

Multiobjective optimization of a food process based on expert knowledge: Example of 0.1 μ m skim milk microfiltration

Maëllis Belna, Amadou Ndiaye, Franck Taillandier, Christophe Fernandez, Louis Agabriel, Geneviève Gésan-Guiziou

▶ To cite this version:

Maëllis Belna, Amadou Ndiaye, Franck Taillandier, Christophe Fernandez, Louis Agabriel, et al.. Multiobjective optimization of a food process based on expert knowledge: Example of 0.1 μ m skim milk microfiltration. 35th EFFoST International Conference 2021 Healthy Individuals, Resilient Communities, and Global Food Security, European Federation of Food Science and Technology (EFFoST), Nov 2021, Lausanne, Switzerland. hal-03431172

HAL Id: hal-03431172 https://hal.inrae.fr/hal-03431172

Submitted on 16 Nov 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0 International License

Multiobjective optimization of a food process based on expert knowledge : Example of 0.1 μ m skim milk microfiltration

<u>Maëllis Belna^{1,2,3}</u>*, Amadou Ndiaye², Franck Taillandier^{*4}, Christophe Fernandez², Louis Agabriel³, Geneviève Gésan-Guiziou¹

¹STLO, INRAE, Institut Agro, F-35000 Rennes, France ²INRAE, Université de Bordeaux, I2M, F-33400 Talence, France ³Boccard, Research and Development, F-35360 Montauban-de-Bretagne, France ⁴INRAE, Aix-Marseille Université, RECOVER, France

*mbelna@boccard.fr

ON SOCIAL MEDI

Optimal project (2017-2020):

Optimized design of membrane processes for the production of dairy ingredients

ECONOMIC CONTEXT

Membrane processes

- Dairy sector
- Since more than 40 years
- Estimated market growth of 4-8 % between 2018 and 2023

Among membrane processes

Tangential microfiltration 0,1 µm of skim milk (= MF)

%\$ membrane market in dairy sector

TECHNICAL CONTEXT

TECHNICAL CONTEXT

≠ Membranes

- ≠ Materials
- ≠ Multiple designs
- ≠ Filtration performances

Performances for VRR = 3	Ceramic		Polymeric	
	UTP	GP	SW	
Filtration temperature	50°C	50°C	12°C	
Permeation flux	75-100 L.h ⁻ ¹ .m ⁻²	75 L.h ⁻¹ .m ⁻²	10 L.h ⁻¹ .m ⁻²	
Serum proteins transmissions	65-70 %	60 %	20-50 %	
Membrane lifetime	10 years	10 years	2 years	
Membrane costs	+	++		
Example of production for 24h	At 50°C : 2 productions of 8h + 2 cleanings		At 12°C : 1 production of 20h + 1 cleaning	

4

METHODOLOGY

Steps for solving a multi-objective optimization problem using expert knowledge Application to 0,1 μ m skim milk microfiltration (MF)

DEFINITION OF THE OPTIMIZATION PROBLEM

Optimization of MF

Scope of the optimization

skim milk 0,1 µm microfiltration	history of milk = constant	TMP = constant	filtration temperature = 12°C polymeric 50°C ceramic	casein permeation = not considered	cleaning & desinfection = efficient and reproducible
--	----------------------------------	----------------------	--	---	--

Optimization objectives

GRAPHICAL REPRESENTATION OF OBJECTIVES

MATHEMATICAL MODELLING OF OBJECTIVES

Acquisition of data on the MF

literature

lab & industrial datasets

lustrial ex

experimentations

expert assumptions knowledge

Modelling the optimization objective functions

- Heterogeneous data
- Few experimental points
- Model validated on dataset ranges
- Model representative of MF optimization objectives

Strongly constrained model

Tetra Alcross MFS-7. TetraPak Filtration

System

OPTIMIZATION SETUP

Optimization

- NSGA-II, Pymoo framework (Blank and Deb, 2020)
- Population size was set to 1000 and offspring to 2500
- Distribution parameter was set to 30
- Crossover and mutation operator probabilities set to resp. 0.9 and 0.5
- Tolerances on decision variables, objective functions and constraints set resp. to 0.1, 0.01, and 0.
- > Termination criterion was the maximum number of evaluations, set to 5 000 000.

Milk characteristics to be filtered :

- $V_{\text{feed}} = 230 \text{ m}^3$
- $C_{CN,milk} = 27 \text{ g.kg}^{-1}$
- $C_{SP,milk} = 6.32 \text{ g.kg}^{-1}$
- $\rho_{\rm p} = 990 \text{ kg.m}^{-3}$
- ho_{milk} = 1032 kg.m⁻³

RESULTS

- Over 1000 Paretooptimal solutions
- Consistent with literature
- Polymeric membrane compared to ceramic :
 - Technical objectives less efficient
 - BUT

05

Less expensive

UTP ceramic

GP ceramic

SW polymeric

EFFoST, Nov. 2021

PARTICULAR PARETO-OPTIMAL SOLUTIONS ANALYSIS

RESULTS

Cheaper equivalent Pareto-optimal solution

Optimization objectives

05

	CD _{CN,r}	$CD_{SP,p}$	ηp	CI	CPR
	(g.kg ⁻¹ DM)	(g.kg ⁻¹ DM)	(-)	(€)	(€)
Indus. process	а	b	С	1 774 431	370 162
Cheaper eq.	а	b	d	1 443 187	269 114
Improvement	=	=	-14 %	-19 %	-27 %
	<u> </u>	==	(\cdot)	\odot	\odot

Feed 35,52 m² 35,52

Decision variables

	Indus. process	Cheaper eq.
MT	1 (GP)	1 (GP)
Q _{feed} (m ³ .h ⁻¹)	14.71	14.84
Q _{rec1} (m ³ .h ⁻¹)	40.01	41.32
n	5	5
Jp ₁ (L.h ⁻¹ .m ⁻²)	100.63	119.67
VRR ₁	1.3	1.7
VRR ₂	1.5	2.1
VRR ₃	1.8	2.5
VRR ₄	2.3	2.8
VRR ₅	3.0	2.9

Cheaper equivalent (Total surface : 106,56 m²)

13

EFFoST, Nov. 2021

CONCLUSION & OUTLOOK

- Innovative approach combining :
 - *integration* of different *knowledge*
 - modelling of the objectives of the optimization problem
 - multiobjective optimization itself
- Optimization provided over 1000 Pareto-optimal solutions
 - Solutions close to industrial process
 - Solutions with **comparable results but at lower costs**
 - Solutions that are new reflection tracks that need to be validated in order to assess their feasibility at industrial scale
- Successful method for modelling food processes which are scientifically not wellknown

- The computational approach help us to :
 - Get out of the classical schemes of design MF
 - Re-evaluate technical solution a priori unattractive
 - Scientifically validate technical solutions
- Major drawback is the large number of solutions
 - Need to add a multicriteria decision support
 - Guide the decision maker in selected the preferred solution among the Pareto-optimal solutions

THANKS FOR YOUR ATTENTION

mbelna@boccard.fr

www.boccard.com

