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Abstract

Background: Individual tree extraction from terrestrial laser scanning (TLS) data is a prerequisite for tree-scale
estimations of forest biophysical properties. This task currently is undertaken through laborious and time-consuming
manual assistance and quality control. This study presents a new fully automatic approach to extract single trees from
large-area TLS data. This data-driven method operates exclusively on a point cloud graph by path finding, which
makes our method computationally efficient and universally applicable to data from various forest types.

Results: We demonstrated the proposed method on two openly available datasets. First, we achieved
state-of-the-art performance on locating single trees on a benchmark dataset by significantly improving the mean
accuracy by over 10% especially for difficult forest plots. Second, we successfully extracted 270 trees from one hectare
temperate forest. Quantitative validation resulted in a mean Intersection over Union (mIoU) of 0.82 for single crown
segmentation, which further led to a relative root mean square error (RMSE%) of 21.2% and 23.5% for crown area and
tree volume estimations, respectively.

Conclusions: Our method allows automated access to individual tree level information from TLS point clouds. The
proposed method is free from restricted assumptions of forest types. It is also computationally efficient with an
average processing time of several seconds for one million points. It is expected and hoped that our method would
contribute to TLS-enabled wide-area forest qualifications, ranging from stand volume and carbon stocks modelling to
derivation of tree functional traits as part of the global ecosystem understanding.

Keywords: Point cloud, Segmentation, Tree extraction, Graph pathing

Background
Past two decades have witnessed the great advancements
of terrestrial laser scanning (TLS) technique in delineating
the unprecedented three-dimensional (3D) structures of
trees and forests (Calders et al. 2020). By far, TLS provides
the most accurate measures at the scale of individual trees
through its product named point cloud (Liang et al. 2016).
A point cloud contains highly precised 3D coordinates
in combination with radiometric information of objects
(Pfeifer et al. 2008). A range of applications including
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retrieval of conventional forest inventories parameters
such as stem location (Liang et al. 2014), diameter at the
breast height (DBH) (Wang et al. 2017), stem curve (Wang
et al. 2019), and estimate of tree physiological properties
such as leaf angle distribution (Liu et al. 2019), branch-
ing architecture (Lau et al. 2018), and standing volume
(Calders et al. 2015) have shown the promising capability
of TLS in quantifying ecosystem structure and function.
A key prerequisite to these applications is the proper

interpretation of the information content of point clouds
(Burt et al. 2019). In particular, individual trees have to
be extracted first from plot level or wider area data to
enable the retrieval of interested parameters at tree-scale.
For example, newly developed shape-fitting approaches
such as quantitative structure model (QSM) allow the 3D
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reconstruction of tree woody structures (Raumonen et
al. 2013; Hackenberg et al. 2015; Du et al. 2019). Based
on QSMs, tree above-ground volume, biomass, carbon
stocks, branching structures (Lau et al. 2018), and also
species (Åkerblom et al. 2017) can be accurately estimated
and recognized. Such applications all require the point
cloud of individual trees to be identified first. Currently,
this task is often carried out by laborious and time-
consuming manual manipulations, which is impractical
for large-area data delineation. An automated solution
with high effectiveness and efficiency is greatly desirable.
Over the past years, a number of approaches were devel-

oped to tackle the task of individual tree extraction from
TLS data. Most methods followed a bottom-up mental-
ity by first identifying tree bases or stems, then gradually
allocating crown points to respective bases. In earlier
developments, only tree stems were extracted using meth-
ods such as feature-based filtering (Liang et al. 2014),
Euclidean clustering (Hackenberg et al. 2015), circle fit-
ting (Pueschel et al. 2013), and point cloud projection
(Wang et al. 2016). Consequently, less attentions were
paid on detailed crown segmentation. Nevertheless, sev-
eral methods were proposed, especially in past five years,
to focus on crown segmentation. Raumonen et al. (2015)
proposed a morphological approach that locates tree stem
first. Then detected stems were expanded to crowns using
fixed distance connectivity assumptions. The same idea
was later implemented by Trochta et al. (2017). Limitation
of this method is its restricted applicability on open forests
with sparsely distributed trees only (Burt et al. 2019). A
popular group of methods used graph based theory and
technique. Tao et al. (2015) was among the firsts to apply
graph shortest path algorithm to resemble the nature of
trees for transporting water and nutrients in a most effi-
cient way. Wang (2020) also used the same principle by
constructing a superpoint graph instead, and achieved
single tree extraction and leaf-wood separation simulta-
neously. Zhong et al. (2016) utilized normalized graph
cut as an energy minimization technique to group crown
points to candidate stems. Similarly, Heinzel and Huber
(2018) developed a graph-based constrained spectral clus-
tering approach which minimized the energy of a Markov
Random Field. In a recent development, deep learning
based approach has been explored for tree extraction as
well (Wang et al. 2019). In general, all these methods
demand the tree bases or stems to be identified first prior
to graph-based manipulations. Moreover, some automatic
methods required manual assistance either in field (Bar-
beito et al. 2017) or in post-processing (Calders et al. 2015;
Burt et al. 2019). In addition, quantitative assessment of
point-wise crown segmentation was only carried out for
synthetic data before (Wang 2020). The available datasets
with ground-truth crown boundaries are still very rare
nowadays.

The objective of this study is to present a fully automatic
approach for individual tree extraction from TLS data.
Specifically, we propose a graph pathing algorithm that
operates on the point cloud graph only. We jointly search
for tree bases or roots and allocate other points to respec-
tive roots within the graph by using graph path finding
techniques. In this way, we also ensure a fast computation
even for wide-area data. Moreover, this study aims to pro-
vide the first quantitative assessments of point-wise crown
segmentation in real forests.

Materials
The assessments of the effectiveness of single tree extrac-
tion involve two metrics, tree location and detailed crown
segmentation. Among them, tree location can be manu-
ally measured in the field or identified in the point clouds,
whereas single tree crowns are very challenging to delin-
eate even visually (Heinzel and Huber 2018). Therefore,
most studies on single tree extraction evaluated their
methods on tree locations (i.e., stem mapping) only. The
assessment of point-wise crown segmentation has rarely
been materialized. To the best of our knowledge, there
exists no open datasets with both ground-truth tree loca-
tions and detailed crown boundaries, except synthetic
ones (Wang 2020). On account of this, we used two sep-
arate datasets in this study to evaluate our method on
locating single trees and isolating crowns, respectively.
One dataset from Finland was included to benchmark
our study with others on stem mapping. Additionally,
we included a large-area dataset from Australia that pro-
vided selected manually extracted single trees to assess
our method on crown segmentation.

Finland data
We acquired openly available TLS datasets of six forest
plots from the international TLS benchmarking project,
which was organized by the Finish Geospatial Research
Institute (FGI) (Liang et al. 2018). We provide here an
overview of this dataset, and the readers are referred to
Liang et al. (2018) for a full description of these bench-
marking plots.
Overall, these datasets were acquired from southern

boreal forests in Evo, Finland. The dominant tree species
were Scots pine (Pinus sylvestris L.), Norway spruce (Picea
abies L. Karst.), silver birch (Betula pendula Roth), and
downy birch (Betula pubescens Ehrh.). The openly avail-
able six plots covered various tree species, stem densities,
developing stages, and abundance of understory vegeta-
tion. These characteristics were further used to categorize
the plots into three complexity types (i.e., easy, medium,
and difficult) by the benchmarking organizer FGI.
The Leica HDS1600 scanner (Leica Geosystems AG,

Heerbrugg, Switzerland) was used to obtain the point
cloud data of each 32 × 32 m plot. Multi-scan mode was
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Fig. 1 The Australia RUSH06 dataset. (a) Point cloud of the one hectare plot. (b) Point clouds of 36 selected trees

deployed in the field, and both single- and multi-scan data
were provided. Since we focus on full-tree extraction with
a specific interest on detailed crown segmentation, only
multi-scan data were used in this study. Moreover, we fil-
tered out terrain points and normalized the height of each
point to its above-ground value by using the open-source
cloth simulation method (Zhang et al. 2016).

Australia data
The Australia data were gathered and shared by Calders
et al. (2015). These data were collected from a native
Eucalypt temperate Forest (dry sclerophyll Box-Ironbark
forest) in Victoria, Australia. We acquired a subset dataset
RUSH06 from the Rushworth forest, which had a stem
density of 347 stems per hectare and a basal area of 13 m2

per hectare, respectively.
TLS data were collected using the Riegl VZ-400 scan-

ner (Riegl Laser Measurement Systems GmbH). The
scan sampling setting deployed one center scan and four
other scans at 40 m from the center. In this study, we
cropped the plot to one hectare (100 × 100 m) (Fig. 1a),
which contains approximately 37.5 million points. The
study of (Calders et al. 2015) aimed for estimating tree
above ground biomass from TLS data. A number of
selected trees were thus destructively harvested and their

biomasses were precisely measured. The authors then
semi-automatically extracted corresponding tree point
clouds and reconstructed individual trees to compare the
estimated biomass with destructive ones. In total, 36 trees
were included from the RUSH06 forest (Fig. 1b). Point
clouds of these trees were manually corrected and visually
inspected. Consequently, they were used in this study to
assess our results on detailed crown segmentation.

Methods
The proposed approach operates exclusively on the point
cloud graph. The key idea is to walk each node through
the graph edges and search for the correct root nodes. We
use the height information that is inherently embedded
in the node features to find valid root nodes. Ultimately,
all nodes that arrive to the same root node belong to the
same cluster (i.e., tree). The entire flowchart is illustrated
in Fig. 2. We describe below in details the key steps in
constructing the point cloud graph, pathing through the
graph, and determining the node clusters.

Graph construction

A point cloud graph G = (V , E ,W) consists of a set
of vertices V (i.e., nodes), edges E representing a set of

Fig. 2 Flowchart of this study
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unordered pairs of vertices, and edge weights W : E ∈ R

mapping the Euclidean distances between graph nodes.
Conventionally, there exists several methods to convert

a point cloud into a graph. Themost widely used k-nearest
neighbors (KNN) graph connects a point to its neighbors
to generate a graph. Similarly, the neighboring connectiv-
ity can otherwise be defined by bounding points in a given
radius R. On the other hand, such connectivity property
can be directly modeled by the Delaunay triangulation.
Each method has certain advantages and drawbacks. For
example, KNN generates a balanced graph, but is vulner-
able to distanced neighbors with dispersed edges. More-
over, KNN may be trapped to locally dense regions and
results in a disconnected graph. R radius graph is robust
to distanced neighbors but is sensitive to heterogeneous
point densities. Lastly, Delaunay triangulation produces
a fully connected graph but is vulnerable to noise and
distanced neighbors as well. Ben-Shabat et al. (2018) com-
pared all these methods for constructing a graph while
aiming for point cloud segmentation, and recommended
KNN based on their results.
In our study, we leverage the advantages of KNN and

Delaunay triangulation graph by merging them to gener-
ate a hybrid graph (Fig. 2). Specifically, we first construct
a KNN (i.e., k = 10) graph based on the KD-Tree struc-
ture. We then prune the graph to remove dispersed edges.
For each node, its edges that are one standard deviation
anyway from the average length of edges connected to it
are removed. In this way, the graph is locally pruned and
optimized. Subsequently, the Delaunay triangulation is
applied to generate a fully connected graph. Similarly, we

prune the Delaunay graph to remove long edges. However,
the pruning is instead performed globally by excluding
edges whose lengths are longer than the 80th percentile of
all edge. A sensitivity analysis of these pruning criteria is
give in the results section. Consequently, the pruned edges
from both graphs are then merged. To do so, we achieve
a hybrid graph with rich and continuous point connectiv-
ity by taking advantages of both techniques and avoided
undesirable edges. Figure 3 illustrates the advantage of
such as a hybrid graph.

Node pathing
The key step of our method is to walk each note within
the graph (i.e., pathing or path finding). Initially, we move
each note to its lowest neighboring node (Fig. 4b) by
assuming that the tree root node would have the lowest
height. The neighboring relationship is bounded by graph
edges. The reached lowest node in the neighbors then
becomes the seed node, and this procedure is continued
until the reached node cannot be moved anymore (i.e., the
lowest in the vicinity). Accordingly, we achieve an initial
clustering result, in which the nodes that reach the same
lowest node are grouped (Fig. 4c). The reached lowest
nodes are denoted as root nodes. Nevertheless, it is obvi-
ous that tree branching structures will not follow a rigid
downward centripetal orientation. Some graph nodes will
eventually land at their local lowest, rather than the global
lowest which is expected to be the tree root node (Fig. 4c).
We then refine the detected root nodes to locate the

desirable root nodes that represent tree roots. First, we
prune root nodes that are higher than a threshold H. This

Fig. 3 (a) Unpruned KNN edges. (b) Unpruned Delaunay edges. (c) Generated hybrid graph. Note that the dispersed edges in KNN were pruned, and
the gap was further completed by the pruned Delaunay edges to generate a connected graph with rich and continuous point connectivity as in (c)
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Fig. 4 Visualization of steps in graph pathing. (a) The hybrid graph that is generated from the point cloud. (b) Walk each node to the lowest node in
its neighbors. The neighbors (e.g., light purple) of a node (e.g., purple) are bounded by nodes having edges connected to it. (c) The process in (b) is
continued until the reached node is already the lowest in its vicinity. The nodes reaching the same node are then grouped, and the reached node of
each group is denoted as a root node (e.g., node 1, 2, and 3). (d) Root nodes are further pruned (e.g., node 1 in (c)) and merged (e.g., node 2 and 3 in
(c)). Finally, the nodes connected to invalid roots are corrected to the valid roots by shortest pathing

simple step already eliminates a majority of invalid root
nodes. The determination of H depends on the quality
of point clouds. For example, if a plot is well sampled
by multi-scan TLS so that tree stems are clearly repre-
sented in the point cloud, the H value can be set to low
such as 1 m. Otherwise, H can be increased to e.g., 3 m
to mitigate the impacts from poorly sampled tree stems.
Second, the remaining root nodes are further merged, as
some nodes can be from the same tree stem. Specifically,
we merge two root nodes if their Euclidean distance is
shorter than a threshold Ed, and their graph distance is
shorter than n (e.g., 3) times that of Ed. The graph dis-
tance is defined as the shortest path distance resolved by
the Dijkstra algorithm (Dijkstra 1959). Indubitably, Ed is
linked to the distance between two adjacent tree stems.
Furthermore, the graph distance is a more robust measure
than Euclidean distance in this circumstance. For exam-
ple, two root nodes form two neighboring trees can be
spatially near, but their graph distance is either infinite
or very large. Therefore, by evaluating the graph distance,
two spatially near root nodes can be further investigated if
they are from the same tree or not.
Consequently, only valid root nodes are retained. All

graph nodes that are initially landed at those invalid nodes
are routed to a specific corresponding valid root node that
has the shortest path to them (Fig. 4d).

Node clustering

The above-mentioned pathing step allocates each graph
node to a root, which is essentially a clustering proce-
dure. Therefore, the outcome of this method is a num-
ber of point clusters that represent individual trees. It is
noted that our method can be easily operated on a coarse
point cloud first (e.g., superpoints), and the results can be
mapped back to full resolution. In this study, we sampled

points from uniformly distributed 10 cm voxels to extract
trees first, and the results are encoded with original reso-
lution. This further accelerates the processing.

Assessments
The assessments of our method is on two parts, tree
locations and detailed crown segmentation.
Tree locations are assessed following the metrics used

in the TLS benchmarking project (Liang et al. 2018).
Three metrics including the completeness, the correct-
ness, and the mean accuracy of detection are calculated.
The completeness measures the percentage of detected
reference trees. The correctness measures the percentage
of detected trees against references. The mean accuracy is
the joint metric based on the completeness and correct-
ness, given by:

Completeness = nmatch
nref

, (1)

Correctness = nmatch
nextr

, (2)

Mean accuracy = 2nmatch
(nref + nextr)

, (3)

where nmatch is the number of detected reference trees,
nref is the number of reference trees, and nextr is the
number of detected trees.
On the contrary, the Intersection over Union (IoU), a

standard metric for segmentation evaluation measure, is
used to assess the detailed crown segmentation. For an
N ×N confusion matrix (N = 36 in this study), each entry
cij refers to the number of points from reference tree i pre-
dicted as tree j. Then the IoU of tree i is calculated as:

IoUi = cii
cii + ∑

j �=i cij +
∑

k �=i cki
. (4)
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The mean IoU (mIoU) of all trees is then estimated by:

mIoU =
∑N

i=1 IoUi
N

. (5)

We additionally assessed our results for estimating
crown area and tree volume. Crown area was calculated as
the vertically projected bounding area of a tree, and tree
volume was the volume of convex hull of the entire tree.
The root mean square error (RMSE) and its relative value
were reported as:

RMSE =
√
√
√
√1

k

k∑

i=1
(yi − ŷi)2, (6)

RMSE(%) = 100% × RMSE
ȳ

, (7)

where k is the number of observation data, ŷ denotes the
reference value and ȳ is the mean value of the variable.

Method comparisons
Several studies that also used the benchmark dataset from
Finland reported their accuracies of locating single trees.
We hereby performed quantitative comparisons of our
results with two state-of-the-art approaches in Zhang et
al. (2019) and Wang (2020). However, unfortunately, it is
unfeasible to compare our results on detailed crown seg-
mentation with both approaches, as only Wang (2020)
was able to segment individual crowns, while Zhang et al.
(2019) only detected tree locations.

Results
Sensitivity of pruning criteria for graph construction
In this study, we generated a hybrid graph by merging
pruned KNN and Delaunay edges. The pruning operation
involved two criteria, one standard deviation for KNN
edges and 80th percentile for Delaunay edges, respec-
tively. Theoretically, these criteria were only set to ensure
a graph with rich and continuous point connectivity, and
were not directly influential to the downstream analyses.
Nonetheless, we provide here a sensitive analysis of these
two pruning criteria for crown segmentation from the
Australia dataset.
We tested the multiplication factor of standard devia-

tion from one to three for KNN edges, and from 80th
and 90th percentile with an increment of 5 percentile
for Delaunay edges. In total, nine different combinations
were tested. The results of mIoU for crown segmen-
tation of the Australian dataset were shown in Fig. 5.
Overall, the manipulations of pruning criteria did not
impact the results significantly. The standard deviation of
mIoUs from nine criteria combinations were only 1.5%.
Specifically, the multiplication factor of standard devi-
ation had negligible impacts. While by increasing the
pruning threshold for Delaunay edges from 80th to 90th,

Fig. 5 Sensitivity test of pruning criteria for graph construction.
Residual was against the default criteria with one standard deviation
for KNN and 80th percentile for Delaunay edges. std is short for
standard deviation

the results worsened by about 0.03 in mIoU. This, how-
ever, was well expected as increasing this value meant that
fewer long edges were removed. So the final graph was
more vulnerable to dispersed edges from Delaunay trian-
gulation. Overall, we showed that the pruning criteria for
graph construction were insensitive.

Finland data

The results of our method on locating single trees, and the
comparisons with other two state-of-the-art approaches
proposed in Zhang et al. (2019) and Wang (2020) were
summarized in Table 1. Overall, our method outper-
formed others by a wide margin in terms of mean accu-
racy. The improvement was more significant for difficult
plots with over 10% increase. Our method achieved 76.9%
completeness for difficult plots,whereasZhang et al. (2019)
and Wang (2020) reported 36.1% and 58.3%, respectively.
However, we were not able to compete with Zhang et al.
(2019) on correctness. In general, our method resulted
in a more balanced performance with the highest overall
accuracy.

Australia data
In total, we extracted 270 trees from the one hectare
RUSH06 Australia data (Fig. 6). The mIoU was 0.82 for
detailed crown segmentation, with a standard deviation
of 0.14 and individual IoUs ranging from 0.51 to 1.00.
As a comparison, Wang (2020) also achieved a mIoU of
0.82, but with a higher standard deviation of 0.19. As
for the estimations of crown area and tree volume, our
results showed an RMSE of 11.5 m2 (21.2%) and 139.5 m3

(23.5%), respectively (Fig. 7). The R2 of the linear regres-
sion line (Fig. 7a black line) for crown area estimation was
0.91, with a slope of 0.88. Similarly, the R2 of the linear
regression line (Fig. 7b black line) for tree volume estima-
tion was 0.91 as well. The slope was 0.95. These results
indicate that our method is able to precisely segment indi-
vidual crowns and is effective in estimating tree attributes
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Table 1 Tree extraction performance on Finland dataset

Plot Completeness(%) Correctness(%) Mean accuracy(%)

Complexity Z W Ours Z W Ours Z W Ours

Easy 86.3 90.2 96.1 97.8 95.8 96.1 91.7 92.9 96.1

Easy 82.1 92.9 92.9 95.8 81.3 89.7 88.5 86.7 91.2

Medium 61.5 79.1 84.5 100.0 72.2 90.6 76.2 75.5 87.4

Medium 57.5 78.2 89.7 97.8 70.1 74.5 72.6 74.0 81.4

Difficult 45.8 64.1 77.1 93.8 67.2 68.7 61.5 65.6 72.7

Difficult 26.3 52.5 76.7 98.4 70.9 80.8 41.5 60.3 78.7

59.9 76.2 82.3 97.3 76.3 83.4 72.0 75.8 84.6

Last row corresponds to mean values. Z: results from Zhang et al. (2019). W: results from Wang (2020)

associated to crowns. However, as shown in Fig. 8, accu-
rate point-wise segmentation was always very challenging
to achieve especially for heavily intersected crowns, for
which the shortest path analysis generally failed (Wang
2020). Nonetheless, our results indicated that despite the
challenge in point-wise segmentation, automatic crown-
level metrics retrieval was instead reliable.

Method efficiency
One of the advantages of our method is its computational
efficiency. The runtime of our method depends on both
total number of points and number of trees to be extracted
(Fig. 9). In average, the processing time was 1.6 min for
one plot from the FGI benchmark dataset (i.e., averaging
12.5 million points and 119 trees). For the one hectare
Australia dataset with 37.5million points, the runtimewas
8.5min andwemanaged to extract 270 trees. Themachine
we used to run the algorithm had the following specifica-
tions: Windows 10, Intel® CoreTM i9-10900X and 32 GB
RAM. Although different machines were used, our run-
time is generally much lower than previous studies for full
tree extraction (Burt et al. 2019; Wang 2020).

Discussion
Although TLS had made promising progress in forest
applications in past two decades, the automation of data
processing remains a crucial challenge and very often
time-demanding manual works are still needed (Calders
et al. 2020). Meanwhile, a key prerequisite is to prop-
erly understand the information contents embedded in
the forest plots so that individual tree level attributes can
be retrieved (Burt et al. 2019). This requirement generally
involves two fundamental tasks, single tree extraction and
leaf-wood separation (Wang 2020). Our study focuses on
automated individual tree extraction from large area data.

Challenges of tree extraction in complex forests
With regard to the practical application of a certain tree
extraction method, forest types and data quality are two
primary factors that defy its effectiveness, transferability,
and universality. Most tree extraction methods developed
for TLS data follow a bottom-up approach by first rec-
ognizing tree bases or stems, and then expanding the
bases to branches to constitute the entire crowns. Obvi-
ously, this mentality coincides with the mechanism of

Fig. 6 Extracted individual trees. Each tree is colored randomly, and black color indicates non-tree objects



Wang et al. Forest Ecosystems            (2021) 8:67 Page 8 of 11

Fig. 7 Assessments of (a) crown area and (b) tree volume. Black line indicates fitted regression. Regions bounded by light blue represents
confidence interval, whereas light gray stands for prediction interval

TLS measurements for acquiring data from near ground
with an upward field of view. For structurally simple and
sparse forest types with distanced trees andminimal inter-
action between crowns, it is plausible that many tree
extraction methods are equally effective. However, more
complex forests such as tropical rainforests and other nat-
ural ecosystems would impose significant challenges. For
example, dense low vegetation and complex terrain con-
ditions would greatly defect the data quality, as occlusions
and limitations in setting up multi-scan TLS are often
unavoidable. Consequently, the conventionally used clus-
tering and primitive (e.g., circle or cylinder) fitting meth-
ods may fail in this circumstance when tree stems are not
well resolved in the point clouds (Trochta et al. 2017; Tao
et al. 2015; Burt et al. 2019). Thereby, many extraction
methods are essentially semi-automatic and require man-
ual assistance and quality control to correct omission or
commission errors (Calders et al. 2020).

Fig. 8 Crown segmentation. (a) Reference. (b) Our result

Advantages of graph pathing
Ourmethod operates exclusively on the point cloud graph
and seeks for tree bases directly by node pathing, thus
avoids point clustering or shape fitting that are more vul-
nerable to data quality. This advantage is demonstrated
in our results for locating trees from the FGI bench-
mark dataset. We achieved much higher completeness
(i.e., 76.9%) especially for difficult plots compared to other
methods (Table 1), indicating that our method is more
robust to occlusions and low points densities. However,
we still noticed the impacts of occlusions in our results.
In Fig. 10a, it was discovered that our method was able to

Fig. 9 The runtime of our method
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Fig. 10 Results of tree extraction of a difficult plot in the FGI
benchmark dataset. (a) Comparison between reference tree locations
and our results. (b) Each extracted tree is colored randomly. Non-tree
points are colored in black. The region highlighted by the ellipsoid
indicates a challenging occluded region

detect most trees in the central part of the plot, whereas
missed a relatively large portion of trees on the plot edge.
A visual inspection in Fig. 10b revealed that plot edges had
severe occlusions with very sparse points. Several trees
were mistakenly merged into one tree due to low confi-
dences in locating tree bases. This impact may potentially
be mitigated by leveraging the information from vertically
stacked points (Wang et al. 2016), but would only be fea-
sible for single layered forests. Overall, our method seems
fall into the “Aggressive” algorithm principle according to
the benchmarking summary, which strives to achieve the
highest stem detection rate by sacrificing the correctness
of stem detection (Liang et al. 2018). This was indeed
revealed in our results for having much higher complete-
ness compared to previous studies. However, the achieved
state-of-the-art mean accuracy also indicated that our
method was robust at the same time. It is noted that by
tweaking the parameters such H and Ed, our method may
turn into a more "Conservative" principle. As the bench-
marking project concluded, the preference and selection
of a specific algorithm all depend on the final objective of
the applications (Liang et al. 2018). The flexibility of our
method has the potential to ease such algorithm selection
or design, thus facilitates its applicability in a wide variety
of forest applications.
An additional advantage of our method is its capabil-

ity to identify non-tree points that are linked to invalid
roots (Figs. 2 and 6), which adds a particular value to
tropical forests that have excessive undergrowth. A quick
experiment on a 40 × 40 m plot data from a tropical
forest in Eastern Cameroon (Martin-Ducup et al. 2021)
showed that around 30% points were attributed to non-
tree objects such as shrubs (Fig. 11). Our method does not
rely on point clustering or shape fitting, and it is free from
assumptions such as tabular shapes when detecting stems,

Fig. 11 An example of our method applied on tropical forest
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which makes our method uniquely capable of segment-
ing and identifying undergrowth as well. Intrinsically, this
approach is able to discover all possible roots including
trees, shrubs, and other low vegetation. A large portion
of undergrowth then can be easily identified by limiting
their heights at the object level. This advantage makes our
method particular valuable in complex forests with dense
undergrowth.
We have also shown that our method is able to precisely

segment tree crowns. The yielded mIoU of 0.82 was com-
parable to a recent study from Wang (2020) on synthetic
forests. Although it is expected that the precise isolation
of tree crowns is extremely changeling especially in com-
plex forests where trees have their crowns interact with
each other, we showed that a fully automatic method can
produce a reasonable segmentation that leads to a relative
RMSE at the magnitude of 20% for crown area estimates.
It is, however, remains unknown how such a fully auto-
matic tree extraction would impact the estimation of more
advanced tree physiological attributes such as tree leaf
angle distribution (Liu et al. 2019) and above-ground
biomass (AGB) (Calders et al. 2020).
Lastly, by restricting the computations on the graph

only, we significantly reduced the computation overhead
and runtime (Fig. 9). Currently, the efforts in collect-
ing more and more TLS data from different geographical
locations and ecosystems across the globe are rapidly
accelerating, and a method that is computationally effi-
cient and robust to different data characteristics is partic-
ularly wanted.

Conclusions
Individual tree extraction form TLS data is a crucial and
fundamental step in tree-scale analysis. In this study, we
presented a simple and effective automatic approach for
this task. The proposed method was exclusively based on
a point cloud graph using path finding algorithms and
avoided using conventional processing techniques such as
point cloud feature calculation, clustering, and geometric
primitive fitting that are more sensitive to data quality.
Experiment results showed that the proposed method

achieved state-of-the-art performance on locating single
trees when compared with previous studies. In particu-
lar, our method outperformed others by a wide margin in
structurally complex forests. We also demonstrated that
the proposed method was able to precisely segment tree
crowns in large-area forests.
This study facilitates the application of TLS in forest

research for which automatic and effective tree extraction
in complex and large-area forests remains a crucial chal-
lenge. The proposed method is computationally efficient
and can process one hectare forest with nearly 300 trees
in 10 min with a standard machine. We argue that our
method provides a significant advance in confronting the

new realm of untapped research questions and applica-
tions of TLS in forest ecosystems.
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