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Summary

Robust statistical data modelling under potential model mis-specification often requires
leaving the parametric world for the nonparametric. In the latter, parameters are infinite
dimensional objects such as functions, probability distributions or infinite vectors. In the
Bayesian nonparametric approach, prior distributions are designed for these parameters,
which provide a handle to manage the complexity of nonparametric models in practice.
However, most modern Bayesian nonparametric models seem often out of reach to
practitioners, as inference algorithms need careful design to deal with the infinite number of
parameters. The aim of this work is to facilitate the journey by providing computational tools
for Bayesian nonparametric inference. The article describes a set of functions available in
the R package BNPdensity in order to carry out density estimation with an infinite mixture
model, including all types of censored data. The package provides access to a large class
of such models based on normalized random measures, which represent a generalization
of the popular Dirichlet process mixture. One striking advantage of this generalization
is that it offers much more robust priors on the number of clusters than the Dirichlet.
Another crucial advantage is the complete flexibility in specifying the prior for the scale
and location parameters of the clusters, because conjugacy is not required. Inference is
performed using a theoretically grounded approximate sampling methodology known as the
Ferguson & Klass algorithm. The package also offers several goodness of fit diagnostics
such as QQ-plots, including a cross-validation criterion, the conditional predictive ordinate.
The proposed methodology is illustrated on a classical ecological risk assessment method
called the Species Sensitivity Distribution (SSD) problem, showcasing the benefits of the
Bayesian nonparametric framework.
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2 BNPDENSITY

1. Introduction7

R (RCoreTeam 2019) is often cited by Bayesian statisticians as their favorite8

programming language due to the many packages that provide tools for Bayesian inference.9

The general program for Bayesian inference BUGS (Gilks, Thomas & Spiegelhalter 1993)10

has been available for a couple of decades, with interfaces in R. Since then, additional11

software has been developed to make that language more accessible to the users, for instance12

OpenBUGS (Thomas et al. 2006), JAGS (Plummer 2003), and Stan (Stan Development13

Team & Stan Developement Team 2019). All three can be accessed directly from R by14

respectively using R2OpenBUGS/R2WinBUGS (Sturtz, Ligges & Gelman 2005), rjags15

(Plummer 2019), runjags (Denwood 2016), and rstan (Stan Development Team 2018).16

Programs for specific fields of Bayesian statistics have appeared in recent years, for instance17

bspmma (Burr 2012) for meta-analysis using Dirichlet Process Mixture (DPM) models,18

DPpackage (Jara 2007; Jara et al. 2011), a bundle of functions for Bayesian nonparametric19

models, BNPmix (Canale, Corradin & Nipoti 2019), a set of functions for density estimation20

with Dirichlet process and Pitman–Yor mixing measures via marginal algorithms, PReMiuM21

(Liverani et al. 2015) for profile regression using the Dirichlet process, Biips (Todeschini,22

Caron & Fuentes 2014) for Bayesian inference via particle filtering, Bayesian Regression23

(Karabatsos 2017) for Bayesian nonparametric regression. Packages mcclust (Scrucca et al.24

2016), mcclust.ext (Wade & Ghahramani 2018) and GreedyEPL (Rastelli & Friel 2018)25

provide point estimation and credible sets for Bayesian cluster analysis. The interested reader26

may refer to the CRAN Task View on Bayesian Inference for an extensive list of R packages27

dedicated to Bayesian statistics (see Section 4 for a more detailed discussion of R packages28

for Bayesian density estimation).29

Robust statistical data modeling under potential model mis-specification often30

requires relaxing parametric assumptions for nonparametric assumptions. In Bayesian31

Nonparametrics (BNP), parameters are infinite dimensional objects such as functions,32

probability distributions or infinite vectors. Prior distributions are designed for these33

parameters, which provide a handle to manage the complexity of nonparametric models34

in practice. However, the applicability of BNP models, for data analysis, depends on the35

availability of user-friendly software. This is because BNP models typically require complex36

representations, which may not be immediately accessible to non-experts. This work focuses37

on inference of densities with mixture models (Frühwirth-Schnatter, Celeux & Robert 2018).38

The purpose of the present paper is to introduce and describe an extensive revamping of39

the BNPdensity package, originally presented in Barrios et al. (2013). The package is40

programmed in R, and is available from the Comprehensive R Archive Network (CRAN)41

at https://CRAN.R-project.org/package=BNPdensity. To the best of our42
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knowledge, BNPdensity is the first R package which implements BNP density models43

including all types of censored data (left-, right- and interval-censored data), under a general44

specification of BNP priors called normalised generalised gamma processes (Lijoi, Mena45

& Prünster 2007b; Barrios et al. 2013). The improvements to the package cover various46

aspects. Notably, careful profiling and re-writing of some critical parts of the code, along47

with the use of the R bytecode compiler, yielded a 4-fold decrease of the running time48

of the algorithm. Drawing on the flexibility of the algorithm to use non-conjugate prior,49

we also implemented a range of popular new priors on the scale parameter of the clusters50

such as the half-Cauchy (Gelman 2006; Chung et al. 2015), the truncated Gaussian and the51

uniform distributions. We also revised the truncation method in the algorithm, intended to52

deal with the infinite dimensional random measures in the BNP model, to include recent53

contributions by Arbel & Prünster (2017). These provide a better and principled control of54

the truncation approximation. Moreover, we extended BNPdensity to include all types of55

censored data (right-, left- or interval-censored data). To leverage on the clustering properties56

of BNP mixture models, we interfaced BNPdensity with other packages to estimate the57

optimal clustering from posterior samples and provided cluster visualisation tools. We also58

implemented functions to compute prior distributions on the number of mixture components,59

for various processes, to better inform prior specification. Finally, we added several new60

functions for graphical model checking, assessing Markov chain Monte Carlo (MCMC)61

convergence and parallel computation.62

The paper is organised as follows. We start with a concise overview of Bayesian63

nonparametric mixture models for density estimation in Section 2, along with our strategy64

for posterior inference and a description of the recent improvements to BNPdensity. We then65

describe the package and its general syntax in Section 3, including some simple examples, and66

provide in Section 4 a comprehensive comparison of the features and functionalities offered67

in three R packages dedicated to BNP density estimation, namely: BNPdensity, BNPmix,68

and DPpackage. We then conclude with a case study in Section 5.69

2. Bayesian nonparametric density estimation70

This section aims at providing a concise review of the statistical model used in the71

BNPdensity package. As the name suggests, the focus of the package is density estimation72

based on BNP priors, including all types of censored data. The density model used is a73

mixture model (Frühwirth-Schnatter, Celeux & Robert 2018), where the mixing measure is a74

BNP prior, thus leading to an infinite mixture model.75
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4 BNPDENSITY

The most widely used BNP mixture model for density estimation is the Dirichlet Process76

Mixture (DPM) model due to Lo (1984). Generalisations of the DPM correspond to allowing77

the mixing distribution to be any discrete nonparametric prior. A large class of such prior78

distributions is obtained by normalising increasing additive processes (Sato 1999). The79

normalisation step, under suitable conditions, gives rise to so-called Normalised Random80

Measures with Independent Increments (NRMI) as introduced in Regazzini, Lijoi & Prünster81

(2003). See also Barrios et al. (2013).82

We focus on a class of NRMIs that are obtained by normalising the increments of a83

generalised gamma process (Brix 1999) proposed in Lijoi, Mena & Prünster (2007a), which84

enjoy analytical tractability and include many well-known priors as special cases. Generalised85

gamma processes are discrete random measures ρ̃ of the form86

ρ̃ =

∞∑
i=1

Jiδθi
, (1)

where the weights Ji do not sum to one, while the location parameters θi are sampled iid87

from a measure P0, a probability distribution on the parameter space Θ. In what follows, P088

is considered as diffuse. (Ji,θi) are the points of a Poisson process with mean intensity:89

ν(dv,dθ) =
e−κv

Γ(1− γ)v1+γ
dv αP0(dθ), (2)

which depends on parameters κ ≥ 0 and γ ∈ [0, 1) such that (κ, γ) 6= (0, 0). The measure90

ν in (2) characterises ρ̃ and is often referred to as the Lévy intensity. The base91

measure is αP0, where α > 0. The corresponding generalised gamma NRMI, obtained by92

normalising the generalised gamma process as P̃ ( · ) := ρ̃( · )/ρ̃(X) will be denoted as P̃ ∼93

NGG(α, κ, γ;P0). This class of priors contains as special cases the Dirichlet process which is94

a NGG(α, 1, 0;P0) process, the normalised inverse Gaussian (N-IG) process (Lijoi, Mena &95

Prünster 2005), which corresponds to a NGG(1, κ, 1/2;P0) process, and the N-stable process96

(Kingman 1975) which arises as NGG(1, 0, γ;P0).97

We now describe the mixture model in more detail. We consider a density kernel k(· | θ)98

mixed with respect to P̃ ∼ NGG(α, κ, γ;P0) thus obtaining the random mixture density99

f̃(x) =

∫
Θ

k(x | θ)P̃ (dθ). (3)

© 2020 Australian Statistical Publishing Association Inc.
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This can equivalently be written in a hierarchical form as100

Xi | θi
ind∼ k(· | θi), i = 1, . . . , n,

θi | P̃
iid∼ P̃ , i = 1, . . . , n,

P̃ ∼ NGG(α, κ, γ;P0).

(4)

Details on possible choices for the kernel k and the base measure P0 are provided in Section 3,101

while in Section 4 we argue that conjugacy is not required in this setting.102

We denote by f0 the density with respect to the Lebesgue measure of the NGG base103

measure P0 on Θ. When P0 depends on a further hyperparameter φ, we use the notation104

f0(· | φ). Using the MixNRMI2 function corresponds to the specification of a nonparametric105

model for the location and scale parameters of the mixture where the mixture parameter θ106

takes the form of the vector (µ, σ). In order to distinguish the hyperparameters for location107

and scale, we will use the notation f0(µ, σ | φ) = f1
0 (µ | σ, ϕ)f2

0 (σ | ς). In applications a108

priori independence between µ and σ is commonly assumed, and this is indeed a natural109

assumption for the illustration in Section 5.110

The most popular uses of mixtures with discrete random probability measures, such as111

the one displayed in (4), relate to density estimation and data clustering. The former can be112

addressed by evaluating the posterior expectation of the random density f̃ defined in (3),113

given a sample X = (X1, . . . , Xn)>,114

f̂n(x) = E
(
f̃(x) | X

)
(5)

for any x in X. As for the latter, if Rn is the number of distinct latent values θ∗1, . . . ,θ
∗
Rn

out115

of a sample of size n, one can deduce a partition of the observations such that any two Xi116

and Xj belong to the same cluster if the corresponding latent variables θi and θj coincide.117

Then, it is interesting to determine an estimate R̂n of the number of clusters into which the118

data are grouped, along with the clustering structure. For details on clustering estimation in119

our setting, see Section 2.3.120

In the next subsection, we show how to solve all estimation problems with a posterior121

sampling algorithm.122

2.1. Posterior sampling via a conditional Gibbs sampler123

According to the terminology of Papaspiliopoulos & Roberts (2008), posterior sampling124

methods for BNP mixture models can be divided into two classes: marginal and conditional125

methods. Marginal methods, such as Escobar & West (1995); MacEachern & Müller (1998);126

© 2020 Australian Statistical Publishing Association Inc.
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6 BNPDENSITY

Neal (2000), integrate out the the infinite-dimensional component (1) of the hierarchical127

model and sample from the marginal distribution of the remaining variables. Conditional128

methods work directly on (4) and must solve the problem of sampling the trajectories of an129

infinite-dimensional random element. However, they allow inference on the latent random130

measure P̃ , for instance on the jump sizes. An example of conditional method, which nicely131

fits our framework, can be the Ferguson and Klass algorithm. Unlike marginal samplers, it132

allows for estimating non-linear functionals of the underlying posterior distribution, such as133

credible intervals. Here we sketch the conditional algorithm implemented in BNPdensity134

which allows to draw posterior simulations from mixtures based on a general NRMI (a very135

thorough description of the algorithm can be found in Barrios et al. 2013). It works equally136

well regardless of whether the kernel k and P0 form a conjugate pair and readily yields137

credible intervals. The algorithm is an implementation of the posterior characterisation of138

NRMI provided in James, Lijoi & Prünster (2009).139

For n observations X = (X1, . . . , Xn)> in X = R, we consider the random distribution

function induced by ρ̃,

M̃ :=
{
M̃(s) = (ρ̃((−∞, s1]), · · · , ρ̃((−∞, sn])>, s = (s1, . . . , sn)> ∈ Rn

}
.

For the implementation of the Gibbs sampling scheme, we use the distributions of [M̃ | X,θ]140

and [θ | X, M̃ ]. Due to conditional independence properties, the conditional distribution141

of M̃ , given X and θ, does not depend on X, that is, [M̃ | X,θ] = [M̃ | θ]. Thanks to142

Theorem 1 in Barrios et al. (2013) (originating in James, Lijoi & Prünster 2009), the posterior143

distribution function [M̃ | θ] can be characterised as a mixture in terms of a latent variable144

U , that is through the distributions [M̃ | U,θ] and [U | θ]. Thus, the Gibbs sampler uses the145

following conditional distributions:146

1. [U | θ]: sampling the latent variable U conditionally on the latent parameters θ, where147

U follows the distribution:148

fU |X(u) ∝ un−1(u+ κ)rγ−n exp

{
−a
γ

(u+ κ)γ
}
. (6)

Sampling U is performed via a Metropolis–Hastings (M-H) step with a gamma149

proposal distribution ga
(
δ, δ/u[t]

)
centered at the previous U value u[t] with a150

tuning parameter δ controlling the coefficient of variation. An adaptive version of151

the M-H algorithm (Roberts & Rosenthal 2009) without the tuning parameter is also152

implemented in the package, and proposed with the option adaptive=TRUE. It uses153

a log-transformation of the random variable U . Note that the target density (6) not154

© 2020 Australian Statistical Publishing Association Inc.
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being log-concave, ergodicity cannot be proven as in Roberts & Rosenthal (2009).155

Nevertheless, the adaptive version appears to offer superior performance in practice.156

2. [M̃ | U,θ]: simulating the infinite dimensional process conditionally on the parameters157

and the latent variable U . This is performed using the Ferguson & Klass (1972)158

algorithm. According to to Theorem 1 in Barrios et al. (2013), the conditional159

distribution of M̃ is composed of two parts, a part without fixed points of discontinuity160

M̃∗ which can be expressed as an infinite sum of random jumps occurring at161

random locations and a part with fixed points of discontinuity, or in other words:162

M̃(s) = M̃∗(s) +
∑Rn

j=1 J
∗
j I(−∞,s](θ

∗
j ) where the θ∗j , j = 1, . . . , Rn denote the Rn163

distinct parameters among θ1, . . . ,θn and where (−∞, s] = {x ∈ Rn : xi ≤ si, i =164

1, . . . , n}. In the infinite sum:165

M̃∗(s) =

∞∑
j=1

JjI(−∞,s](ϑj), (7)

the Jjs are obtained by inverting the relation ξj = N(Jj), where ξ1, ξ2, . . . are jump166

times of a standard Poisson process of unit rate, that is ξ1, ξ2 − ξ1, . . .
iid∼ ga(1, 1), with167

168

N(v) =
a

Γ(1− γ)

∫ ∞
v

e−(κ+u)xx−(1+γ)dx, (8)

while the jumps ϑj = (ϑ
(1)
j , . . . ,ϑ

(n)
j )> are sampled from the base measure P0. The169

jumps J∗j at the fixed locations θ∗j are gamma distributed:170

f∗j (v) =
(κ+ u)nj−γ

Γ (nj − γ)
vnj−γ−1e−(κ+u)v, (9)

where nj are the multiplicities, i.e. the number of θj equal to θ∗j . A fundamental171

merit of Ferguson and Klass’ representation, compared to similar algorithms, is the172

fact that the random heights Ji are obtained in a descending order. Therefore, one can173

truncate the series in (7) at a certain finite indexQ to be decided via a moment-matching174

criterion (see Section 2.2). This also guarantees that the highest jumps are not left out.175

3. [θ | X, M̃ ]: resampling the latent cluster parameters given the data and the random176

measure. The support of the conditional distribution of θi are the locations of the177

jumps of M̃ , {J̄j}∞j=1 = {J∗1 , . . . , J∗Rn
, J1, . . .} with associated jumps {ϑ̄j}∞j=1 =178

{θ∗1, . . . ,θ
∗
Rn
,ϑ1, . . .},179

fθi|Xi,M̃
(s) ∝

∑
j

k (Xi | s) J̄jδϑ̄j
(ds). (10)

© 2020 Australian Statistical Publishing Association Inc.
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8 BNPDENSITY

Simulating from this conditional distribution when an approximation with a finite180

number of jumps has been determined is straightforward: one just needs to evaluate181

the right-hand side of the expression above and normalise.182

4. Updating the hyperparameters ofP0. We only put a prior on the hyperparameters for the183

location parameters, found to have a higher impact. Assuming a priori independence184

between location and scale parameters of the clusters, the conditional posterior185

distribution on the hyperparameters given the data and the rest of the parameters only186

depends on the distinct location parameters. A simple way to proceed is thus to consider187

a prior conjugate to the base measure.188

We also include a resampling of the unique values of the cluster parameters via a M-H189

step to avoid the ‘sticky clusters effect’, as suggested in Bush & MacEachern (1996).190

We devote the next section to explaining the moment-matching criterion used for191

truncation in the second conditional, which is a recent addition to the package BNPdensity.192

2.2. Moment-matching criterion193

Normalised Generalised Gamma (NGG) priors are infinite dimensional objects that are194

obtained by normalising a generalised gamma process. Concrete implementation of NGG195

priors requires to truncate the random series (1) at some level denoted Q, which results in196

some truncation error. Previous implementation of the package used to appeal to a relative197

error index, that we will denote eQ =
∑
i>Q Jiδθi

, based on the jumps themselves. We198

improve on this approach, by implementing the methodology proposed by Arbel & Prünster199

(2017) which relies on a moment-based evaluation of the error, denoted by `M . One of the200

main contributions of Arbel & Prünster (2017) is to warn that relying on the relative error201

index eM can lead to overly optimistic conclusions in terms of approximation, especially for202

large values of the discount parameter γ.203

To be more specific, consider K moments of the total mass of the CRM ρ̃(X) =204 ∑∞
i=1 Ji, denoted by mK = (m1, . . . ,mK)>. Such moments have a simple expression in205

terms of the cumulants, which are themselves available in closed form, see for instance Table206

1 in Arbel & Prünster (2017). Thus, these exact moments can be computed and compared207

with their empirical counterparts obtained with the Ferguson & Klass algorithm (Ferguson &208

Klass 1972).209

In order to make this methodology applicable, one needs to propose the truncation level210

Q(`) required to achieve a given approximation `. Such map Q(`) only depends on the NGG211

parameters and can be computed once-for-all and distributed with the package. For reference,212

see the moment matching error `(Q) and the map Q(`) respectively displayed in Figures 1213

© 2020 Australian Statistical Publishing Association Inc.
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and 2 of Arbel & Prünster (2017). Ferguson and Klass posterior sampling based on such a214

prescribed number of jumps Q(`) is computationally more efficient than having to iteratively215

compute the relative error eQ as done in the previous package version.216

2.3. Clustering estimation217

We focus here on the problem of estimating a data clustering from the Bayesian posterior218

inference conducted so far. This is a long standing problem in Bayesian statistics (see for219

instance Dahl 2006; Lau & Green 2007). Enumerating all partitions is practically not feasible,220

which typically requires resorting to approximations.221

Many ad-hoc procedures have been devised in the literature. However, as noted by Dahl

(2006), it seems counter-intuitive to apply an ad-hoc clustering method on top of a model

which itself produces clusterings. We adopt instead a fully Bayesian route by undertaking

clustering on decision-theoretic grounds. We consider a loss function L and propose a

Bayesian point estimator ĉ for a clustering obtained as an argument which minimises the

posterior expected loss given data X

ĉ = arg min
c′

∑
c

L(c′, c)π(c | X), (11)

where π(c | X) is the posterior distribution of clustering c. Often considered in the literature,222

the posterior mode is an example of such a Bayesian estimator, based on the very crude 0-1223

loss function. When n is large, an MCMC sample from the posterior generally hardly visits224

twice the same clustering, thus rendering the empirical mode of the MCMC output very225

sensitive to the initialisation of the chain and of very limited validity in practice. Manifestly,226

many other loss functions can be considered and expected to perform better than the 0-1227

loss. One particular choice of a loss function stands out from these in best estimating the228

number of groups in a clustering. It is called the variation of information, denoted by VI,229

which is a loss function firmly established in information theory (Meila 2007; Wade &230

Ghahramani 2018). The variation of information between two clusterings is defined as the231

sum of their information (their Shannon entropies) minus twice the information they share.232

Simulations indicate that the variation of information is a sensible choice: when other losses233

such as the Binder loss (Binder 1978) typically tend to overestimate the number of clusters,234

the variation of information instead seems to consistently recover it (see for instance the235

simulated examples, and more specifically Figures 6 to 8, of Wade & Ghahramani 2018).236

An asset of the approach presented in Wade & Ghahramani (2018) is that it rests on a237

greedy search algorithm to determine the minimum loss clustering of (11). Starting from the238

MCMC output, this greedy approach explores the space of partitions and is not restricted239

© 2020 Australian Statistical Publishing Association Inc.
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10 BNPDENSITY

to those visited by the MCMC chain to find the optimum. We include the possibility to240

estimate the optimal clustering using both the VI loss and Binder’s loss, along with other loss241

functions, within BNPdensity by adding an optional dependence to GreedyEPL. Note that242

clustering estimation is also available for censored data, although graphical representation is243

more tricky (see also the legend to Figure 8).244

data(acidity)

out <- MixNRMI2(acidity)

clustering = compute_optimal_clustering(out)

plot_clustering_and_CDF(out, clustering)

245
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Figure 1. Visualisation of the clustering induced by the BNP mixture model, for the acidity dataset.
The solid line represents the empirical Cumulative Distribution Function (CDF), dots represent data
points. The abscissa of each point is its value, the ordinate is the value of the estimated CDF at that
point. Each colour denotes the cluster estimated by minimising the VI loss function.247

3. Package description248

The implementation of BNPdensity package is available from the Comprehensive

R Archive Network (CRAN) at https://CRAN.R-project.org/package=

BNPdensity. Fitting a model with BNPdensity starts with calling one of the two functions,

MixNRMI1 or MixNRMI2, or their versions for censored data. The function MixNRMI1

fits a semiparametric mixture model where all components have a common scale parameter

σ with an independent parametric prior, σ ∼ Pσ , while MixNRMI2 is devoted to fully
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nonparametric mixtures of location and scale parameters:

Xi | θi, σi
ind∼ k(· | θi, σi), i = 1, . . . , n,

(θi, σi) | P̃
iid∼ P̃ , i = 1, . . . , n,

P̃ ∼ NGG(α, κ, γ;P0).

Data and prior parameters are passed to the model function as arguments. The249

MixNRMIx functions also take a number of arguments to choose the BNP model, the mixture250

kernels, a variety of priors and tuning parameters for the Markov chain Monte Carlo sampling251

algorithm. The main arguments of the model functions are presented below.252

• distr.k: Integer number identifying the mixture kernel k. Five kernels253

parameterised by their location and scale are implemented: a Gaussian or double254

exponential kernel for real data, a gamma or lognormal kernel for positive data and255

a beta kernel for data on the unit interval. The flexibility of this choice is afforded by256

the specific algorithm used in BNPdensity.257

• distr.py0: Integer number identifying the base measure P0 on the location258

parameters. Three choices are available, which are constrained by the conjugate259

prior we place on the hyperparameters of P0: Gaussian, gamma and beta. Additional260

arguments can be used to tune the shape of the base measure.261

• distr.py0, distr.pz0: Integer number identifying the base measure P0 on262

scale parameters. For the semiparametric model (MixNRMI1), this argument is not263

provided and the base measure is a gamma distribution on the common scale parameter.264

Traditionally, there is sufficient information in the data to estimate the common scale265

parameter and inference is not very sensitive to the shape of the base measure. For266

the fully nonparametric model, the base measure on the scale parameters can be a267

gamma, lognormal, half Cauchy, half normal, half Student-t, uniform or truncated268

normal distribution. Additional arguments can be used to tune the shape of the base269

measure.270

• (Alpha, Kappa, Gama): Mixing measure parameters identifying a Normalised271

generalised gamma process, see the Lévy intensity (2) with parameters (α, κ, γ) for272

more details.273

• The rest of the parameters provide handles to tune the MCMC algorithm.274

Functions to fit a model return an object with print, summary and plot methods, as275

follows (the latter plot is represented in Figure 2):276
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Figure 2. Density estimate (solid black line), 95% credible interval (blue dotted line) and histogram
of the acidity data fitted with a semiparametric model. Figure obtained using the command
plot(out).

data(acidity)

out <- MixNRMI1(acidity)

## MCMC iteration 500 of 1500

## MCMC iteration 1000 of 1500

## MCMC iteration 1500 of 1500

## >>> Total processing time (sec.):

## user system elapsed

## 49.166 0.083 49.255

summary(out)

## Density estimation using a Normalized stable process,

## with stability parameter Gamma = 0.4

##

## A semiparametric normal mixture model was used.

##

## There were 155 data points.

##

## The MCMC algorithm was run for 1500 iterations with 10%

##

## To obtain information on the estimated number of clusters,

## please use summary(object, number_of_clusters = TRUE).

277

4. Package comparison278

In this section, we discuss in detail the features and functionalities offered in three279

R packages addressing BNP density estimation, namely: BNPdensity, BNPmix (Canale,280

Corradin & Nipoti 2019), and DPpackage (Jara et al. 2011) (DPpackage was removed281

from the CRAN repository, but former versions are available at https://cran.282

© 2020 Australian Statistical Publishing Association Inc.
Prepared using anzsauth.cls

https://cran.r-project.org/src/contrib/Archive/DPpackage/
https://cran.r-project.org/src/contrib/Archive/DPpackage/
https://cran.r-project.org/src/contrib/Archive/DPpackage/


J ARBEL, G KON KAM KING, A LIJOI, L NIETO-BARAJAS, I PRÜNSTER 13

r-project.org/src/contrib/Archive/DPpackage/). Since the focus of the283

present paper is mixture modeling and density estimation, note that other packages relying on284

BNP approaches but tackling other questions such as regression (PReMiuM, Liverani et al.285

2015, Bayesian Regression, Karabatsos 2017), or meta-analysis (bspmma, Burr 2012)286

are not discussed here. Likewise, non Bayesian approaches are deliberately set aside. Table 1287

summarises the comparative study of this section.288

4.1. Inference algorithm289

Efficient posterior computation for BNP mixture models relies on two types of290

approaches: marginal or conditional. Marginal methods incorporate analytic integration of291

infinite dimensional parts of the parameter, which is the case of DPpackage and BNPmix.292

Instead, BNPdensity relies on a conditional sampler that directly samples trajectories of the293

processes. More specifically, the Ferguson & Klass algorithm is employed (see Section 2.1),294

with the crucial merit of ensuring that largest weights in the series representation are not left295

out. This is to be compared to the stick-breaking representation where the weights sequence296

is decreasing only stochastically (that is, in expectation).297

4.2. Mixing measure298

As described in Section 2, BNP mixture modeling and density estimation require to299

specify some mixing measure. We start here by comparing the mixing measures available in300

the three packages.301

BNPmix provides a set of functions for density estimation with Dirichlet process302

and Pitman–Yor mixing measures via marginal algorithms. DPpackage is a more general303

purpose package than both BNPdensity and BNPmix, including functions for regression304

models, generalised linear mixed models, and generalised additive models, on top of the305

density model. However, the implementation is primarily tailored to the Dirichlet process306

mixing measure. A natural extension to the Dirichlet and Pitman–Yor processes are Gibbs-307

type priors (De Blasi et al. 2015). NRMI are a larger class of priors than Gibbs-type priors,308

and their intersection is the NGG priors considered in BNPdensity, as established in Lijoi,309

Prünster & Walker (2008). Being an extremely general class of priors, Gibbs-type processes310

are beyond reach for a general treatment in a software, however both BNPdensity and311

BNPmix packages cover its most commonly used sub-classes. Pitman–Yor process is not312

implemented in BNPdensity as it is not an NRMI; yet, a dependence to BNPmix is made in313

BNPdensity, in such a way that users interested in comparing their results with Pitman–314

Yor can also use the dedicated functions MixPY1 (semiparametric) and MixPY2 (fully315
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nonparametric) that call BNPmix PYdensity function. The mixing measures covered by316

the three packages and their mutual relationships are illustrated in Figure 3.317

Gibbs NRMI

PY NGG

DP NS NIG

Figure 3. BNP priors mentioned in this section. An arrow indicates that the target is a special case
or a limit case of its origin. Gibbs: Gibbs-type process. NRMI: normalised random measures with
independent increments. NGG: normalised generalised gamma process. PY: Pitman–Yor process. NIG:
normalised inverse Gaussian process. NS: normalised stable process. DP: Dirichlet process. In green:
covered by BNPdensity package.

318

4.3. Prior characteristics319

4.3.1. Non-conjugacy320

Mixture models present the difficulty that the likelihood goes to infinity for infinitely321

small clusters located exactly on one observed data point. This may induce numerical322

problems and instabilities, and such tiny clusters are almost invariably undesirable in practical323

applications. A reasonable solution in the Bayesian framework is to use a prior distribution324

on scale parameters with little mass on very small values, i.e. a gamma distribution with325

shape parameter larger than 1 or a truncated distribution. We might also want to provide a326

different kind of information on cluster scales: for instance, for a dataset whose variance has327

been scaled to 1, there is no reason to find clusters with a variance much larger than one. This328

would suggest using a prior with an upper bound, or with light tails for large values. Finally,329

flexibility in the choice of the kernel k is a clear asset when modelling real data, to choose a330

reasonable error model. These three examples suggest that we might need a certain flexibility331

in the specification of the prior distribution on scale parameters or in the choice of the kernel.332

The inference algorithm used in BNPdensity and presented in Section 2.1 does not333

rely on conjugacy between the base measure and the kernel of the mixture, as do standard334

algorithms for sampling from a Dirichlet mixture process such as that presented in Escobar335
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& West (1995). In contrast, DPpackage and BNPmix are limited to using conjugate couples336

of base measure and the mixture kernel.337

Not being bounded to conjugacy allows us first to use any relevant kernel for the mixture.338

Moreover, even in the case of the normal kernel, this removes the dependence imposed in339

the conjugate case between the location of the clusters and their variances. More precisely,340

this allows a full flexibility on specifying priors based on external knowledge, and proves341

particularly useful concerning the scale parameters of the kernels. Indeed, half-Cauchy or342

half-Gaussian priors for hierarchical variance parameters have recently become popular343

Gelman (2006); Chung et al. (2015). The illustration on Species Sensitivity Distribution344

(SSD) (Section 5), where the data is scaled, offers such an example where both an upper345

bound and lower bound on the cluster variances are useful.346

4.3.2. Prior distribution on number of components347

Prior elicitation is a delicate task in Bayesian modeling. BNPdensity provides some348

guidelines on how to choose parameters (Alpha, Kappa, Gama) with two functions,349

one for computing the prior expected number of components, and one for plotting this prior350

distribution. Comparable functionalities are offered in BNPmix and DPpackage.351

The (Alpha, Kappa, Gama) parametrisation allows to easily compare several well352

known priors. We already mentioned that the Dirichlet process can be obtained by setting353

Gama = 0, the normalised inverse Gaussian process by setting Alpha = 1, Gama =354

1/2 and the normalised stable process by setting Alpha = 1, Kappa = 0. The stable355

process is a convenient model because its parameter γ has a simple interpretation: it can be356

used to tune how informative the prior on the number of components is. Small values of Gama357

bring the process closer to a Dirichlet process, where the prior on the number of components358

is a relatively peaked distribution around α log n. In contrast, the larger the value of Gama359

is, the flatter the distribution is. More guidelines on how to choose the parameters may be360

found in Lijoi, Mena & Prünster (2007b), notably by considering the expected prior number361

of components. The expected prior number of components for normalised generalised gamma362

processes is not trivial to compute due to numerical instabilities, but we provide functions to363

compute prior distribution on the number of clusters for the normalised stable process and364

for the Dirichlet process. These functions require installing the packages gmp and Rmpfr for365

Multiple Precision Arithmetic, both available on CRAN.366

Rmpfr::asNumeric(expected_number_of_components_stable(n = 100, Gama = 0.4))

## [1] 7.102731

expected_number_of_components_Dirichlet(n = 100, Alpha = 1.)

## [1] 5.187378

© 2020 Australian Statistical Publishing Association Inc.
Prepared using anzsauth.cls



16 BNPDENSITY

We also provide a way to visualise the prior distribution on the number of components:367

plot_prior_number_of_components(100, 0.4)

## Computing the prior probability on the number of clusters for the Dirichlet process

## Computing the prior probability on the number of clusters for the Stable process

0.00

0.05

0.10

0.15

0.20

0 25 50 75 100
K

P
K

Process

Dirichlet

Stable

368

Figure 4. Prior distribution on the number of clusters with 100 data points, for the stable process with
γ = 0.4 and for the Dirichlet process with α = 1.369

4.4. Censored data370

BNPdensity can deal with left, right and interval-censored data by using the functions371

MixNRMI1cens and MixNRMI2cens. The same holds true for DPpackage, while372

BNPmix does not handle censored data at all.373

Censored data usually emerge from imperfections of the measurement process, such as374

detection limits (high or low) or saturation, low measurement precision, or binning of the375

data. Improper treatment of censored data is clearly a source of bias (Helsel 2005): in the376

case of right-censored data due to a detection limit for high values, for instance, data are not377

censored at random and discarding them or substituting them deteriorates the dataset.378

We deal with censored data by using a version of the likelihood (Helsel 2005) adapted to379

censored data. More specifically, denote by Fk the cumulative distribution function of the380

kernel k. The heart of the method is then to replace k(x | θ) by Fk(x | θ) for a left-censored381

observation, by 1− Fk(x | θ) for a right-censored observation, and by Fk(xr | θ)− Fk(xl |382

θ) for an interval-censored observation [xl, xr].383
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4.5. Visualisation and programming384

4.5.1. Convergence checking and model evaluation385

BNPdensity offers several tools for assessing MCMC convergence and performing model386

checking and comparison. Notably, we provide a conversion function as.mcmc to interface387

the package with the coda package for analysing output and carrying out diagnostics on388

MCMC. We are not aware of such tools for BNPmix or DPpackage.389

This is done by running multiple chains starting from different initial conditions, potentially390

in parallel, and converting them into an mcmc object that can be processed by coda. A simple391

solution for running multiple chains does not seem available for BNPmix and DPpackage.392

One conceptual detail for assessing convergence is that, due to the nonparametric nature393

of the model, the number of parameters which could potentially be monitored to measure394

auto-correlation of the chains or effective sample size varies. The location parameters of the395

clusters, for instance, vary at each iteration, and even the labels of the clusters vary, which396

makes it tricky to follow. However, it is possible to monitor the log-likelihood of the data397

along the iterations, the value of the latent variable u, the number of components and for the398

semi-parametric model, the value of the common scale parameter. The following code shows399

how to compute the potential scale reduction factor (Gelman & Rubin 1992):400

library(coda)

data(acidity)

fit = multMixNRMI1(acidity, extras = TRUE, Nit = 20000)

mcmc_list = as.mcmc(fit)

gelman.diag(mcmc_list)

## Potential scale reduction factors:

##

## Point est. Upper C.I.

## ncomp 1.02 1.06

## Sigma 1.02 1.07

## Latent_variable 1.02 1.05

## log_likelihood 1.01 1.04

##

## Multivariate psrf

##

## 1.03

A trace plot for the chains may also be obtained by calling traceplot(fit); see Figure 5.401
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Figure 5. Trace plot of four chains in the MCMC for a semi-parametric model.403

Table 1. Comparison of R packages performing BNP density estimation: BNPdensity, BNPmix, and
DPpackage. (a) See discussion in Section 4.2. (b) The DPpackage LDPDdoublyint function,
for Linear Dependent Poisson Dirichlet Process Mixture Models for the Analysis of Doubly-Interval-
Censored Data could in principle be used for Pitman–Yor process mixture density estimation, although
the interface (and the name) suggests it is not intended for this.

BNPdensity BNPmix DPpackage

4.1 Inference algorithm
Conditional yes no no
Marginal no yes yes

4.2 Mixing measure

Dirichlet process (DP) yes yes yes
Norm. inverse Gaussian (NIG) yes no no
Norm. stable (NS) yes no no
Norm. gener. gamma (NGG) yes no no
Pitman–Yor (PY) no(a) yes no(b)

4.3 Prior characteristics
Non Gaussian kernels allowed yes no no
Functions for prior elicitation yes yes yes

4.4 Data All types of censored data yes no yes

4.5 Vis. & Programming

MCMC conv. assessm. yes no no
Graphical model checking yes no no
Clustering vis. tools yes no no
Parallel computing yes no no
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We also provide tools for assessing goodness of fit. Graphical assessment can be performed404

comparing various representations of the estimated distributions against representations405

of the empirical distribution (Figure 6). Such plots may be obtained from a fitted406

object using the command GOFplots(fit, qq plot = TRUE). The density plot407

provides a familiar representation of the Nonparametric distribution, while the CDF plot408

is probably the most classical visualisation of goodness of fit. The percentile-percentile409

plot focuses on the goodness of fit in the center of the distribution, while the quantile-410

quantile plot focuses on the goodness of fit in the tails of the distribution. The density,411

CDF, percentile and quantiles used in the plots are the expected posterior quantities,412

computed from the MCMC sample. Computation of the theoretical quantiles is a fairly413

expensive operation because it requires numerically inverting the CDF. We choose not to414

compute the quantile-quantile plot by default, and when we do, the computation is done415

on a thinned MCMC chain with an argument provided to control the level of thinning.416
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Figure 6. Graphical goodness of fit plots for censored (right) and non censored data (left). The top
row is the mean density estimate with a histogram for the non censored data. The middle row is the
estimated CDF with the empirical CDF for non censored data, and with the Turnbull estimate of the
CDF for censored data. The bottom row are percentile-percentile plots where the empirical percentiles
are computed from the empirical CDF for the non censored data, and from the Turnbull estimate for the
censored data.

417

We also provide tools for model comparison based on expected predictive density. The418

conditional predictive ordinate (CPO) is the expected predictive density of a data point given419

the prior and all other data points, so it is the leave-one-out expected predictive density of420

the model (Gelman et al. 2014), a typical cross-validation criterion. As such, it is a measure421

of predictive power with a penalisation for over-fitting. A Monte Carlo approximation of the422

CPO is easily available and can be used to compare a semi-parametric model to the fully423

nonparametric model for instance:424
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set.seed(0)

normal_mixture <- MixNRMI2(acidity, distr.k = 1, Nit = 15000)

dbl_exponential_mixture <- MixNRMI1(acidity, distr.k = 4, Nit = 15000)

c(median(normal_mixture$cpo), median(dbl_exponential_mixture$cpo))

## [1] 0.279 0.271

Model Mean CPO Median CPO

Nonparametric normal mixture 0.362 0.279

Semi parametric double exponential mixture 0.357 0.271

425

4.5.2. Clustering visualisation tools426

As described in Section 2.3, BNPdensity provides functions for clustering427

estimation, compute optimal clustering, and visual representation,428

plot clustering and CDF. See also Figure 1 and Figure 8 for illustrations. We429

are not aware of such clustering tools for BNPmix or DPpackage.430

5. Case study: Species Sensitivity Distribution431

We present an application of nonparametric density estimation for environmental data.432

Assessing the response of a community of species to an environmental stress is of critical433

importance for ecological risk assessment. Methods for this purpose vary in levels of434

complexity and realism. SSD represents an intermediate tier, more refined than rudimentary435

assessment factors (Posthuma, Suter II & Trass 2002) but practical enough for routine use436

by environmental managers and regulators in most developed countries (Australia, Canada,437

China, EU, South Africa, USA,. . . ). The SSD approach is intended to provide, for a given438

contaminant, a description of the tolerance of all species possibly exposed using information439

collected on a sample of those species. This information consists of a single species-specific440

value, which marks a limit over which the species suffers adverse effects. This value is441

very often censored (Kon Kam King et al. 2014), because measuring it is both costly and442

difficult (bioassay experiments). The tolerance of all species possibly exposed is described443

by a distribution, fitted on the sample of species (Aldenberg & Jaworska 2000). The quantity444

of interest for ecological risk assessment is the Hazardous Concentration for 5% of the445

Species (HC5) , which corresponds to the 5th percentile of the SSD distribution. The lack of446

justification for the choice of any given parametric distribution has sparked several research447

directions. Some authors (Xu et al. 2015; He et al. 2014; Jagoe & Newman 1997; Van448

Straalen 2002; Xing et al. 2014; Zhao & Chen 2016) have sought to find the best parametric449

distribution by model comparison using goodness-of-fit measures. The general understanding450

is that no single distribution seems to provide a superior fit and that the answer is dataset451

dependent (Forbes & Calow 2002). Therefore, the log-normal distribution has become the452
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customary choice, notably because it readily provides confidence intervals on the HC5, and453

because model comparison and goodness of fit tests have relatively low power on small454

datasets, precluding the emergence of a definite answer to the question.455

The availability of a package such as BNPdensity allows to move beyond this customary456

assumption very easily. NRMIs offer a flexible nonparametric mixture model, which can457

accommodate distributions very different from a normal distribution. Barrios et al. (2013)458

and Kon Kam King, Arbel & Prünster (2017) show that NRMIs have better performance than459

Dirichlet process mixtures, kernel density estimates (the recent approach proposed by Wang460

et al. (2015)) or simple one-component normal models. Moreover, there are good reasons to461

believe that the distribution of species sensibility should at least allow for multimodality.462

Indeed, many stressors target specifically certain species groups, such as insecticides for463

insects, while they are developed with the aim of leaving other species group unaffected.464

Therefore, it is expected that there should at the very least be a group of sensitive species and465

a group of less sensitive species. This is why Zajdlik, Dixon & Stephenson (2009) propose466

to model the species sensitivity distribution as a finite mixture, with raises customary issues467

of model choice. Using a BNP approach via BNPdensity allows generalising this approach468

while circumventing the theoretical and technical difficulties of estimating the right number469

of components in a mixture.470

It is also important to use a method which may be applied to small datasets. This is another471

motivation for using a BNP approach, where model complexity adapts to the number of data472

points, and will tend to suggest simple or even univariate mixtures when few data points473

are present. On the contrary, many classical nonparametric approaches to modelling species474

sensitivity distribution (Wang et al. 2015; Verdonck et al. 2001) only work well on large475

datasets.476

To model species sensitivity distribution, we carefully select the parameters in the package477

BNPdensity. Given that concentrations vary on a wide range, it is common practice to478

work on log-transformed concentrations. We choose a fully nonparametric model using479

the normalised stable process (Kingman 1975) as mixing random measure (hence setting480

Alpha = 1 and Beta = 0). We favor this process over the more classical Dirichlet process481

because it allows specifying less informative prior on the number of components, which482

makes it more robust to model misspecification (Barrios et al. 2013). With this process,483

the amount of information from the prior is controlled by the stability parameter γ, which484

we set to 0.4 (Gama = 0.4). This choice reflects a compromise between model flexibility485

(γ → 1) and computational effort (γ small, see also section 3). As we wish the location486

parameter of the clusters µ to be estimated freely, we use the default weakly informative487

prior of a normal base measure f1
0 (µ|ϕ) = N (µ|ϕ1, ϕ2) with hyperpriors on ϕ given by488

f(ϕ) = N (ϕ1|ψ1, ψ2)ga(ϕ2|ψ3, ψ4) (see also Barrios et al. (2013) for more details).489
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For the prior on the scale of the clusters, we want to use two pieces of information: first,490

since the data has been scaled, scale parameters are likely to be smaller than 1, the extreme491

case being a mixture with a single component. Second, we want to avoid the possibility of492

extremely small clusters centred on a data point, because they are not very interesting from493

an interpretation point of view, and because they cause numerical problems (the likelihood494

diverges when a cluster scale goes to 0). Therefore, we choose a uniform distribution between495

0.1 and 1.5 for the prior on the cluster scales.496

In keeping with the traditional assumption of normality of the species sensitivity distribution,497

we choose to use a normal kernel for the mixture (distr.k = 1).498

We now compare three approaches to modelling Species Sensitivity Distribution (SSD):499

the most standard and recommended approach of Wagner & Lokke (1991); Aldenberg &500

Jaworska (2000), which is a simple normal model, the most recent proposal by (Wang et al.501

2015) which is a normal kernel density estimate and the BNP normal mixture made available502

with BNPdensity that we presented above. As already stated, a quantity of interest is the503

5th percentile of the distribution. We choose as an estimator the median of the posterior504

distribution of the 5th percentile, while the 95% credible bands are formed by the 2.5%505

and 97.5% quantiles of the posterior distribution of the 5th percentile. The 5th percentile506

of the Kernel Density Estimate (KDE) is obtained by numerical inversion of the cumulative507

distribution function, and the confidence intervals using the nonparametric bootstrap. The 5th508

percentile of the normal SSD and its confidence intervals are obtained following the classical509

method of Aldenberg & Jaworska (2000).510

We use data from an ecotoxicity research database as pre-processed in Hickey et al. (2012).511

We extract data for the insecticide Carbaryl. The dataset contains 57 species, of which512

approximately 40% have censored data. We obtain a non censored version of this dataset by513

excluding right or left censored data, and replacing interval censored data by the midpoint of514

the interval. Helsel (2006); Dowse et al. (2013); Kon Kam King et al. (2014) have shown515

that transforming censored data risks inducing bias, hence the ability of BNPdensity to516

accommodate censoring is particularly valuable for SSD. There does not appear to be any517

easily available approach to use KDE methods on all types of censored data. Figure 7 shows518

a comparison of three approaches to SSD. The left hand side of Figure 7 shows that the BNP519

model is more flexible than both the KDE and normal model, while the right hand side shows520

that it is no less robust, according to a leave-one-out cross validation criterion. The middle521

panel shows that although the BNP model is more flexible and takes into account uncertainty522

on the number of clusters, the estimation of the 5th percentile is not much more uncertain523

than with the other methods. Significantly larger uncertainty would have jeopardised the real524

world applicability of the BNP-SSD.525
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Figure 7. Top panel: non censored data. Bottom panel: censored data. The normal model is represented
in blue, the KDE in green and the BNP in red. Left: density plot and histogram for the Carbaryl data
using several SSD methods. The histogram is not available for censored data. Center: 5th percentile
estimate (not available for KDE with censored data). Right: boxplot of the CPO (for BNP) and Leave-
One-Out (LOO) (for normal and KDE, not available for KDE with censored data), one value for each
data point.528

An added value of the BNP-SSD is that on top of being more flexible than the classic normal529

SSD and more robust than the nonparametric approach of Wang et al. (2015), as a mixture530

model it naturally induces a clustering of the data which may contain some biologically531

interesting information. We implemented functions to estimate the optimal clustering from532

the MCMC sample and visualise it, potentially including a label on each point to reflect533

available meta data for interpretation. In the context of SSD, it is interesting to know what534

drives species sensitivity: it might be taxonomy, in the sense that taxonomically close species535

will tend to respond in the same way and belong to the same cluster, but other drivers have536

been suggested such as habitat, feeding behaviour or respiration, which may not coincide with537

taxonomy. Figure 8 shows the clustering induced in the case of the insecticide Carbaryl. In538

this case, there is a large cluster mostly composed of fish and molluscs, and a cluster mostly539

composed of insects and crustaceans, showing that the clustering structure is consistent with540

a finer taxonomic structure. This suggests that for Carbaryl, taxonomy may very well be the541

main driver for sensitivity.542
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Figure 8. Graphical representation of the clustering induced by the mixture model for the Carbaryl
data. The solid line represents the Turnbull estimate of the CDF, the points loosely represent the data.
Interval censored data are represented at the middle of the interval, left and right censored data are not
represented. A label describing the taxonomic group of each species is written above each point, AM:
Amphibians, AN: Annelids (worms), CR: Crustaceans, IN: Insects, ML: Molluscs, OS: Osteichthyes
(fish). On the left panel, the points and the labels are coloured according to the estimated cluster index.
On the right panel, the labels are coloured according to the taxonomic group and the points are not
coloured.544

Computational details545

The results in this paper were obtained using R 4.1.1 with the BNPdensity package version546

2020.3.4. R itself and all packages used are available from the Comprehensive R Archive547

Network (CRAN) at https://CRAN.R-project.org/.548
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FRÜHWIRTH-SCHNATTER, S., CELEUX, G. & ROBERT, C.P. (2018). Handbook of Mixture Analysis.592

Chapman & Hall/CRC.593

GELMAN, A.G. (2006). Prior distributions for variance parameters in hierarchical models (Comment on594

Article by Browne and Draper). Bayesian Analysis 1, 515–534. doi:10.1214/06-BA117A.595

© 2020 Australian Statistical Publishing Association Inc.
Prepared using anzsauth.cls

http://www.ncbi.nlm.nih.gov/pubmed/10805987
http://jeb.sagepub.com.ezproxy.lancs.ac.uk/content/40/2/136
http://jeb.sagepub.com.ezproxy.lancs.ac.uk/content/40/2/136
http://jeb.sagepub.com.ezproxy.lancs.ac.uk/content/40/2/136
arXiv:1011.1669v3
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6654160
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6654160
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6654160
arXiv:1503.00163v1
http://www.ncbi.nlm.nih.gov/pubmed/23440771
http://www.ncbi.nlm.nih.gov/pubmed/23440771
http://www.ncbi.nlm.nih.gov/pubmed/23440771
https://www.tandfonline.com/doi/abs/10.1080/01621459.1995.10476550
http://www.tandfonline.com/doi/abs/10.1080/10807030290879781
http://www.tandfonline.com/doi/abs/10.1080/10807030290879781
http://www.tandfonline.com/doi/abs/10.1080/10807030290879781


26 BNPDENSITY

GELMAN, A.G., CARLIN, J.B., STERN, H.S. & RUBIN, D.B. (2014). Bayesian Data Analysis. Boca Raton,596

FL: CRC press, 3rd edn.597

GELMAN, A.G. & RUBIN, D.B. (1992). Inference from Iterative Simulation Using Multiple Sequences.598

Statistical Science 7, 457–511. doi:10.1214/ss/1177011136.599

GILKS, W.R., THOMAS, A. & SPIEGELHALTER, D.J. (1993). A Language and program for complex600

bayesian modelling. Journal of the Royal Statistical Society. Series D (The Statistician) 43, 169–177.601

doi:Doi10.2307/2348941.602

HE, W., QIN, N., KONG, X., LIU, W., WU, W., HE, Q., YANG, C., JIANG, Y., WANG, Q., YANG,603

B. & XU, F. (2014). Ecological risk assessment and priority setting for typical toxic pollutants in604

the water from Beijing-Tianjin-Bohai area using Bayesian matbugs calculator (BMC). Ecological605

Indicators 45, 209–218. doi:10.1016/j.ecolind.2014.04.008. URL http://dx.doi.org/10.606

1016/j.ecolind.2014.04.008.607

HELSEL, D.R. (2005). Nondetects and data analysis. Statistics for censored environmental data. Wiley-608

Interscience. doi:10.2136/vzj2005.0106br.609

HELSEL, D.R. (2006). Fabricating data: how substituting values for nondetects can ruin results, and what610

can be done about it. Chemosphere 65, 2434–2439.611

HICKEY, G.L., CRAIG, P.S., LUTTIK, R. & DE ZWART, D. (2012). On the quantification of intertest612

variability in ecotoxicity data with application to species sensitivity distributions. Environmental613

Toxicology and Chemistry 31, 1903–1910. doi:10.1002/etc.1891. URL http://www.ncbi.nlm.614

nih.gov/pubmed/22619109.615

JAGOE, R.H. & NEWMAN, M.C. (1997). Bootstrap estimation of community NOEC values. Ecotoxicology616

6, 293–306. doi:10.1023/A:1018639113818. URL http://dx.doi.org/10.1023/A:617

1018639113818.618
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