

accuracy both the average error and the instantaneous and localized errors were calculated. Finally, 134 

an analysis of the numerical cost is presented. There is no record that such a scenario has been 135 

addressed before. 136 

2. Theoretical background 137 

As indicated by (Kosambi, 1943; Loève, 1945; Karhunen, 1946; Berkooz et al., 1993; Holmes et al., 138 

1996)  the proper orthogonal decomposition (POD) or Kosambi-Karhunen–Loève decomposition 139 

consists of a practical procedure that extracts the most energetic components (on average) from an 140 

ensemble of functions (in the continuous case) or experimental (physical or numerical) data (in the 141 

discrete case). The key idea of the technique is to provide a vector space basis with the special 142 

condition that the average square projection of the data ensemble in this vector space is maximum. 143 

In this scenario it is possible to reduce a large number of interdependent variables to a much smaller 144 

set of uncorrelated variables while maintaining the spatial and temporal resolution of the original 145 

ensemble of variables (Liang et al., 2002; Kerschen et al., 2005).  When applied to fluid flow analysis, 146 

the data ensemble can be obtained from a series of experimental or simulated velocity fields. 147 

Once the spatial structure of the ensemble is extracted and represented by a set of orthogonal 148 

functions named eigenvectors (or modes), the members of the original ensemble can be represented 149 

as linear combination of these modes.  The most striking property of the POD is that the �-modes 150 

reconstruction (finite truncations in the modal expansion) is optimal as it minimizes the mean square 151 

of error in comparison with any other possible orthogonal basis having the same dimension �. Should 152 

the data ensemble be made of a collection of instantaneous three-dimensional velocity fields, the 153 

original field ������, �	 is approximated as a linear combination of � modes, ��������	 weighted by time 154 

varying coefficients, ���	. 155 



���������, �, �	 = � ���	������	
�

���
(1) 

The Direct and the Snapshots methods are the most popular POD approaches. The choice of the 156 

method depends on the spatial and temporal resolution contained in the data ensemble. For 157 

example, when the spatial resolution is very high compared  with the time resolution, the Snapshots 158 

Method is less demanding in terms of computational cost (Sirovich, 1987a, 1987b, 1987c; Smith et 159 

al., 2005).  160 

The POD equations 161 

Let us consider � arbitrary 3D velocity fields, �����, sampled in � points at time tn  with � ∈ �1, … , ��.162 

Using the POD terminology, these instantaneous 3D velocity fields are named snapshots. Then, the 163 

idea is to find the most “typical” or “characteristic” structures ������	 in the set of �����.164 

The data ensemble is first arranged in a matrix � ! × # of the form:165 
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Such a matrix is known as the snapshots matrix �. From (2) the covariance or correlation tensor /166 

can be constructed following the Direct or Snapshot method as follows: 167 

/ =  
01
2 1� � 3�45     Direct method

1� 3�45�  Snapshot method (3)



 

 

The correlation tensor contains the degree to which and the manner in which, the velocities at 168 

different points are correlated. Consider the velocity vector U1 at a point 1 and the velocity U2 at a 169 

point 2 of the fluid domain. If the velocities U1 and U2 are statistically dependent their correlation will 170 

be different from zero, otherwise such correlation will be zero. Using the Direct method, the 171 

covariance tensor is represented by a 3� ×  3� matrix, where � represents the number of data 172 

points. This array represents a time-averaged two-point spatial correlation. Such a process makes the 173 

computational cost immense when the number of points in the studied domain is large (the size of 174 

the tensor R is (3L)2). 175 

Alternatively, it is possible to apply the Snapshot method proposed by (Sirovich, 1987a; Smith et al., 176 

2005) which is always valid when the ergodic hypothesis is fulfilled (all accessible microstates in the 177 

phase space have the same probability to occur over a long period). In this case, the covariance 178 

tensor is represented by a N x N matrix and a correlation is sought between the different realizations 179 

of the velocity. Such a process makes the computational cost less prohibitive compared with the 180 

Direct method (the size of the tensor R is only N2).  Due to this advantage, the Snapshot method is 181 

used in this work.  182 

This Snapshot approach consists in solving an eigenvalue problem to find the eigenvalues F� and 183 

eigenvectors Υ���� through a diagonalization of the correlation tensor R (snapshot case from (3)):   184 

/Υ���� = F�Υ���� (4) 

The eigenvalues F� are the same for the Direct method and the Snapshot method because (3) is a 185 

Hermitian matrix. However, the eigenvectors are different for both approaches.  186 

In order to recover the eigen-vectors in the spatial space, eigen-vectors Υ���� are transformed into  187 

����using equation (5): 188 

������	 = �Υ���� 1F�  , H = 1, … , � (5) 

 189 



Since the eigenvectors constitute an orthonormal basis, they obey the following relationship. 190 

3���I45���J =  KIJ  , L, M = 1, … . , �, KIJ : delta de Kronecker (6) 

After the calculation of the eigenvector, ������	 the modal components ���	 are obtained as:191 

���	 = �5����, H = 1, … . , � (7) 

This completes all the elements necessary to reconstruct the velocity field according to (1). 192 

3. Material and methods193 

3.1 Stirred tank and simulation set up. 194 

 Unsteady RANS CFD simulation in a 70 L baffled stirred tank is performed to produce our numerical 195 

data. The geometry of the flat-bottom stirred tank equipped with a Rushton turbine and four baffles 196 

is presented in Figure 1. Likewise, Table 1 provides the dimensions of the simulated tank. 197 

198 

Figure 1 Configuration of the simulated stirred tank.  199 

Table 1 Dimensions (in meters) of the simulated stirred tank 200 

C S TUV H hZ WX YX WZ YZ w 

0.1500 0.1500 0.3000 0.4500 0.0600 0.0450 0.0050 0.0375 0.0020 0.0300 



 

 

 201 

Water at room temperature and atmospheric pressure (density [ = 998.2 kg. m] , dynamic viscosity 202 

^ = 1.003 x 10-3kg. m]�. s]� ) is used as working medium. The stirring speed is 150 RPM (revolutions 203 

per minute) what corresponds to an angular velocity _ = 5a bc. d]� or a frequency f = 2.5 Hz, 204 

according to (8) the Reynolds number is 56250.  205 

/e =  [ f gh
^  (8) 

The power number Np for the Rushton turbine is deduced from the torque on the impeller (P =206 

C ω = 6.5 Watts) according to equation (9)  207 

no =   P [f gp (9) 

The calculated value no = 5.4 allows determining the volume averaged viscous dissipation of kinetic 208 

energy r ̅computed from equation (10), we obtain a value of 0.090 mh. s]  or 90 W. m] . 209 

r̅ =  �� f  gp
t = 4 27 a  �� f  gh                      (10) 

The mesh grid (1,129,140 cells and 1,184,282 nodes), models, settings and the numerical simulation 210 

procedure are identical to those used in a previous work (Delafosse et al., 2008). The standard H − r  211 

turbulence model is used with a standard wall function. A symmetry boundary condition is adopted 212 

on the free surface. The domain is divided into two zones: the fixed zone contains the walls, baffles, 213 

the major part of the shaft, and the volume outside the rotating zone, the latter is a cylindrical 214 

domain, which contains the impeller and a small portion of the shaft (see Figure 1). It must be 215 

noticed that a structured mesh made of hexahedrons was built in that zone (Figure 2). The starting 216 

point was a projection of all necessary edges on a horizontal plane followed by the creation of as 217 

many surfaces as needed to further build the impeller shape. Each face was meshed and the volume 218 

mesh obtained using the sweeping method. Owing to this strategy, the mesh is made of prismatic 219 

cells and it is almost invariant by rotation around the vertical axis. 220 



 

 

 221 

Figure 2.Mesh FLUENT views of the most important parts of the simulated tank: a) Top surface of the tank, b) External walls 222 
of the tank, c) Shaft and Rushton turbine, d) Shaft and rotating zone of the simulation domain. 223 

The CFD calculations and data treatment were performed with ANSYS-FLUENT R20 on a parallel 224 

computer equipped with 40 processors Intel Xeon(R) E5-2660, 2.60 GHz. The time step used in the 225 

simulation is Δ�yz�  { 5. 10]} d corresponding to an angular rotation of 0.5 degrees per time step 226 

and a Courant number less than 1 in the whole domain to ensure numerical stability. Third order 227 

discretization scheme are used. Within each time step, 30 iterations of the non-linear solver were 228 

necessary to reach a plateau at 10-4 for the velocity and continuity residuals. 229 

The convergence toward a stationary flow was assessed using two criteria: the equality between the 230 

torque on the turbine and the torque on the external walls of the tank, and the equality between the 231 



 

 

volume integral of the turbulent dissipation rate and the power input. Regarding the first criterion, it 232 

is found that the torque on the turbine and the turbine shaft is practically identical to the torque 233 

generated on the external walls of the tank. Regarding the second criterion, the ratio of energy 234 

dissipation to the power input is 98%. The stationary flow field was established after 139 turbine 235 

revolutions (4 days of simulation) (see “Physical convergence of the numerical results” in 236 

Supplementary Information) 237 

3.2 Sampling and data processing 238 

The sampling of CFD data consists of a set of 3D velocity fields or snapshots collected in the entire 239 

simulated domain (1,129,140 cells). A total physical time of 11 s, representing 28 complete rounds of 240 

the turbine and requiring 26 days of computations, was spanned. During this time lapse, 386 241 

snapshots were taken every 53 computational time steps. The time interval between two samples is 242 

Δ�~� = 0.03 s �Δ�~� = 53 Δ�yz�).  A sensitivity of the results to the number of snapshots is presented 243 

in the result section. Figure 3  provides an overview of the sampling data chosen in the present study. 244 

 245 

Figure 3. Sampling data sets collected for apply POD. Each rectangle represents a snapshot of registered velocity. 246 



 

 

Finally, because the POD is a statistical method it is necessary to check that the number of snapshots 247 

as well as the time window of data acquisition are sufficient to capture the structures carrying the 248 

highest variance in the flow. The total simulation time must be long enough to record sufficient 249 

information of the rotational motion while the sampling frequency must be high enough to prevent 250 

the filtering of small-scale fluid motion. In addition, attention must be paid regarding the sampling 251 

frequency to avoid the collection of snapshots “in phase” with the impeller rotation (see “Impeller 252 

rotation and data sampling” in Supplementary Information).   253 

A typical POD decomposition requires that velocity vectors and cell location be expressed in the 254 

same frame. This is the case when POD is performed on experimental PIV data,  since velocities are 255 

generally measured in a fixed plane (Liné et al., 2013; Rodriguez et al., 2013).  Some particular 256 

attention must be paid when dealing with CFD data. In a previous work, Mikhaylov and co-workers 257 

used CFD to compute the velocity field in an unbaffled stirred tank. The problem was solved in a 258 

rotating reference frame using a single mesh domain (Mikhaylov et al., 2021a). Here also, velocities 259 

are expressed in the rotating frame and calculated at some fixed position in that frame. In the 260 

present work dealing with a stirred tank, the presence of baffles necessitates to split the fluid domain 261 

into two mesh zones, a fixed one and a rotating one. In order to satisfy the above-mentioned 262 

condition for a typical POD decomposition, velocities must be expressed in the inertial frame for the 263 

fixed zone and in the rotating frame for the moving zone.  The export of data, in FLUENT, extracts 264 

velocities expressed in the inertial frame. Thus, prior to the POD treatment, the data collected in the 265 

rotating zone have to be converted into velocities in the moving frame (see Figure 4). Then, the POD 266 

treatment was performed separately for each set of velocities. This “per zone approach” corresponds 267 

to the procedure adopted by Janiga when two mesh zones are present in the CFD model (Janiga, 268 

2019).  269 

Alternatively, a global POD treatment considering the two zones altogether (with the entire velocity 270 

field expressed in the inertial frame) is attempted with a view of performing the 3D reconstruction of 271 



 

 

the flow field in the entire fluid domain. This global approach has not been yet proposed in the 272 

literature for baffled stirred tanks and its feasibility remains to be demonstrated. We will show that 273 

the global treatment is feasible bearing in mind that its essential purpose is not to perform a 274 

hydrodynamic study of the fluid flow structure but a reconstruction of the velocity field by means of 275 

a linear combination of POD modes. Evidence of that will be provided in the section of 5.3. Assessing 276 

the accuracy of the flow field reconstruction.  277 

 278 

Figure 4. 2D schematic representation for the velocity vector expressed in the inertial and moving frames. The inertial frame 279 
is equivalent to the laboratory frame of reference. The moving and rotating frame share the same origin. The rotating frame 280 
rotates around the Z-axis with angular velocity _. In that frame, the coordinates of the rotating cells are time independent. 281 

Before going into the details, it is of utmost importance to observe that the data extracted from the 282 

CFD code are the components of the velocity vectors expressed in the inertial frame (laboratory 283 

reference frame). In addition, this information is referenced with respect to a cell index. Thus, each 284 

3D snapshot results in an array containing the cell index in the first column followed by the three 285 

components of the velocity vector in the inertial reference frame (����z���	). The first step of the POD 286 

treatment consists in rewriting the three components of the velocity in a column vector 287 

corresponding to one snapshot. The rows of the matrix M represent the grid cells and the columns 288 

represent the time instants at which the data were registered. When moving along a row, the time 289 

changes but a given line always corresponds to the same cell index �� as illustrated in Figure 5. 290 



 

 

 291 

Figure 5. Schematic representation of the data recording used to build the snapshot matrix M for N snapshots and k cells. 292 
The velocity is always registered for a given cell although, for those cells belonging to the rotating zone, the spatial 293 
coordinates change over time due to the mesh rotation. 294 

4. POD modal analysis 295 

4.1 POD analysis in the fixed zone 296 

First, the POD analysis is performed using 386 snapshots containing the velocity vector belonging to 297 

the fixed zone of the mesh, �����z = 3�� , ��, ��4�z. Velocity components are here expressed in the 298 

inertial frame (IF). In that case, the relationship between the cell index and the cell location in the 299 

inertial reference frame is time independent. The mode spectrum is presented in Figure 6a, as well as 300 

the corresponding modal component and the vector field associated to the first mode. As expected, 301 

this first mode accounts for 90% of the total variance, its modal component is positive, almost time 302 

independent (Figure 6a,b) and thus this first mode reveals the structure of the mean flow. It is also 303 

remarkable the presence of two additional modes which carry about 10% of the total variance. These 304 

modes reveal a periodic fluid motion in the region outside the rotating zone of the grid, induced by 305 

the impeller rotation. As shown in Figure 6b, the corresponding modal components oscillate around 306 

zero with a period of 0.4 s corresponding to the impeller frequency of 2.5 Hz. The possibility of 307 



 

 

identifying these oscillatory modes is an outstanding advantage that justifies the use of the POD 308 

methodology. In addition, Figure 6c and Figure 6d, provide different views of the spatial 309 

configuration contained in the first mode. Note that in Figure 6c an angular sector of 3.5 degrees is 310 

visualized in a vertical XZ-plane. Well-known organized structures are present: jet flow, recirculation 311 

loops, and vortices behind the baffles. Additionally, a predominantly axial fluid flow can be observed 312 

near the shaft and in the regions above and below the rotating zone. 313 

 314 

Figure 6. POD analysis of the flow in the fixed zone of the mesh: a) mode spectrum, b) mode component associated with the 315 
top three ranking modes, circles: first mode, x’s second mode and rhomboids third mode (each data set is normalized by the 316 
variance corresponding to each mode.), c) First eigenvector visualized in a vertical XZ plane, d) Top view of the first eigen-317 
vector. The main feature of the mean flow, i.e. radial jet flow, recirculation loops and coherent vortices behind the baffles 318 
are clearly visible (red boxes 1, 2 and 3). 319 

The seemingly absence of velocity vectors in the central zone around the shaft (Figure 6c) is an 320 

artefact due to the small number of grid points used to describe the shaft surface itself. Since there is 321 

only one grid point every 30° around the shaft, the probability to find a grid node within the angular 322 

sector of only 3.5 °decreases as one approaches the shaft. Thus, the side view of the velocity field in 323 

the sector may not contain enough information close to the shaft resulting in an apparent absence of 324 

a) b) 

c) d) 
3 

2 1 



 

 

data. However, it can be seen, from the top view (Figure 6d) that the flow field reconstruction at 325 

every grid point of the computational mesh is actually obtained close to the shaft. 326 

4.2 POD in the rotating zone 327 

Then, the POD analysis is performed using the velocity vectors belonging to the rotating zone of the 328 

mesh using again 386 snapshots. In this zone, the mesh rotates with respect to the inertial reference 329 

frame and the velocity fields �����z are obtained in different locations for each time instant. 330 

Consequently, the velocity fields must be expressed in a reference frame in which the velocity 331 

measurement coordinates do not change in time. We recall here that the CFD code export procedure 332 

gives access to the Cartesian velocity components in the inertial reference frame. The velocity 333 

components in the moving (or rotating) frame, �����z, were deduced performing the next steps: 334 

i. �����z� = �����z + b���	 × _��� 

ii. �����z =  ������I�������z�  

(11) 

b� is the position vector of any cell expressed in the inertial reference frame. Importantly, the vector 335 

position of a cell differs from one snapshot to the other due to the rotation of the mesh. This rotation 336 

takes place around the vertical axis (Z-axis) aligned with the shaft and the position vector is known 337 

from the current cell coordinates b���	 = b��x���t	 , y����	, z����		. ������I�� is the time dependent 338 

rotation matrix that is used to express the velocity �����z�  in a frame attached to the turbine (the 339 

position of the mesh in the first snapshot is used as a reference). Once the entire data set is treated, 340 

the snapshot database now contains a time series of the velocity components in the moving 341 

reference frame. Since the mesh is subjected to a solid rotation, the location of the cells, in the 342 

moving (rotating) frame, is now also time-independent. Once the transformations of (11) have been 343 

performed, the POD algorithm can be used. The POD results obtained are displayed in Figure 7. 344 



 

 

 345 

Figure 7. POD results for the velocity fields in rotating zone measured in the moving frame. a) Mode spectrum: one mode 346 
dominates the variance ranking; b) mode components associated to the three modes, circles: first mode, x’s second mode 347 
and rhomboids third mode (each data set is normalized by the variance corresponding to each mode). The modal component 348 
of the first ranking mode is time independent and the second and third modes both oscillate with a frequency of 10 Hz. 349 
These oscillations are related to the passage of the baffles observed from the moving frame.  c) The first eigenvector in the 350 
plane YZ  three degrees behind one of the turbine blades reveal the presence of the trailing vortices (red box 1), d) The first 351 
eigenvector in the plane YZ six degrees behind one of the turbine blades reveals the radial displacement of the trailing 352 
vortices (red box 2). 353 

As shown in Figure 7 the variance ranking is dominated by a single mode. In addition, this mode 354 

component is strictly time constant, as shown in Figure 7b. The second and third modes both 355 

oscillate with a frequency of 10 Hz or a period of 0.1 s (see the table “Fitting for the second and third 356 

modes for the moving frame” in Supplementary information). The impeller period is 0.4 s; since there 357 

are four baffles, the period associated with each baffle is 0.1 s. The first eigenvector contains the 358 

typical trailing vortices. They appear here as coherent structures attached to the turbine blades. The 359 

presence of such structures is shown in Figure 7c and Figure 7d for different positions of one of the 360 

turbine blades. The above results agree with the description of the fluid flow in a reference frame 361 

moving with the turbine blades. However, transformation (11) modifies the energy content of the 362 

a) b) 

c) d) 
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initial data and there is no mathematical link between the kinetic energy in the rotating frame and 363 

the inertial frame. 364 

4.3 Reconstruction of the velocity field from the POD results per zone. 365 

Once the procedure of reconstruction of the velocity field in the fixed and rotating zones has been 366 

carried out, the velocity field was constructed (expressed in the inertial reference frame) in the 367 

whole domain of the stirred tank. Since the two zones mentioned above were processed 368 

independently, the reconstruction of the velocity field was done by placing the reconstructed vector 369 

fields in each region. Special attention must be paid to two important details. First, the entire velocity 370 

field was built as a sum of the velocities reconstructed in each zone because the POD components 371 

involved are synchronized (the same snapshots were used). Second, all the data (fixed and moving 372 

zone) must be expressed in the inertial reference frame.  373 

In the case of the fixed zone, no additional operation is necessary because the POD technique was 374 

applied on a fixed grid. Therefore, for this area, the reconstruction of the velocity field is already 375 

expressed in the inertial reference frame. The foregoing case is not valid for the moving zone 376 

because the CFD data were processed through the transformations (11). Consequently, the 377 

reconstructed velocity field in this region must be manipulated to express it back in the inertial 378 

reference frame. Concretely, inverse transformations of (11) must be applied to the reconstructed 379 

vector fields showed in Figure 7.  380 

To sum up, in order to produce a 3D velocity reconstruction in the entire fluid domain, the recorded 381 

3D fields are split into two zones, the subset of data corresponding to the rotating or moving zone 382 

are transformed (through equation (11)), then typical POD is applied in each subset of data, velocity 383 

fields for both are reconstructed, velocities in the moving zone are transformed back to the inertial 384 

frame and finally, the two velocity fields are gathered in a single file. The procedure described is 385 

feasible but it is long, complex and cumbersome. 386 



 

 

4.4 Global POD treatment 387 

In the previous treatments, velocities are expressed either in the fixed or in the moving or rotating 388 

frame. Such velocity fields are also referenced by a cell index, which does not change in time, i.e.  389 

�����z���, �	, �� = ℎ���).  In addition, as indicated in the mathematical presentation of the technique, 390 

POD is a statistical method in which a correlation is sought between the different realizations and the 391 

procedure in itself does not require that all data are recorded at the same location. In the present 392 

case, the cell index is time independent while the relationship between the cell index and the 393 

location of that cell at any time is readily accessible. Therefore, it was postulated that a global POD 394 

treatment considering the entire mesh, with all the velocities expressed in the inertial frame of 395 

reference could make sense. The collected snapshots were analyzed using the numerical procedure 396 

described in the previous sections, producing a decomposition of the time varying 3D flow field on an 397 

orthogonal basis of 3D vector fields called modes. It is crucial to observe that such a POD 398 

decomposition is made in the space of cell indices which means that the associated POD modes are 399 

not spatial modes and their physical interpretation (as flow structure descriptors) has to be 400 

questioned. From a vector field reconstruction point of view the above methodology means that the 401 

velocity is reconstructed for the whole domain in the geometrical conditions (angle of rotation of the 402 

moving zone) corresponding to a given snapshot. Once the reconstruction is carried out in such 403 

conditions, the velocity vectors belonging to the rotating zone have to be placed at the appropriate 404 

location, considering mesh rotation. Presumably, this will not affect the velocity reconstruction 405 

derived from the POD method; this assumption will be evaluated according to the error values 406 

calculated in the results section. 407 

Figure 8 depicts the POD mode spectrum obtained from the global treatment. The first three modes 408 

carry 99.99% of the total system variance. The first and second modes share the same variance 409 

content while the third mode has a slightly smaller variance. In addition, from mode 4 to mode 11, 410 

pairs of modes of equal variance are observed. In general, a pair of modes with the same variance 411 

content is typical of coherent structures propagating in space (the phase difference between the 412 



 

 

time coefficients and the shifted distribution in space of the corresponding modes lead to the motion 413 

of these structures). Thus, this decomposition reveals a strong spatial organization of the flow in the 414 

form of multiple coherent structures with decreasing variance content. Interestingly, the third mode 415 

is a single mode, which suggests that it will be associated to the reconstruction of the mean flow, the 416 

time-independent component of the 3D velocity field. Similar results were obtained using either 250, 417 

286, and 386 snapshots, which suggests a statistical convergence of the POD methodology. 418 

 419 

Figure 8. a) POD eigenvalue spectrum for the first twenty modes and three different time spans: the first three modes 420 
represents almost the 100% of the total system variance. It is also evident a correlation between pairs in the upper modes 421 
until the eleventh one. b) Cumulated variance POD spectrum for the time span of 386 snapshots. The cumulated variance 422 
until the third mode already represents the 99.9% of the total system variance. 423 

 Since the first three modes contain practically the totality of system variance, the subsequent 424 

discussion will first focus on them.  425 

Figure 9a illustrates the time variation of the normalized amplitude factors associated to the first and 426 

second modes over 28 impeller turns (time span 386 snapshots). The temporal organization of these 427 

modes is clear; their behavior is oscillatory, with an identical period (0.4 s equal to the rotation 428 

period of the turbine) and amplitude. In addition, the phase shift between these modes is π/2 as can 429 

be seen from the circular configuration of the Figure 9b. Likewise, the amplitude factor of the third 430 

mode, presented in Figure 9c, shows a periodic time variation (again with a period of 0.4 s) but its 431 

mean value is different from zero. This fact together with its variance content suggests that this third 432 

mode will be associated to the reconstruction of the mean flow. The relatively small oscillations 433 

a) b) 



 

 

presented in that POD component is related to the interaction between the periodic flow in the 434 

turbine region and the rest of the domain of the tank.  435 

In order to verify statistically the periodic behavior of the coefficients a1, a2, and a3 the pdf functions 436 

associated to each modal component are also provided (see “Examination of �  statistical 437 

properties” in Supplementary information). It is evident that the functions are centered with respect 438 

to the origin (except a3) , proving their periodical character, which is in agreement with what is 439 

reported by (Liné et al., 2013). With such an idea in mind, a fitting of the first eleven modes 440 

components, using as reference the function A sin�ωt +  φ	 was performed with the Matlab curve 441 

fitting toolbox®. The results provided in Table 2 show that the considered modes exhibit a very 442 

organized time pattern as all the squared correlation coefficient U�  are equal to 1. The first three 443 

modes oscillate with a period of 0.4 s (2.5 Hz) corresponding to the impeller rotation speed while the 444 

remaining modes turn out to be associated with harmonic frequencies of the main frequency. 445 

Moreover, the presence of paired modes with the same frequency and amplitude is evidenced. This 446 

modal configuration implies a strong correlation between duets and is usually an indicator of 447 

coherent flow structure being present. Additionally, Figure 10 presents the relationship of the first 448 

mode with modes fourth to tenth. In agreement with the results of Table 2, each pair of modes is 449 

correlated with the first one in terms of Lissajous patterns. For each pair, represented by one 450 

member of each pair, the number of loops is related to the corresponding harmonic mode. Thus, for 451 

example, the fifth mode presents three loops since this is the third harmonic of the main frequency 452 

associated with the first mode. The same reasoning is applicable to the sixth, eighth and tenth mode.  453 



454 

Figure 9. Graphical representation of the first three modes identified with the global treatment. For clarity, results are 455 
illustrated during 2 seconds only. a) Normalized time variation of the first and second mode. The circles and the crosses 456 
correspond to the modal component a1 and a2 respectively. The dotted and continuous lines correspond to their fitting by 457 
continuous sinusoidal functions. b) The circular configuration reveals a phase shift of π/2 between the first and second 458 
modes. c) Normalized time variation of the third mode. The solid circle corresponds to the modal component a3. The dotted 459 
line corresponds to the sinusoidal fitting of the third mode. 460 
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Table 2. Sinusoidal fitting of the mode components,���	 associated to the first eleven POD modes. 471 

Modal 

coefficient 

��: 

Amplitude 

(m/s) 

��: 

Angular 

frequency 

(rad/s) 

�� : 

Frequency 

(Hz) 

�� 

Phase 

(rad) 

U�  ���. �� ��	 

a1 454.50 15.71 2.50 17.21 1.00 1.00 

a2 454.60 15.71 2.50 15.65 1.00 1.00 

a3 6.51 15.71 2.50 15.64 1.00 1.00 

a4 6.84 47.12 7.50 7.84 1.00 3.00 

a5 6.84 47.12 7.50 12.55 1.00 3.00 

a6 5.15 62.83 10.00 21.91 1.00 4.00 

a7 5.15 62.83 10.00 26.62 1.00 4.00 

a8 3.47 78.54 12.50 5.97 1.00 5.00 

a9 3.47 78.54 12.50 4.39 1.00 5.00 

a10 1.53 94.25 15.00 21.61 1.00 6.00 

a11 1.53 94.25 15.00 23.17 1.00 6.00 

 472 



 

 

 473 

Figure 10.Lissajous patterns obtained from the temporal variation of the first to tenth modes. 474 

The information provided above concerning the mode components �, clearly shows that the global 475 

POD approach produces an unexpected pattern regarding the temporal behavior of the 476 

corresponding modes. Indeed, the strong correlation between all frequencies and the impeller 477 

rotation speed suggests that the mode components actually reflect some information related to the 478 

mesh rotation rather than to the flow structure. 479 

Now that the amplitude factors associated with each mode are expressed as continuous sinusoidal 480 

functions, it becomes possible to perform a continuous reconstruction of the 3D velocity field at any 481 

instant and not only at the instants corresponding to the snapshots. However, it is crucial to note 482 

that the mode produced by the global POD treatment are cell index modes and not spatial modes as 483 

is typically the case in POD analysis: 484 

����������, �	 = Σ�¡� sin�_�� + ¢�	 �������	 (12) 

 485 

The exact location of any cell at any instant can be easily recovered from its initial position knowing 486 

the rotation speed of the moving zone. For those cells belonging to the fixed zone, the relationship 487 

between the cell index and the spatial location is time independent. For those cells belonging to the 488 

rotating zone, the relationship between the cell index and the location in the inertial reference frame 489 



 

 

is a rotation around the z-axis. The angle of rotation is £��	 = _ �� − �¤	 where �¤ is the instant 490 

corresponding to the first snapshot. As a result, the global procedure to perform the velocity field 491 

reconstruction contains only three steps: 492 

i. Perform the POD on the entire domain 493 

ii. Reconstruct the velocity field in the entire domain using cell index POD modes 494 

iii. Relocate the velocity vector of the rotating zone at their actual location. 495 

Figure 11a provides a close up of such a reconstructed flow field in the region of the blade impeller. 496 

Reconstruction is here performed at the instant when the blade is located in the middle of the 497 

angular sector, the first, second and third POD modes are included. The three major features of a 498 

flow field generated by a Rushton turbine are clearly visible. Firstly, there is an axial flow moving 499 

towards the blade as consequence of the suction produced by the passage of the blade turbine (red 500 

boxes n° 1). Secondly, a pair of symmetrical vortices develop behind the blade (red box n° 2). These 501 

very organized structures represent a manifestation of the well-known trailing vortices, which play 502 

an extremely important role in mixing and transport processes. Noteworthy, these organized flow 503 

structures would not be present if a time averaging of instantaneous velocity field (snapshots) was 504 

performed. This fact represents an important advantage in the use of POD for velocity field 505 

reconstruction in comparison to a mean flow field description based on the time averaging of 506 

velocity fields. Thirdly, an axial jet flow is produced at the periphery of the turbine (red boxes n° 3). 507 

Although wiggling, the jet flow is, on average, slightly deflected upwards in concordance with 508 

(Delafosse, 2008; Escudié & Liné, 2004). This flow feature is present in the third mode and can 509 

therefore be related to the mean flow. Figure 11b shows the velocity field obtained from the CFD 510 

simulation at the same instant of the POD reconstruction (Figure 11a). A simple inspection of both 511 

figures shows a very close resemblance between the reconstructed field and the field generated by 512 

the simulator. 513 



 

 

 514 

Figure 11. a) Reconstruction of the velocity using the first three modes. From the left to the right side the most important 515 
features of the field are marked by numbered dot rectangles: Upward and downward axial pumping flow (red boxes #1), 516 
vortices generated by the passage of the blade (red boxes #2), and radial flow out of the impeller-sweeping zone (red box 517 
#3), b) Velocity field from the CFD data in the same snapshot of the POD reconstruction. 518 

 519 

5 Discussion  520 

5.1. On the Global POD treatment eigenvectors 521 

Having shown that the proposed treatment allows an accurate reconstruction of the fluid flow, we 522 

now comment on the mode decomposition. As already indicated, the global POD approach yields 523 

results that are not as intuitive as those usually provided by the typical POD approach are. In 524 

particular, the eigenvector obtained through the global treatment do not reveal the structure of the 525 

flow. Nevertheless, this “non-standard” treatment offers some striking features worth noting. 526 

Firstly, the resulting modes preserve the variance content and allow a direct reconstruction without 527 

applying the per-zone method. This fact is an advantage in terms of computational resource savings 528 

by avoiding the use of equation (11). 529 

Secondly, the rotational frequency of the mesh appears in the temporal behavior of all modes. In 530 

contrast with the typical treatment, this does not reveal a periodic fluid motion but rather reflects a 531 

correlation between velocity data when the mesh occupies the same location. In that sense, this 532 

observation is related to the statistical nature of POD. Although, the snapshot method is not aimed 533 

a) b) 



 

 

at identifying temporal correlation, this type of correlation emerges here in the mode component 534 

that are all scaled by the mesh rotation frequency: the velocity field in every cell is strongly 535 

correlated with that obtained one turn later. Higher frequencies can be related to a strong angular 536 

periodicity of the mesh.  537 

Thirdly, the inspection of the local features of the cell index modes helps understanding the 538 

outcomes of the global POD treatment. The first and second modes are significant in the rotating 539 

region and almost negligible outside this zone (the same apply to high order modes also). It was 540 

observed that both of them contain only radial and angular components and practically no axial 541 

component. Since such modes do not come out from a typical POD procedure, and refer to a cell 542 

index, it makes no sense to try to visualize them as such. However, as already emphasized, their 543 

contributions to the reconstructed velocity field can be identified. It appears that these first two 544 

modes are involved in the description of trailing vortices. The third mode is present throughout the 545 

tank, including the rotating zone, and the three components (axial, radial and angular) are present in 546 

this mode. However, the three components are not present everywhere. In the area swept by the 547 

rotating mesh, the third mode contains essentially an axial component above and below the turbine 548 

and a strong radial component away from the blades (see Figure 11a, Figure 3a from Supplementary 549 

Information). Considering that the related mode component is almost constant, the third mode 550 

seems to contain the axial flow corresponding to the pumping flowrate of the turbine and a radial 551 

flow rate associated to the jet flow created by the radial impeller. Note that both of them are, on 552 

average, independent of the actual mesh position.  Accordingly, the reconstruction of the actual flow 553 

field in the rotating zone requires using the first three modes altogether. In the fixed zone, the third 554 

mode of the global treatment is very similar to the first mode of the POD treatment of the fixed zone 555 

only (first mode of the per-zone treatment). In that zone, the contribution of the third eigenvector 556 

can be physically interpreted, since the cell position is time independent. This result is sounded 557 

because in a fixed domain, the per-zone and global approaches are equivalent. Indeed, the 558 

configuration of this mode is very similar to the spatial mode presented in Figure 6d, Figure 6c. In the 559 



 

 

upper part of the fixed zone, within a layer between 0.05 m and 0.1 m, this third eigenvector reveals 560 

the presence of clockwise vortices behind each baffle as is marked with the red boxes n°1 and n° 2 561 

(see “Flow structure analysis using cell index modes” in Supplementary information).  562 

Thus, the global treatment of the entire volume leads to identical results in those regions where the 563 

cell location is not changing in time. In the particular case studied here, it was observed that the 564 

constant mode in the moving zone contains a contribution to the flow, which is independent of the 565 

mesh rotation. Possibly, the structured mesh configuration played a role here since the Z location of 566 

the cell in the rotating zone is truly time independent while the mesh is invariant by rotation outside 567 

the zone swept by the impeller. 568 

5.2. Dynamical representation of the reconstructed flow using the three first POD 569 

modes 570 

The sinusoidal fit of the amplitude factor (Table 2) associated to each mode allow reconstructing the 571 

flow field at any instant. Therefore, a reconstruction was performed for a complete turn of the 572 

turbine, using a temporal resolution of the CFD (Δ�yz� = 0.5 ms), which corresponds to 715 573 

snapshots. These snapshots were then superposed to generate a dynamic visualization or video of 574 

the plane reconstruction shown in Figure 11a. The video is provided in the complementary material 575 

(1+2+3 POD_Reconst stp 0.03s_XZ_5.5degrees_FITTING_6.avi). Such dynamic representation makes 576 

visible the dynamic or temporal evolution of the structures presented in Figure 11a. As can be seen in 577 

the video, both the axial flow (box n° 1 in Figure 11a) and the jet flow (box n° 3 in Figure 11a) are 578 

essentially constant. Finally, it is possible to identify the appearance of traveling vortices. These 579 

appear behind the blades every time they pass. Once such vertical structures are generated, they 580 

move radially away from their point of origin.  581 

It is worth mentioning that all this dynamic information is contained in arrays whose size is much 582 

smaller than the CFD analogous. More explicitly, each POD vector has a dimension of 3L x 1 and its 583 

respective modal coefficient has a size of N x 1. In the present case study, L = 1.129.140 elements, N 584 



 

 

= 386 snapshots, and only the first three POD eigenvectors with their respective modal components 585 

are necessary to recover 99% of the total variance of the system. This represents a storage 586 

requirement of (3L x 3) = 9L for the POD vectors plus the temporal components (Nx3) = 3N, the total 587 

number of elements being 1 x 107 or 0.08 Gb in total. The CFD data size 3xLxN = 1.3 109 elements 588 

which is equivalent to a data storage of 9.7 Gb. Thus, 121 times more storage capacity is required 589 

when using CFD data. 590 

5.3. Assessing the accuracy of the flow field reconstruction using global POD approach 591 

The accuracy of the reconstruction obtained from a global treatment is now examined. The equation 592 

(13) estimates the quality of the approximation as a function of the number of modes � used for the 593 

flow field reconstruction from global approach. The expression (13) estimates a maximum average 594 

relative error ¥�#¦. First, the average of the maximum error between the reconstructed velocity 595 

field and the CFD velocity field is calculated for every snapshot. Then by dividing this quantity by the 596 

tip blade velocity 3��I� = 1.18 ¨. d]� 4, a normalized averaged error is obtained. This quantity is 597 

relevant because the POD technique is designed to minimize the average error between the 598 

reconstructed data and the experimental data (CFD data in this case).  599 

¥#©¦ =  
∑ ¨«3¬�������I ��, �	 −  ����yz�I ��	 ¬4#I�� ���I�  

(13) 

 600 

The relation (13) was calculated using 2, 3, 5 and 10 POD modes (time span of 386 snapshots). The 601 

results are provided in the Table 3 and presented graphically in the supplementary information 602 

(“Visual representation of the normalized error”): 603 

Table 3 : Normalized Averaged Error as a function of the number of modes used for the reconstruction. 604 

Number of modes 2 3 5 10 

Normalized error (%) 62 6 5 3.5 

 605 



The use of the first and second modes produces an average error of 62% with respect to the tip 606 

velocity of the turbine. Such components are independent of the third mode, which is associated 607 

with the reconstruction of the average flow. In this way the POD reconstruction associated with the 608 

two first modes do not contain the mean flow information, implying a considerably high average 609 

error. When the third mode is included in the reconstruction, the error decreases noticeably, which 610 

is fully consistent with the previous analysis. As can be seen in the Table 3, the maximum error 611 

becomes approximately 6.0 %. Adding more modes to the reconstruction only slightly reduces the 612 

error down to 3.5 %. The above information shows that the global treatment allows the 613 

reconstruction of the velocity field with a low average error.   614 

Beside the normalized error, it seems interesting to quantify the error considering the number of 615 

cells in which the error is significant, i.e. the error as a function of the cumulative percentage of cells. 616 

Equation (14) estimates a local error between the global POD reconstruction of the velocity field and 617 

the CFD velocity field for each cell in the domain. From this, the error distribution is built and 618 

represented in Figure 12. Unlike expression (13), (14) provides the error due to the reconstruction in 619 

a localized and instantaneous manner because the respective calculation is performed for each cell. 620 

The definition of (14) allows a more adequate and accurate evaluation of the POD reconstruction for 621 

the unsteady case studied in the present work. 622 

E��, t, �	 = ¬���������, �, �	 − ����yz���, �	¬
¬����yz���, �	¬

(14) 

Error distribution obtained through equation (14) for three different snapshots and using � = 5 and623 

� = 10 POD modes for the reconstruction is presented in Figure 12. For the case of 5 POD modes, it624 

was found that around 90.5% of the total number of cells exhibit an error smaller than 3%. The 625 

relative error of the rest of the cells is distributed according to the following categories: 4.5% of the 626 

cells have an error greater than 3% and less than 5%. The final 5% has an error greater than 5% and 627 

less than 27%.  628 



 

 

 629 

Figure 12.  Cumulative percentage of the number of cells as a function of the relative error calculated by equation (14),using 630 
either 5 and 10 POD modes An increase in the number of POD modes leads to an upward shift of the curve. The vertical red 631 
line indicates 3% relative error. 632 

The previous results are improved when 10 POD modes are used to perform the flow reconstruction: 633 

98.5% of the total number of cells have an error less than 3%, 1% of the cells have an error between 634 

3% and 5%. The final 0.5% has an error greater than 5% and less than 27%. Table 4 proposes the 635 

same results in terms of percentage of cells with an error comprised in a given range. 636 

Table 4 : Percentage of cells with an error ¥��, �, �	 comprised in a given range for � = 5 and 10 modes. 637 

Snapshot # 
E(�,t,�) < 3% 3% < E(�,t,�) < 5% 5% < E(�,t,�) 

� = 5 � = 10 � = 5 � = 10 � = 5 � = 10 

1 90.5 98.5 4.5 1 5 0.5 

23 90.4 98.0 4.5 1.4 5.1 0.6 

386 90.5 98.5 4.5 1 5 0.5 

 638 

It was observed that the cells in which the relative error is high are mainly located on the interface 639 

between the fixed and rotating mesh grids (see ‘locations of cell with significant error’ in 640 

Supplementary Information). 641 



5.4. Numerical cost of a spatio-temporal reconstruction using the global POD 642 

technique 643 

The use of order reduction methodologies is not justified solely in terms of flow structure analysis. 644 

Another relevant aspect is the efficiency in the implementation of the method compared with the 645 

standard use of CFD tools. At this point of the present work, it is possible to propose a continuous 646 

spatio-temporal reconstruction of the 3D unsteady flow field, i.e. at a higher temporal resolution 647 

than the initial CFD data. Starting from the previous POD results and after identifying the continuous 648 

function associated with the mode components, the 3D field reconstruction was performed 714 649 

times over 0.4 s, the duration of one turn. The time necessary to perform these reconstructions is 650 

compared with the time necessary to perform the CFD calculation with the same temporal 651 

resolution. Table 5 presents a summary of the physical time required for the CFD simulation of a full 652 

turn on the complete tank and the corresponding time necessary to perform the POD reconstruction 653 

via a global treatment using 5 and 10 modes. The first two lines provide the results for five and ten 654 

modes respectively. For both cases, the set-up time (time to read data and perform POD 655 

decomposition) is equal because the input data and numerical operations are identical.  The 656 

reconstruction of a single 3D flow field is longer when ten modes are considered, 133.6 seconds for 657 

10 modes against 64.5 seconds for 5 modes reconstruction. The corresponding time for the CFD 658 

simulation is 2.7 x 104 seconds, which corresponds to 58 and 50 times the duration of the POD 659 

reconstruction using 5 and 10 POD modes respectively.  660 

Table 5. Comparative summary of the time duration for the CFD and POD reconstruction procedure. 661 

Procedure 

Number of 

POD modes 

Set up time 

(s) 

Reconstruction 

time (s) 

Total time 

(s) 

YU®¯°±²_´µTY�¶T

POD 

Reconstruction 

5 

400 

64.5 464.5 1.7 x 10-2 

10 133.6 533.6 2.0 x 10-2 

CFD 2.7 x 104 



 

 

 662 

This saving of calculation time is important especially considering that the reconstruction process is 663 

carried out only once. As indicated in the last column of the table it is also advantageous to use POD 664 

reconstruction with respect to CFD data. The difference in processing time between the two 665 

numerical methodologies evidences the advantage of using the POD technique for flow 666 

reconstruction and its subsequent use as input to other physical and biochemical models. 667 

In particular, a continuous 3D reconstruction of the velocity field at a minimal computational cost can 668 

be particularly interesting to perform Lagrangian Particle Tracking and/or a compartmentalization of 669 

the fluid domain.  670 

Conclusions 671 

By using a per-zone and global POD approaches, it is possible to reconstruct the 3D mean and 672 

organized unsteady flow of a four-baffled agitated tank equipped with a Rushton turbine.    673 

The per-zone method turns out to be an option to reconstruct the velocity field but such a 674 

methodology involves a larger number of steps compared with the global treatment of the entire 675 

volume. 676 

For the global POD approach, the fact that in an inertial reference frame, the spatial coordinates of 677 

the cells belonging to the rotating zone are changing does not actually matter for the POD 678 

reconstruction. Such findings show the feasibility of using the POD technique for velocity field 679 

reconstruction using a CFD simulation on a mesh with a stationary zone and a rotating zone without 680 

zone separation.   681 

The global POD decomposition results provide a series of components with different variances and 682 

frequencies. The top ranking modes present temporally periodic, these ones are associated with the 683 

reconstruction of coherent structures. The frequency associated to the first three modes (carrying 684 

99.9% of the total system variance) is identical to the rotation frequency of the turbine. The first and 685 



 

 

second modes are localized in the rotating zone and their axial component is essentially zero. The 686 

third mode carries the information related to the mean flow so its contribution is present in the 687 

whole domain. The largest horizontal (circulation loops) and vertical vortices are contained in it.  688 

The coherent structures found by means of global POD reconstruction do not depend on the number 689 

of snapshots implying a statistical convergence of such organized movements. There exist modes of 690 

very low variance associated with the reconstruction of very organized structures. Such modes 691 

turned out to be harmonic frequencies of the main frequency associated the rotation of the turbine. 692 

When three modes are considered for the reconstruction of the mean and organized velocity field, 693 

the maximum average error is of the order of six percent with respect to the CFD data. The addition 694 

of higher modes reveals an improvement in the maximum average error but it is not large unless 695 

several modes are considered. 696 

The POD technique proves to be accurate even when evaluating a localized and instantaneous error. 697 

As expected, such accuracy is greatly improved when a larger number of POD modes are included. 698 

 699 

Funding: This work was supported by the Instituto Tecnológico de Costa Rica; Institute Français 700 

d’Amérique Centrale IFAC, Campus France; and the Institute National des Sciences Appliquées 701 

Toulouse. 702 

 703 

 704 

 705 

 706 

 707 



 

 

References 708 

 709 

Arányi, P., Janiga, G., Zähringer, K., & Thévenin, D. (2013). Analysis of different POD methods for PIV-710 

measurements in complex unsteady flows. International Journal of Heat and Fluid Flow, 43, 711 

204–211. https://doi.org/10.1016/j.ijheatfluidflow.2013.07.001 712 

Baldi, S., Ducci, A., & Yianneskis, M. (2004). Determination of Dissipation Rate in Stirred Vessels 713 

Through Direct Measurement of Fluctuating Velocity Gradients. Chemical Engineering & 714 

Technology, 27(3), 275–281. https://doi.org/10.1002/ceat.200401979 715 

Berkooz, G., Holmes, P., & Lumley, J. L. (1993). The Proper Orthogonal Decomposition in the Analysis 716 

of Turbulent Flows. Annual Review of Fluid Mechanics, 25(1), 539–575. 717 

https://doi.org/10.1146/annurev.fl.25.010193.002543 718 

Borée, J. (2003). Extended proper orthogonal decomposition: A tool to analyse correlated events in 719 

turbulent flows. Experiments in Fluids, 35(2), 188–192. https://doi.org/10.1007/s00348-003-720 

0656-3 721 

Bugay, S., Escudié, R., & Liné, A. (2002). Experimental analysis of hydrodynamics in axially agitated 722 

tank. AIChE Journal, 48(3), 463–475. 723 

de Lamotte, A., Delafosse, A., Calvo, S., & Toye, D. (2018a). Analysis of PIV measurements using 724 

modal decomposition techniques, POD and DMD, to study flow structures and their 725 

dynamics within a stirred-tank reactor. Chemical Engineering Science, 178, 348–366. 726 

https://doi.org/10.1016/j.ces.2017.12.047 727 

de Lamotte, A., Delafosse, A., Calvo, S., & Toye, D. (2018b). Identifying dominant spatial and time 728 

characteristics of flow dynamics within free-surface baffled stirred-tanks from CFD 729 

simulations. Chemical Engineering Science, 192, 128–142. 730 

https://doi.org/10.1016/j.ces.2018.07.024 731 



Delafosse, A. (2008). Analyse et étude numérique des effets de mélange dans un bioréacteur 732 

[Université Fédérale Toulouse Midi-Pyrénées]. 733 

http://www.theses.fr/2008ISAT0029/document 734 

Delafosse, A., Liné, A., Morchain, J., & Guiraud, P. (2008). LES and URANS simulations of 735 

hydrodynamics in mixing tank: Comparison to PIV experiments. Chemical Engineering 736 

Research and Design, 86(12), 1322–1330. 737 

Delafosse, A., Morchain, J., Guiraud, P., & Liné, A. (2009). Trailing vortices generated by a Rushton 738 

turbine: Assessment of URANS and large Eddy simulations. Chemical Engineering Research 739 

and Design, 87(4), 401-411. 740 

Du, J., Fang, F., Pain, C. C., Navon, I. M., Zhu, J., & Ham, D. A. (2013). POD reduced-order unstructured 741 

mesh modeling applied to 2D and 3D fluid flow. Computers & Mathematics with Applications, 742 

65(3), 362–379. https://doi.org/10.1016/j.camwa.2012.06.009 743 

Ducci, A., & M, Y. (2007). Vortex tracking and mixing enhancement in stirred processes. AIChE 744 

Journal, 53(2), 305–315. https://doi.org/10.1002/aic.11076 745 

El-Adawy, M., Heikal, M., A. Aziz, A., Adam, I., Ismael, M., Babiker, M., Baharom, M., Firmansyah, & 746 

Abidin, E. (2018). On the Application of Proper Orthogonal Decomposition (POD) for In-747 

Cylinder Flow Analysis. Energies, 11(9), 2261. https://doi.org/10.3390/en11092261 748 

Escudié, R., & Liné, A. (2004). Experimental analysis of hydrodynamics in a radially agitated tank. 749 

AIChE Journal, 49(3), 585–603. https://doi.org/10.1002/aic.690490306 750 

Fernandes del Pozo, D., Liné, A., Van Geem, K. M., Le Men, C., & Nopens, I. (2020). Hydrodynamic 751 

analysis of an axial impeller in a non-Newtonian fluid through particle image velocimetry. 752 

AIChE Journal, 66(6): e16939. https://doi.org/10.1002/aic.16939 753 

Gabelle, J. C., Morchain, J., Anne-Archard, D., Augier, F., & Liné, A. (2013). Experimental 754 

determination of the shear rate in a stirred tank with a non-Newtonian fluid: Carbopol. AIChE 755 

Journal, 59(6), 2251–2266. https://doi.org/10.1002/aic.13973 756 



 

 

Gabelle, J. C., Morchain, J., & Liné, A. (2017). Kinetic Energy Transfer between First Proper 757 

Orthogonal Decomposition Modes in a Mixing Tank. Chemical Engineering & Technology, 758 

40(5), 927–937. https://doi.org/10.1002/ceat.201600674 759 

Hartmann, H., Derksen, J. J., Montavon, C., Pearson, J., Hamill, I. S., & van den Akker, H. E. A. (2004). 760 

Assessment of large eddy and RANS stirred tank simulations by means of LDA. Chemical 761 

Engineering Science, 59(12), 2419–2432. 762 

Hasal, P. (2000). Macro-instabilities of velocity field in stirred vessel: Detection and analysis. Chemical 763 

Engineering Science, 11. 764 

Hasal, P., Fort, I., & Kratena, J. (2004). Force Effects of the Macro-Instability of Flow Pattern on Radial 765 

Baffles in a Stirred Vessel With Pitched-Blade and Rushton Turbine Impellers. Chemical 766 

Engineering Research and Design, 82(9), 1268–1281. 767 

https://doi.org/10.1205/cerd.82.9.1268.44169 768 

Holmes, P., Lumley, J. L., & Berkooz, G. (1996). Turbulence, Coherent Structures, Dynamical Systems 769 

and Symmetry. Cambridge: Cambridge University Press. 770 

Howard, C., Gupta, S., Abbas, A., Langrish, T. A. G., & Fletcher, D. F. (2017). Proper Orthogonal 771 

Decomposition (POD) analysis of CFD data for flow in an axisymmetric sudden expansion. 772 

Chemical Engineering Research and Design, 123, 333–346. 773 

https://doi.org/10.1016/j.cherd.2017.05.017 774 

Janiga, G. (2019). Large-eddy simulation and 3D proper orthogonal decomposition of the 775 

hydrodynamics in a stirred tank. Chemical Engineering Science, 201, 132–144. 776 

https://doi.org/10.1016/j.ces.2019.01.058 777 

Joshi, J. B., Tabib, M. V., Deshpande, S. S., & Mathpati, C. S. (2009). Dynamics of Flow Structures and 778 

Transport Phenomena, 1. Experimental and Numerical Techniques for Identification and 779 

Energy Content of Flow Structures. Industrial & Engineering Chemistry Research, 48(17), 780 

8244–8284. https://doi.org/10.1021/ie8012506 781 

Karhunen, K. (1946). Zur spektral Theorie stochastischer Prozesse. Ann. Acad. Sci. Fennicae Ser., 34. 782 



Kerschen, G., Golinval, J., Vakakis, A. F., & Bergman, L. A. (2005). The Method of Proper Orthogonal 783 

Decomposition for Dynamical Characterization and Order Reduction of Mechanical Systems: 784 

An Overview. Nonlinear Dynamics, 41(1–3), 147–169. https://doi.org/10.1007/s11071-005-785 

2803-2 786 

Knight, B., & Sirovich, L. (1990). Kolmogorov inertial range for inhomogeneous turbulent flows. 787 

Physical Review Letters, 65(11), 1356–1359. https://doi.org/10.1103/PhysRevLett.65.1356 788 

Kosambi, D. D. (1943). Statistics in function space. Journal of the Indian Mathematical Society, 7, 76–789 

88. 790 

Liang, Y. C., Lee, H. P., Lim, S. P., Lin, W. Z., Lee, K. H., & Wu, C. G. (2002). PROPER ORTHOGONAL 791 

DECOMPOSITION AND ITS APPLICATIONS—PART I: THEORY. Journal of Sound and Vibration, 792 

252(3), 527–544. https://doi.org/10.1006/jsvi.2001.4041 793 

Liné, A. (2016). Eigenvalue spectrum versus energy density spectrum in a mixing tank. Chemical 794 

Engineering Research and Design, 108, 13–22. https://doi.org/10.1016/j.cherd.2015.10.023 795 

Liné, A., Gabelle, J.-C., Morchain, J., Anne-Archard, D., & Augier, F. (2013). On POD analysis of PIV 796 

measurements applied to mixing in a stirred vessel with a shear thinning fluid. Chemical 797 

Engineering Research and Design, 91(11), 2073–2083. 798 

https://doi.org/10.1016/j.cherd.2013.05.002 799 

Loève, M. (1945). Functions aleatoire de second ordre. C.R. Acad. Sci. Paris, 220. 800 

Mikhaylov, K., Rigopoulos, S., & Papadakis, G. (2021). Reconstruction of large-scale flow structures in 801 

a stirred tank from limited sensor data. AIChE Journal. https://doi.org/10.1002/aic.17348 802 

Ng, K., & Yianneskis, M. (2000). Observations on the Distribution of Energy Dissipation in Stirred 803 

Vessels. Chemical Engineering Research and Design, 78(3), 334–341. 804 

Raju, R., Balachandar, S., Hill, D. F., & Adrian, R. J. (2005). Reynolds number scaling of flow in a stirred 805 

tank with Rushton turbine. Part II — Eigen decomposition of fluctuation. Chemical 806 

Engineering Science, 60(12), 3185–3198. https://doi.org/10.1016/j.ces.2004.12.040 807 



Rodriguez, G., Weheliye, W., Anderlei, T., Micheletti, M., Yianneskis, M., & Ducci, A. (2013). Mixing 808 

time and kinetic energy measurements in a shaken cylindrical bioreactor. Mixing, 91(11), 809 

2084–2097. https://doi.org/10.1016/j.cherd.2013.03.005 810 

Sirovich, L. (1987a). Turbulence and the dynamics of coherent structures. I. Coherent Structures. 811 

Quarterly of Applied Mathematics, 45(3), 573–582. https://doi.org/10.1090/qam/910463 812 

Sirovich, L. (1987b). Turbulence and the dynamics of coherent structures. II. Symmetries and 813 

transformations. Quarterly of Applied Mathematics, 45(3), 573–582. 814 

https://doi.org/10.1090/qam/910463 815 

Sirovich, L. (1987c). Turbulence and the dynamics of coherent structures. III. Dynamics and Scalling. 816 

Quarterly of Applied Mathematics, 45(3), 573–582. https://doi.org/10.1090/qam/910463 817 

Smith, T. R., Moehlis, J., & Holmes, P. (2005). Low-Dimensional Modelling of Turbulence Using the 818 

Proper Orthogonal Decomposition: A Tutorial. Nonlinear Dynamics Springer, 41, 275–307. 819 

Tirunagari, S., Vuorinen, V., Kaario, O., & Larmi, M. (2012). Analysis of Proper Orthogonal 820 

Decomposition and Dynamic Mode Decomposition on LES of Subsonic Jets. CSI Journal of 821 

Computing, 1(3), 46-50. 822 

823 

824 




