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A B S T R A C T   

Determining avalanche activity corresponding to given snow and meteorological conditions is an old problem of 
high practical relevance. To address it, numerous statistical forecasting models have been developed, but in
tercomparisons of their efficiency on very large datasets are seldom. In this work, an approach combining 
random forests with class-balancing is presented and systematically compared with competing methods currently 
described in the avalanche literature. On more than 50 years of daily avalanche observations, in the 23 massifs of 
the French Alps, the competing classifiers are evaluated on their ability to distinguish three classes of avalanche 
activity: non-avalanche days, days with moderate activity, and days with high activity. Moreover, the variables 
of higher importance in the random forest classifiers are shown to be coherent with current avalanche literature 
and a clustering based on these variable importance separates massifs which are known to have different 
avalanche activities. Our approach opens perspectives to support operational avalanche forecasting.   

1. Introduction 

Snow avalanches are natural phenomena that regularly occur in 
mountainous regions, putting people, properties and infrastructures at 
risk (e.g. McClung and Schaerer, 1993; Pudasaini, 2007). Determining 
where and when avalanche activity is likely to occur is therefore one of 
the most crucial topics in applied snow and avalanche science. It has 
attracted scientists’ attention for a long time (LaChapelle, 1980; 
McClung, 2002), but several questions remain unclear, such as the 
occurrence conditions of large and infrequent avalanches (Schweizer 
et al., 2009), or of deep slab avalanches resulting from persistent weak 
layers (Jamieson et al., 2001; Marienthal et al., 2015). 

Avalanche activity is controlled by permanent and variable factors 
(de Quervain, 1981). Permanent factors are related to terrain features 
(elevation, slope, aspect, roughness of the ground, etc.) and variable 
factors are related to meteorological conditions (snowfall, rain, wind, 
temperature, etc.) that progressively build the snowpack. Because of 
complex non-linear relationships between avalanche release and these 
factors, it is generally admitted that an exact deterministic prediction of 

avalanche release remains out of reach (Schweizer et al., 2003a, 2008). 
In several countries, mitigation measures such as preventive road clo
sures or the production of avalanche bulletins rely on stability indices 
(Judson and King, 1985; Morin et al., 2019) that provide an avalanche 
danger level as a function of snow and meteorological data at a given 
spatial scale (mountain range, valley, etc.), often distinguishing natural 
from artificial (human) triggers, and weighting differently slopes and 
aspects (e.g., Schweizer et al. (2020)). 

Existing stability indices are more or less physically based, and are 
defined at different spatial levels. To make it simple, local indices are 
based on physical stability criteria applied to the snowpack only, leading 
to so-called physically based avalanche forecasting approaches. Regional 
indices are based on empirical relationships between avalanche obser
vations and snow and meteorological conditions obtained using learning 
methods, leading to so-called statistical avalanche forecasting approaches. 
However, the boundary between these two classes of approaches is far 
from being that strict. The transition from local snow stratigraphy to 
release susceptibility at a larger spatial scale is a tough problem 
(Jamieson et al., 2009; Bakermans et al., 2010). As a consequence, local 
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physical stability criteria need to be combined with some experience- 
based knowledge to be upscaled to the operational scale. Besides, even 
at the very local scale, the physical processes are sufficiently complex to 
make the use of data-based relationships unavoidable within the 
modelling of snowpack evolution and avalanche release. Conversely, 
statistical learning methods basically aim at capturing physics in 
simplified form, not necessarily universally valid, but, at least, relevant 
for the location and conditions under study. 

Regarding the deterministic or probabilistic nature of the approach, 
statistical forecasting models are eventually deterministic predictors of a 
given stability level, interpretable in terms of a given avalanche activity 
to be expected in the targeted area according to the snow and meteo
rological conditions. Probabilistic uncertainty considerations are intro
duced only as soon as one considers uncertainty in snow and 
meteorological conditions (ensemble of conditions, Vernay et al., 2015) 
and/or in the model structure (Lafaysse et al., 2017). On the other hand, 
the probabilistic versions of physically-based local indices that have 
been developed (Gaume et al., 2014) explicitly model that the response 
of the snowpack varies strongly in space according to snow spatial 
variability (Reuter et al., 2016) and to topography. Integrating out this 
variability leads to a regional release probability. The latter is inter
pretable, as an index resulting from a statistical avalanche forecasting 
model, as a given avalanche activity to be expected in the targeted area. 
Hence, here again, boundaries between physics and empiricism are not 
as strong as they initially seem to be. 

A wide range of statistical avalanche forecasting models relating 
snow and meteorological data to avalanche activity has been developed 
over the last decades, following the progress of statistical learning 
techniques and of the computational power required to implement these 
on large datasets. Also, simulated snow cover data have progressively 
supplemented or replaced pointwise snow and meteorological obser
vations in statistical models (Schirmer et al., 2009). Following simple 
threshold-based approaches (Perla, 1970), linear methods involving 
normality assumptions have historically been the first proposed and 
implemented. These include multivariate regressions, as well as 
discriminant and canonical analyses performed in the (high-dimen
sional) space of potential avalanche drivers (Bois et al., 1974; Bovis, 
1977; Föhn et al., 1977; McGregor, 1989; McClung and Tweedy, 1994; 
Floyer and McClung, 2003). As a popular non-parametric alternative, 
nearest neighbour approaches predict avalanche activity by identifying 
what happened in similar snow and meteorological conditions consid
ering the past. After pioneering developments (Obled and Good, 1980; 
Buser, 1983, 1989), operational nearest neighbour models were imple
mented in many countries including France (Navarre et al., 1987), 
Switzerland (Gassner and Brabec, 2002) Scotland (Purves et al., 2003) 
and Iran (Choubin et al., 2019). Further refinements such as inclusion of 
expert knowledge (Schweizer and Föhn, 1996) or explicit consideration 
of the topography into the analysis (McCollister et al., 2003) have been 
proposed, without modifying the spirit of the methodology. More 
recently, non-linear classification methods were introduced, notably 
classification trees (Davis et al., 1999; Hendrikx et al., 2005; Baggi and 
Schweizer, 2009; Hendrikx et al., 2014), random forests – also called 
forest decision trees – (Mitterer and Schweizer, 2013; Möhle et al., 2014; 
Marienthal et al., 2015; Dreier et al., 2016), and support vector ma
chines (Pozdnoukhov et al., 2008, 2011). 

From the review of the important literature devoted to avalanche 
statistical forecasting models, different critical issues can be identified. 
First, it is difficult to define avalanche activity classes at a spatial scale 
where comparison between avalanche observations, avalanche activity 
predictions and available snow and meteorological data is feasible and 
meaningful. Second, the evaluation of any developed approach is a 
crucial question (Schweizer et al., 2003b; Heierli et al., 2004; Schirmer 
et al., 2010). Yet, this step is rarely investigated in details because i) of 
the lack of long and comprehensive records of avalanche activity 
together with snow and meteorological conditions, and ii) of the local- 
to regional-scale transition problem previously mentioned. Third, even 

if the inferred relationships between avalanche activity and covariates 
remain essentially empirical, they are often considered as sufficiently 
robust to be physically interpretable. Specifically, these relationships are 
used to identify the main snow and meteorological drivers of avalanche 
activity, and, for trees, the succession of processes leading to release 
(Conway and Raymond, 1993; Conway and Wilbour, 1999). 

In this study, we aim at evaluating competing classification tech
niques and the necessary pre-processing of the data to have an idea of 
the potential of such techniques for future use as new indicators of 
avalanche-prone situations. To this end, we take advantage of the 
comprehensive and high-quality data available all over the French Alps: 
more than 50 years of daily reanalysed snow and meteorological con
ditions and avalanche activity observations in 23 massifs (Durand et al., 
2009a, 2009b). We develop a statistical approach to predict avalanche 
activity and evaluate it, in a leave-one-out cross validation scheme, 
against the main learning methods currently described in the avalanche 
statistical forecasting field. Specifically, we consider avalanche predic
tion as a classification problem, where we wish to classify, at the massif 
scale, days into three classes defined as follows: non-avalanche days 
(null class), days with a moderate number of recorded avalanches 
(moderate class) and days with a large number of recorded avalanches 
(high class). This classification is made given current and past snow and 
meteorological conditions. Note that this definition of classes results 
into unbalanced classes because, in any winter season, the number of 
days with avalanche occurrences, and, even more, of days with high 
avalanche activity, is indeed (very) small compared to the number of 
non-avalanche days. This makes most classification approaches less 
efficient (if not inefficient), another difficulty generally overlooked in 
applied snow science. To this aim, we introduce in Section 3 a scheme to 
balance avalanche activity classes. Section 4 contains the main results 
from the application of our approach to the 23 massifs constituting the 
French Alps over the 1958–2010 period. Section 5 discusses strengths, 
weaknesses and outcomes for operational avalanche forecasting. Section 
6 concludes. 

2. Processed data 

The covariates used in this study consist of reanalysed snow and 
meteorological data while the response variables are the observed 
avalanche occurrences in the 23 massifs used for operational avalanche 
forecasting in the French Alps (see Fig. 1). The area of each massif ranges 
from 500 to 1500 km2 and the key assumption regarding snow and 
meteorological numerical simulations is their spatial homogeneity, i.e., 
within each massif, meteorological and snowpack properties are 
assumed to depend only on elevation, slope and aspect (see Durand 
et al., 1999). 

2.1. Snow and meteorological conditions 

Reanalysed snow and meteorological conditions are outputs from the 
SAFRAN-Crocus model chain (Durand et al., 2009a, 2009b; Vionnet 
et al., 2012). The meteorological reanalysis was performed at the massif 
scale using 44 years of analyzed large-scale atmospheric data from the 
40-year European Centre for Medium-Range Weather Forecast 
(ECMWF) reanalysis (ERA-40) project (Uppala et al., 2004), together 
with meteorological observations including numerous mountain sta
tions. For several years beyond the end date of the ERA-40 dataset, large- 
scale meteorological fields from Météo-France operational numerical 
weather prediction models were used. All in all, the reanalysis covers the 
period from 1958 to 2009. Vernay et al. (2019) provide an updated 
version of the SAFRAN-Crocus reanalysis, sharing many characteristics 
with the dataset used in this study. 

The specific variables used, similar to those described by Castebrunet 
et al. (2012, 2014) concern three elevations (low, mid and high - 1800, 
2400, and 3000 m a.s.l.): 
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• Daily meteorological variables: daily precipitation (rain and 
snow), temperature (daily minimum, maximum, and mean), 
maximum daily wind speed and the associated direction.  

• Additional meteorological variables to take into account recent 
meteorological conditions as 3-day moving sums (for rainfall and 
snowfall) and 3-day moving averages (for air temperature and wind 
speed) of their original reanalysed daily series. This 3-day time scale 
is generally considered as being the most relevant for characterizing 
the severity of winter storms (Schweizer et al., 2009). 

• Snowpack-related variables: the snow depth, thickness of sur
face wet snow and the thickness of recent surface dry snow, 
computed for the four main aspects (north, east, south, and west), on 
a 40 degree slope. These variables are derived from outputs of the 
detailed snowpack model Crocus fed by SAFRAN reanalysed mete
orological conditions (Durand et al., 1993; Brun et al., 1992; Vionnet 
et al., 2012). 

The thickness of surface wet snow is defined, starting from the top of 
the snowpack downwards, as the sum of the vertical component of the 
thickness of the contiguous wet-snow layers characterized by a liquid 
water content greater than 0.5% by volume. The thickness of the recent 
surface dry snow is defined as the vertical distance between the snow
pack surface and the deepest snow layer characterized by a dendricity 
greater than 0.25. The threshold expressed in terms of dendricity (Brun 
et al., 1992) ensures that the considered snow layer still features char
acteristics of precipitation particles or decomposed fragments (Fierz 
et al., 2009), and it accounts for the impact of snow metamorphism on 
snow layers. 

Total snow depth corresponds to the entire snowpack, while the 
thickness of surface wet snow and recent surface dry snow are computed 
from the uppermost snow layers. Consequently, these variables are not 
necessarily correlated. Wind direction is the only categorical variable 
whose categories are the directions north, south, east and west. All other 
variables are continuous. 

Eventually, the list of all our variables abbreviated by dirwmax, 
Precip.rain, Precip.snow, Tmin, Tmax, Tmean, wmax, hsnow.at.ground, 
thickness.snow.wet, thickness.snow.dry, is: wind direction, rain 

precipitation, snow precipitation, minimum temperature, maximum 
temperature, average temperature, wind speed, snow height, thickness 
of wet snow and thickness of dry snow, respectively. In this list, the 
names of variables standing for the 3-day moving sum series end with 
the extension .cumul.3 days and those of the variables standing for the 3- 
day moving average series end with the extension .average.3 days. In the 
variable names, the letters N, S, E, W stand for the aspects north, south, 
east, west, respectively. The quantities 1800 m, 2400 m, 3000 m stand 
for the elevations in meters (Table 1). 

2.2. Avalanche activity in the French Alps 

2.2.1. Systematic records from EPA in the French Alps 
In the French Alps, daily observed avalanche data can be found in the 

Enquête Permanente sur les Avalanches (EPA) which describes avalanche 
events on approximately 3900 paths since the beginning of the 20th 
century (see Mougin, 1922; Bourova et al., 2016). Quantitative (runout 
elevations, deposit volumes, etc.) and categorical (flow regime, snow 
quality, etc.) information is recorded in the report. Obviously, EPA 
registers only a small proportion of all avalanches that occur in the 
French Alps. A recent study has indeed showed that during a unique 
(major) avalanche cycle, about 19,000 avalanches can occur over 
Switzerland (Bühler et al., 2019), whereas in the EPA, the mean number 
of avalanches per winter in the French Alps is around 1000. The EPA 
only records the avalanche activity that are visible from the valleys, so 
that, with regards to the whole natural activity, the proportion of ava
lanches that occur at high elevation and when visibility or accessibility 
is insufficient for the rangers in charge of observation may be under
estimated. More generally, EPA’s quality varies in time and space due to 
individual differences in local observations. 

Despite these known limitations, the EPA clearly stands among the 
worldwide longest and most comprehensive records of natural 
avalanche activity. Studies by Jomelli et al. (2007); Eckert et al. (2010a, 
2010c, 2013); Lavigne et al. (2012, 2015) that include further discus
sions of EPA record’s strengths and weaknesses already demonstrated its 
interest for geophysical inference. Specifically, the joint analysis of these 
avalanche records together with the Durand et al. (2009a, 2009b) 
reanalyses supplemented by snow-climate change scenarios showed its 
relevance for grasping the main patterns of real avalanche activity in 
space and time in the French Alps and understanding their main climatic 
drivers (Castebrunet et al., 2012, 2014). Emerging specific studies of 
severe avalanche episodes at shorter time scales (see Eckert et al., 
2010b; Dkengne Sielenou et al., 2016) lead to similar conclusions. All in 
all, even if some discrepancies with regards to the spatio-temporal 
characteristics of real activity certainly exist, it can be assumed that 
they are small enough for the EPA record to be considered as a 
reasonable surrogate. Hence, their main features, and notably where and 
when avalanches occur in the EPA, are worth being learned from their 
snow and weather drivers in order to get insights regarding the varia
tions of real activity in space and time over the French Alps. 

2.2.2. Partitioning daily avalanche occurrence data in three activity classes 
For this study, only the information about the daily numbers of av

alanches is used as the most straightforward variable to describe 
avalanche activity. We use daily counts aggregated at the massif scale 
for the same period as the snow and meteorological variables, namely 
the 51 winter seasons from 1958/59 to 2008/09. This corresponds to 
46,610 avalanches, with 220 to 1,844 avalanches per winter throughout 
the Alps and 369 to 4,554 avalanches per massif during the entire 
period. For certain avalanches, the exact date of occurrence is unknown, 
and the observer then provides a time window of a few days. We used 
here the end of this time window as we are then sure that the avalanche 
actually occurred. This temporal uncertainty is mitigated by the use of 
cumulated/averaged snow and meteorological conditions over the three 
past days. 

Formally, we denote S the dataset containing, for a given massif, the 

Fig. 1. Map of the French Alps. The area studied is divided into 23 massifs 
reported on the map. 
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series of daily snow avalanche counts zt. Since we are dealing with snow 
avalanches, we consider in the sequel only elements of S corresponding 
to the winter season, defined as the period ranging from the 15th of 
October of a given year to the 15th of May of the following year. Given a 
threshold h, the set S can be divided into three classes as: 
⎧
⎨

⎩

Null class : {zt ∈ S : zt = 0}
Moderate class : {zt ∈ S : 1 ≤ zt ≤ h}
High class : {zt ∈ S : zt > h}

These three classes correspond to days with no, moderate or high 
avalanche activity. In each massif, we define the threshold h as a 2-year 
return level, namely the number of avalanches per day exceeded on 
average once every two years/winters. This two-year threshold was 
chosen as a compromise: sufficiently high to isolate high activity days 
and not too high to keep enough days in the high class. Table 2 illustrates 
the variability from one massif to another of the threshold h according to 
the specific avalanche activity of each massif. Table 2 also shows the size 
(number of elements) of each class, highlighting that, in each massif, 
they are highly unbalanced, with a factor 6 to 60 between the null and 
the moderate class, 10 to 60 between the moderate and the high class 
and 400 to 600 between the null and the high class. Note that by con
struction, the size of the high class is about half the number of years of 
the considered time period. 

Our definition of the high activity class by a return level has the 

Table 1 
Snow and meteorological variables used in this study.   

Variable type Variable name 

1  dirwmax.1800 m 
2 Wind direction dirwmax.2400 m 
3  dirwmax.3000 m 
4  Precip.rain.1800 m 
5 Rain precipitation Precip.rain.2400 m 
6  Precip.rain.3000 m 
7  Precip.rain.1800 m..cumul.3 

days 
8 3-day moving sum of rain precipitation Precip.rain.2400 m..cumul.3 

days 
9  Precip.rain.3000 m..cumul.3 

days 
10  Precip.snow.1800 m 
11 Snow precipitation Precip.snow.2400 m 
12  Precip.snow.3000 m 
13  Precip.snow.1800 m..cumul.3 

days 
14 3-day moving sum of snow precipitation Precip.snow.2400 m..cumul.3 

days 
15  Precip.snow.3000 m..cumul.3 

days 
16  Tmin.1800 m 
17 Minimum temperature Tmin.2400 m 
18  Tmin.3000 m 
19  Tmin.1800 m..average.3 days 
20 3-day moving average of minimum 

temperature 
Tmin.2400 m..average.3 days 

21  Tmin.3000 m..average.3 days 
22  Tmean.1800 m 
23 Mean temperature Tmean.2400 m 
24  Tmean.3000 m 
25  Tmean.1800 m..average.3 days 
26 3-day moving average of mean 

temperature 
Tmean.2400 m..average.3 days 

27  Tmean.3000 m..average.3 days 
28  Tmax.1800 m 
29 Maximum temperature Tmax.2400 m 
30  Tmax.3000 m 
31  Tmax.1800 m..average.3 days 
32 3-day moving average of maximum 

temperature 
Tmax.2400 m..average.3 days 

33  Tmax.3000 m..average.3 days 
34  wmax.1800 m 
35 Wind speed wmax.2400 m 
36  wmax.3000 m 
37  wmax.1800 m..average.3 days 
38 3-day moving average of wind speed wmax.2400 m..average.3 days 
39  wmax.3000 m..average.3 days 
40  hsnow.at.ground..1800..aspects. 

N. 
41  hsnow.at.ground..2400..aspects. 

N. 
42  hsnow.at.ground..3000..aspects. 

N. 
43  hsnow.at.ground..1800..aspects. 

E. 
44  hsnow.at.ground..2400..aspects. 

E. 
45 Snow depth hsnow.at.ground..3000..aspects. 

E. 
46  hsnow.at.ground..1800..aspects. 

S. 
47  hsnow.at.ground..2400..aspects. 

S. 
48  hsnow.at.ground..3000..aspects. 

S. 
49  hsnow.at.ground..1800..aspects. 

W. 
50  hsnow.at.ground..2400..aspects. 

W. 
51  hsnow.at.ground..3000..aspects. 

W. 
52  thickness.snow.wet..1800.. 

aspects.N.  

Table 1 (continued )  

Variable type Variable name 

53  thickness.snow.wet..2400.. 
aspects.N. 

54  thickness.snow.wet..3000.. 
aspects.N. 

55  thickness.snow.wet..1800.. 
aspects.E. 

56  thickness.snow.wet..2400.. 
aspects.E. 

57 Thickness of wet snow thickness.snow.wet..3000.. 
aspects.E. 

58  thickness.snow.wet..1800.. 
aspects.S. 

59  thickness.snow.wet..2400.. 
aspects.S. 

60  thickness.snow.wet..3000.. 
aspects.S. 

61  thickness.snow.wet..1800.. 
aspects.W. 

62  thickness.snow.wet..2400.. 
aspects.W. 

63  thickness.snow.wet..3000.. 
aspects.W. 

64  thickness.snow.dry..1800.. 
aspects.N. 

65  thickness.snow.dry..2400.. 
aspects.N. 

66  thickness.snow.dry..3000.. 
aspects.N. 

67  thickness.snow.dry..1800.. 
aspects.E. 

68  thickness.snow.dry..2400.. 
aspects.E. 

69 Thickness of recent surface dry snow thickness.snow.dry..3000.. 
aspects.E. 

70  thickness.snow.dry..1800.. 
aspects.S. 

71  thickness.snow.dry..2400.. 
aspects.S. 

72  thickness.snow.dry..3000.. 
aspects.S. 

73  thickness.snow.dry..1800.. 
aspects.W. 

74  thickness.snow.dry..2400.. 
aspects.W. 

75  thickness.snow.dry..3000.. 
aspects.W.  
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advantage to be independent of the chosen spatial scale and can be 
applied to different types of data, to allow comparisons between regions 
and variables. With this definition, a few avalanche occurrences may be 
considered a significant episode in an area where avalanche activity is 
usually low. Conversely, a particularly high number of avalanches is 
required to belong to the high activity class in an area that normally sees 
high avalanche activity. This approach, solely based on massif-scale 
avalanche numbers, deviates from the usual implementation of the in
ternational avalanche danger scale which relates danger to avalanche 
activity in a more absolute way, independently of local considerations, 
and also includes information related to avalanche types and size (Morin 
et al., 2019; Schweizer et al., 2020). However, the goal of this study is 
not to automatically predict the avalanche danger level which also 
considers potential accidental triggers. Instead, we aim to develop a 
refined avalanche statistical forecasting model whose outputs could, in 
the future, assist forecasters in their daily duties to predict natural 
avalanche activity (Sect. 5). Besides, our choice can be seen as advan
tageous for operational purposes. In areas where high avalanche activity 
is usual, operational services are generally well prepared, whereas a few 
events can cause considerable problems in areas where activity is usu
ally low. Eventually, our relative definition of classes facilitates the 
comparison from one massif to another of the main drivers of moderate 
to high activity. Indeed, even in two massifs where activity is rather 
different (say a massif that is usually affected by many avalanches and 
another by very few), we thus compare snow and meteorological drivers 
that induce a similarly rare avalanche activity, whereas comparing the 
drivers leading to the same number of avalanches would be, in such a 
case, less meaningful. 

3. Methods 

3.1. Data preparation 

Our initial dataset of reanalysed snow and meteorological conditions 
contained a few missing values resulting from various numerical (leap 
years, etc.) and physical (wind direction when the wind speed is zero, 
etc.) artifacts. Although not numerous, these are sufficient to preclude 
the use of classification techniques that are not able to handle missing 
values. Hence, in each massif, these few missing values were imputed 

using the method of Audigier et al. (2016) described in Appendix A.1. 
The resulting set of snow and weather covariates is a mixture of 

continuous and categorical variables, most of them highly correlated. 
This is not suitable for many statistical learning methods as it may lead 
to unstable classifiers. To overcome this difficulty, we transformed in 
each massif the imputed table of snow and weather data into a new 
dataset of only continuous variables by performing a Factorial Analysis 
for Mixed Data (FAMD) (see Pagès, 2004; Husson et al., 2010b; James 
et al., 2013). This preliminary step presented in Appendix A.2 denoises 
the covariates, puts all of them on equal footing (standardized quanti
tative variables) and decorrelates them in order to get stable classifiers. 

3.2. Class balancing 

Unbalanced dataset problems occur in classification when the 
number of instances in certain classes is much lower than the instances 
in the other classes. The main challenge is that the small classes are often 
more useful, so that it is costly to misclassify examples of these minority 
classes. Most machine learning algorithms work well with balanced 
datasets since they aim at optimizing the overall classification accuracy 
or a related measure. For unbalanced datasets, however, decision rules 
established by standard machine learning algorithms tend to be biased 
towards the majority classes. Therefore, the minority classes are likely to 
be misclassified. 

Many attempts have been made to deal with classification of un
balanced datasets. They can be categorized into two groups (see Nguyen 
et al., 2009; Ramyachitra and Manikandan, 2014) namely internal ap
proaches and external approaches. Internal approaches are algorithmi
cally explicit, meaning that one creates innovative classification 
algorithms (or at least adapts existing ones) in order to take the class 
unbalanced problem into consideration. For example, an internal 
approach is used in Möhle et al. (2014) where avalanche forecasting is 
attempted using a modified class-balancing random forest algorithm. On 
the contrary, in external approaches, one pre-processes the data in order 
to equilibrate the size of each class without modifying the classification 
algorithm. 

In this work, we wanted to compare several classification methods. 
To balance the dataset once for all, an external approach was therefore 
preferable. We implemented a simple generic external approach to 

Table 2 
Massifs names and identifiers in the French Alps refer to Fig. 1. For each massif: number of monitored avalanche paths in the EPA record, number of avalanches per day 
exceeded on average every two years (threshold h), number of days in each avalanche activity class.  

Massif identifiers (i) Massif names Number of paths Threshold (h) Size of classes     

High Moderate Null 

1 Chablais 193 14 26 1515 9335 
2 Aravis 207 14 26 1503 9347 
3 Mont-Blanc 167 11 25 703 10,148 
4 Bauges 97 10 25 635 10,216 
5 Beaufortain 106 5 25 524 10,327 
6 Haute-Tarentaise 166 10 24 725 10,127 
7 Vanoise 247 14 23 929 9924 
8 Maurienne 222 14 23 1449 9404 
9 Chartreuse 55 3 17 228 10,631 
10 Belledonne 91 7 26 493 10,357 
11 Haute-Maurienne 186 12 26 848 10,002 
12 Vercors 35 4 17 160 10,699 
13 Grandes-Rousses 101 10 24 619 10,233 
14 Thabor 74 6 20 279 10,577 
15 Oisans 297 22 26 969 9881 
16 Pelvoux 107 11 24 434 10,418 
17 Queyras 205 7 26 476 10,374 
18 Devoluy 107 5 25 315 10,536 
19 Champsaur 124 14 24 673 10,179 
20 Embrunais-Parpaillon 89 3 20 274 10,582 
21 Ubaye 92 11 25 630 10,221 
22 Mercantour 191 12 24 636 10,216 
23 Haut-Var - Haut-Verdon 65 4 26 326 10,524  
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balance our dataset before applying machine learning techniques. For 
each massif, the data belonging to moderate and high classes was 
extracted and copied as many times as requested to become as close as 
possible to the size of the null class. Eventually, a subset of the initial 
table was copied to generate a fully balanced dataset with the same 
number of lines attributed to the three classes. Formal details on the 
procedure and the choice of the subset to complete the process are 
available in Appendix A.3. 

3.3. Classification 

3.3.1. Competing methods 
In this work, the following classification methods were compared: 

the linear discriminant analysis (LDA) (see Venables and Ripley, 2002), 
the support vector machine with linear kernel (SVM_LK), polynomial 
kernel (SVM_PK) and radial kernel (SVM_RK) (see Meyer et al., 2014), 
the classification trees (Trees) (see Ripley, 2014), the K-nearest neigh
bors (K-NN) with K = 1 (see Venables and Ripley, 2002), and the random 
forests for classification (RF) (see Liaw and Wiener, 2002). The latter is a 
large collection of decision trees so that the most frequent class pre
dicted by these decision trees is the one which is predicted by the 
random forest (see Breiman, 2001; Liaw and Wiener, 2002; James et al., 
2013; Salford-Systems, 2014). It is out of the scope of this paper to go 
into details in their mathematical description but a general introduction 
relevant for most of them can be found, e.g. in James et al. (2013). 

As explained before, all these methods were combined with the same 
external balancing scheme (Appendix A.3). However, for comprehen
siveness and consistency of the demonstration, an internal balancing 
approach, namely the weighted random forests (wRF, Chen et al., 2004) 
already used for avalanche forecasting (Möhle et al., 2014), was also 
implemented. The different classifiers were implemented on trans
formed avalanche drivers which are the first principal components 
responsible, in each massif, for at least 95% of the total variability in the 
meteorological and snow variables (Appendix A.2). 

3.3.2. Classification evaluation 
Predictive performance of all classifiers was assessed using Leave- 

One-Out Cross-Validation (LOO_CV) error rates (see Stone, 1974; 
James et al., 2013). It is worth noting that there is a straightforward way 
to estimate the test error of a RF model (see James et al., 2013), but we 
did not use it to make comparison with other classifiers easier. Specif
ically, predictive performance is evaluated on the ability to discriminate 
the null, moderate and high classes measured by the confusion matrix 
introduced below for each of the 23 massifs of the French Alps. 

In a multi-class application of k classes (with k ≥ 2), the confusion 
matrix is the simplest way of measuring or visualizing the performance 
of a classifier. It can be presented in the form of Table 3, where Ci de
notes the class label of the i-th class. It is a square matrix k × k, where k is 
the number of classes (in our example of application, k equals 3). Each 
row corresponds to one of the actual categories of the cases. Each col
umn corresponds to one of the categories in which an element is clas
sified by the system (maybe incorrectly). Each cell (i, j) of the matrix 
contains the number ni, j of cases from the evaluation (or testing) set that 
actually belongs to the category i and were classified as category j. In this 
way, ni, i is the number of well-classified instances in the category i.. The 
class i success rates (CSRi) are defined by. 

CSRi =
ni,i

∑k
j=1ni,j

, i = 1, 2,…, k  

from which one deduces the class i error rates as 1 − CSRi, i = 1, 2, …, k. 
The overall success rate (OSR) is then calculated as the mean of the 
three classes. 

3.4. Variable importance in avalanche activity classes and subsequent 
massif clustering 

Subsequently, in order to work with interpretable drivers, we 
repeated the RF classification with the original covariates table in all 23 
massifs. We then quantified variable importance in the random forests 
classification in the 23 massifs. Eventually, we clustered the 23 massifs 
with respect to the snow and meteorological variable importance in the 
null, moderate and high avalanche activity class. 

3.4.1. Variable importance in random forests 
When applying the RF model for classification, it is no longer 

possible to represent the resulting statistical learning procedure. Hence, 
random forest classifiers improve prediction accuracy at the expense of 
interpretability. However, although the collection of many decision 
trees is much more difficult to interpret than a single tree, one can obtain 
an overall summary of the importance of each predictor in a RF. The 
method is based on measuring the damage that would be done if one 
loses access to true values of a given predictive variable. To simulate 
losing access to a predictor, one randomly scrambles its values in the 
data. That is, one moves the value belonging to a specific day of the data 
to another day. One permutes just one predictor at a time and measures 
the consequential loss in predictive accuracy (mean decrease in accu
racy). A large value indicates an important predictor (Genuer et al., 
2010; Gregorutti et al., 2016). 

3.4.2. Clustering 
For interpreting the results of variable importance in each massif, a 

clustering method is proposed to identify groups of massif with similar 
repartition of variable importance. In this study, as we do not want to 
presume a number of clusters, we first use hierarchical clustering. In 
addition, it has the advantage of resulting in an attractive tree-based 
representation of the observations, called a dendrogram (James et al., 
2013; Kaufman and Rousseeuw, 1990). Then, the obtained clusters are 
refined with the k-means clustering algorithm. 

The hierarchical clustering dendrogram is obtained via an extremely 
simple algorithm based on a defined dissimilarity measure between each 
pair of observations or between two groups of observations (Murtagh 
and Legendre, 2014). Hierarchical trees considered in this paper use the 
Ward’s criterion (Ward, 1963). This criterion is based on the Huygens 
theorem which allows one to decompose the total inertia (total variance) 
in between groups and within groups variance. The Ward’s method 
consists in aggregating two clusters such that the growth of within- 
inertia is minimum (in other words minimizing the reduction of the 
between-inertia) at each step of the algorithm. The within-inertia 
characterizes the homogeneity of a cluster. The hierarchy is repre
sented by a dendrogram which is a hierarchical tree considered as a 
sequence of nested partitions from the one in which each individual is a 
cluster to the one in which all the individuals belong to the same cluster. 

Choosing the number of clusters is a core issue and several approaches 
have been proposed. The rule used here is based on the growth of inertia 
(Husson et al., 2010a). It suggests a division into K clusters when the 
increase of between-inertia between K − 1 and K clusters is much greater 
than the one between K and K + 1 clusters. An empirical criterion can 
formalize this idea. Let Δ(K) denote the between-inertia increase when 
moving from K − 1 to K clusters. The criterion proposed is the number K 
which minimized the ratio Δ(K)/Δ(K + 1). 

One further consolidates the clusters obtained via the hierarchical 

Table 3 
Confusion matrix.    

Predicted class  

Classes C1 ⋯ Ck 

True Class C1 n1, 1 ⋯ n1, k  

⋮ ⋮ ⋱ ⋮  
Ck nk, 1 ⋯ nk, k  
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clustering method by using the k-means clustering algorithm where the 
initial starting centroids are the centres of gravity of the k clusters 
resulting from the hierarchical clustering. Doing this, it is possible that a 
few individuals move from one cluster to another. Hence, the hierar
chical clustering is used here as a pre-processing step for the 

identification of the relevant number of clusters and of the initial cen
troids, which guarantees the convergence of the k-means algorithm to 
the optimal (highest between-cluster inertia) and stable clusters. 

Fig. 2. Inter-massif variability in misclassification error rates, for (a) unbalanced and (b) balanced datasets. Are reported the overall misclassification error rate 
(blue) and the corresponding values for the three classes (null, in green, moderate in orange and high in red). Refer to Table B.1 for the full names of the competing 
classification methods. The boxes span the inter-quartile range from the 1st to 3rd quartile with the vertical line showing the median. The whiskers show the range of 
observed values that fall within 1.5 times the interquartile range and the black dots are outliers above or below it. Black crosses denote the mean value. 
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4. Results 

4.1. Comparing classifiers on transformed avalanche drivers 

4.1.1. Unbalanced case 
We started by applying all classification methods listed in Section 3.3 

without balancing instances from the three avalanche classes. Overall 
misclassification error rates are shown in Table B.1. Graphical overviews 
of the misclassification error rates including the class error rates are 
displayed in Fig. 2a. Generally, in the French Alps, and regardless of the 
learning method used, observations correctly classified are mainly in
stances from the majority class (the null class). On the contrary, all 
classifiers including the weighted random forests (wRF, internal 
approach) fail to correctly identify days belonging to the minority 
classes (the moderate and high classes), namely avalanche days. The 
balancing step (external approach) appears therefore a key and a 
necessary step for the success of the prediction. 

4.1.2. Balanced case 
We carried out the external balancing method described in Section 

3.2 and then applied again each of the various classification methods 
presented in Section 3.3. Resulting overall error rates are given in 
Table B.2. The box plots in Fig. 2b summarize by-class misclassification 
error rates. With regards to the unbalanced case, they are much lower. 
Among the competing methods, the linear discriminant analysis, the 
classification trees and the support vector machine with linear kernel 
perform poorly. By contrast, the random forest and the nearest neigh
bour classifiers appears to be more relevant here. In what follows, we 
therefore only consider the random forest for classification. 

4.2. Variable importance in Random forests and massifs clustering 

The box plots in Fig. 3 show the inter-massif variability of the mean 
decrease in accuracy when loosing access to a variable, which is a way of 
evaluating the inter-massif variability in the importance of each variable 
with respect to the overall accuracy. In the French Alps, the weakest 
predictors of avalanche activity class membership are the variables 
related to the thickness of wet snow while the most important predictors 
are the variables related to the total height of snow, the thickness of dry 
snow and precipitation. However, variability between the different 
massifs with respect to the variable importance in the classification of 
snow avalanche days by the random forest is high. 

To sum up results, we performed a clustering analysis as detailed in 
Section 3.4. Hierarchical clustering led to three clusters of massifs 
(Fig. 4a), and the subsequent k-means algorithm to the final map of 
Fig. 4b. The obtained three groups of massifs are very homogeneous in 
the sense that the within cluster variable importances are very close. 
Note that only one massif moves from one cluster to another in the k- 
means step, the Thabor massif. Strikingly, in each group, the massifs are 
also very homogeneous in terms of spatial/and or elevation character
istics. For instance, cluster three (massifs in green) includes the lower 
elevation massifs of the French Prealps, whereas cluster 1 (in blue) 
consists in four contiguous massifs of higher, rather similar, topo
graphical characteristics. This demonstrates that in massifs similar in 
terms of localisation and elevation characteristics, main snow and 
meteorological drivers of avalanche activity are very similar, an intui
tive but consistent result. 

5. Discussion 

In this work, we revisited the problem of classifying snow and 
meteorological conditions according to their consequences in terms of 
natural avalanche occurrences. Specifically, we considered three 
avalanche activity classes, namely the null, the moderate and the high 
classes, the two latter on the basis of a two-year return level threshold. 
We implemented an external class-balancing scheme and then built 

various classifiers to predict the class membership on the basis of the 
snow and meteorological data available at the massif scale. We also ran 
all the classification approaches without the class-balancing step. 

5.1. Random forest as a relevant machine learning method for avalanche 
activity classification 

The results of the different machine learning methods points out 
random forest as a relevant method for learning avalanche activity 
classes (Fig. 2b and Table B.2) with a very low error rate according to 
our metric in each of the 23 massifs of the French Alps. These results are 
significantly different from those obtained with the other tested machine 
learning methods, especially for misclassification of non-avalanche 
days. In each of the 23 massifs, the comparison was made using more 
than 50 years of high quality daily data. To use it with similar efficiency 

Fig. 3. Mean decrease in accuracy when loosing access to a variable (as 
described in Section 3.4.1). It is a measure of the variable importance in the 
retained classification approach with respect to the overall accuracy in the 
classification of avalanche days. Variables are grouped by types separated by 
dotted lines. Each box represents a variable for one elevation and one aspect 
(W, S, E, N) if relevant. Additional variables to take into account recent con
ditions (3-days average for wind and temperature and sums for precipitation) 
are identified with”3d”. These box plots highlight the inter-massif variability in 
variable importance. For box plot definition, see Fig. 2. 
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Fig. 4. (a) Hierarchical clustering of the 23 massifs in the French Alps with respect to the variable importance results obtained with the retained approach. Sub
sequent application of the k-means algorithm as detailed in Section 3.4.2 led to the final three groups of massifs identified by the numbers in brackets. (b) Map of the 
clusters identified in (a) using the hierarchical clustering and the k-means algorithm. In each massif, the number after the massif name stands for the cluster label 
while the values below the name refer to the elevation ranges (in meters) over which the numerical SAFRAN meteorological reanalysis is performed. Note that the 
cluster belonging is modified by the k-means algorithm for one massif only (Thabor, from cluster 2 to cluster 1). 
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in other regions, since machine learning methods need a quite important 
dataset and are sensitive to input data, it would be necessary to have 
similar data at hand. In such cases, we believe (also this remains to be 
checked) that the classification approach we propose would be power
ful/flexible enough to perform well. 

However, the results have to be handled with care as the evaluation 
is done leaving only one observation out. Hence, with our class 
balancing approach, some copies of this observation may be present in 
the evaluation set for moderate and high classes. As a consequence, in 
the balanced case, nearest neighbors for moderate and high class (at 
least for low values of N) are the same observation, which explains the 
error rate of zero for these two classes. More widely, from this 
perspective, results of Fig. 2a and Table B.1 are not really comparable 
with those of Fig. 2b and Table B.2. Values of error rates for Fig. 2b 
should therefore be considered as indicators of the relative interest of 
the competing methods, at least for the moderate and high classes, 
rather than rates to be expected in a true”blind prediction context”. 
Hence, further work could deepen the evaluation of the different clas
sifiers using even more stringent cross-validation approaches. More 
generally, our work may constitute a good starting point for further 
inter-comparisons of avalanche statistical forecasting models, a key 
question for their usefulness in an operational context (Sect. 5.4). 

5.2. Classifiers and clustering compared to main drivers of avalanche 
activity 

The importance of variables in the classification could be compared 
to the main known drivers of avalanche activity. To do so, we moved, 
with the retained random forest model, from the principal component 
space to the space of the original snow and meteorological variables. The 
main variables identified (Fig. 3) correspond to the current literature 
(Schweizer et al., 2003a; Castebrunet et al., 2012; Birkeland et al., 
2001): total snow depth, thickness of dry snow and precipitation are the 
main drivers while wind and temperature are of lower importance. This 
contributes to the confidence it is possible to have in the ability of 
random forest methods to reproduce avalanche activity. 

Applied to each massif, this method led to point out the variables that 
predominantly generate moderate or high avalanche activity days in 
each massif. This further allowed clustering the 23 massifs of the French 
Alps into 3 groups rather homogeneous in terms of main explanatory 
variables of avalanche activity. Within each group, massifs are relatively 
close in terms of geographical location and topography, notably eleva
tion. This determines their exposure to synoptic patterns and the char
acteristics of prevailing snow conditions as a function of elevation, 
aspect and latitude/longitude, which explains why they behave simi
larly in terms of avalanche activity response to snow and meteorological 
drivers. Notably, the clusters’ localisation roughly mimics spatial pat
terns in extreme snowfall in the French Alps (Gaume et al., 2013). 

Much more could certainly be said from these results but this is 
arguably enough to depict the potential of our approach to infer the 
main drivers of avalanche activity. Similar studies could therefore be 
conducted in various contexts (snow-climate conditions, topography, 
etc.) to guide further research on physical understanding of avalanche 
release. However, one needs to remain careful when trying to infer 
underlying physical processes driving avalanche activity as such statis
tical methods rely on correlations which may not be mirrored to cau
sality links. 

5.3. Definition of classes of avalanche activity 

The analysis performed in this study was facilitated by the use of a 
threshold separating the high and moderate activity classes corre
sponding to the same frequency of occurrence in all massifs. However, 
our separation between the null and moderate class does not correspond 
to the same occurrence frequency in all massifs. To overcome this dif
ficulty, a threshold of a few avalanches in the most active massifs could 

have been chosen instead of a universal”more than zero” threshold. Our 
choice was made to clearly separate no activity from sporadic to mod
erate activity in all massifs, since the information”fully safe” versus”
potential activity, even very limited” may always be useful, even if 
the”no activity conditions” may indeed be more stringent (less 
frequently encountered) in the massifs with more intense avalanche 
activity. 

Independently of the way these three classes are defined (in our case, 
raw aggregation of avalanche counts, but, different or more sophisti
cated variations could be proposed and tested, see below), which of 
these is to be expected a given day may be an information useful but 
insufficient for many operational problems. However, note, first that it is 
already better than the even coarser avalanche / non-avalanche day 
segregation used by most of the statistical forecasting models in the 
literature. Second, one could easily think, now that we know that our 
approach works efficiently with three classes, to expand it to a higher 
class number, in order to test if it is possible to predict even more pre
cisely the avalanche activity to be expected on the basis of the snow and 
meteorological conditions. An obvious choice would be to consider a 
higher number of occurrence number classes. Yet, segregating avalanche 
activity by elevation range and/or aspect/slope would be another 
appealing possibility which may help bridging the gap between the 
outputs of our approach and the information usually required to assess 
avalanche danger and prepare an avalanche bulletin. 

5.4. Operational usefulness and limitations 

Avalanche operational forecasting and an avalanche statistical fore
casting model remain two different things. However, a statistical fore
casting model has clearly the ambition to provide useful entries to 
operational forecasting, and the developed approach could be, in the 
future, systematically implemented to assist avalanche forecasters in 
preparing avalanche bulletins, as a complement to their expertise and to 
the different stability indices already at hand. For instance, in France, 
MEPRA (Giraud et al., 1998) is an expert system integrated into 
SAFRAN-Crocus model outputs for operational avalanche forecasting 
(Durand et al., 1999). Formally, MEPRA provides local indices for each 
massif, elevation range and aspect on the basis of physical and empirical 
rules. The different values obtained by elevation range and aspect are 
also aggregated to obtain a single index value at the massif scale. The 
overall efficiency and physical consistency of the results we obtained in 
the 23 massifs under study suggests that our approach could be a useful 
complement for the practitioners to these standard MEPRA indices 
(possibly after subsequent developments regarding the class definition). 
Specifically, for each daily snow and meteorological condition, our 
approach would provide, for each massif, a reliable hint about the 
avalanche activity to be expected: very low (null class), standard 
(moderate class), or (very) marked (high class). In turn, such a practical 
implementation could help to further understand why, for some massifs, 
the classification rates remain slightly lower than for others. 

A limitation of the present work for operational use is that the 
considered snow and meteorological data resulted from reanalyses, by 
definition not available for real-time forecasting. Hence, the classifica
tion efficiency should now be tested in forecast mode (Durand et al., 
1999; Vernay et al., 2015) to study the impact of forecasted snow and 
meteorological information on the method accuracy. Another limitation 
of our study is that it makes full use of the extensive data available in 
France: very detailed snow and meteorological data all over the French 
Alps at the massif scale from the SAFRAN-Crocus chain supplemented by 
the comprehensive EPA avalanche database, allowing an efficient 
learning of the conditions in which moderate and high avalanche ac
tivity actually occur. The approach could now be tested in contexts that 
differ in terms of data structure, spatial coverage and/or exhaustivity to 
evaluate whether or not the proposed classification method is really able 
to outperform other more classical techniques. 

Eventually, it could be objected that avalanche activity is measured 
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in our approach in terms of avalanche occurrence numbers from the EPA 
database only. This raises the question of the representativity of EPA 
records with regards to the real activity discussed in Sect. 2. Also, the 
class predicted in our approach will not give any information about the 
severity of avalanche activity in terms of the magnitude (runout, ve
locity field, etc.) of the avalanches themselves, and will, for instance, 
consider an episode with many small avalanches as more severe than an 
episode with a lower number of larger avalanches. A first improvement 
would be to integrate additional avalanche activity data within the 
approach, which would be a step towards classifiers accounting for real 
activity in an even more comprehensive way. For instance, Castebrunet 
et al. (2012) proposed a composite index combining EPA counts with the 
MEPRA stability index, more reliable at high elevation and during severe 
winter conditions (snow storms, cold temperatures, etc.). Building new 
classifiers with this composite index as target would be straightforward, 
presumably reducing the biases towards real activity. Other information 
sources such as remote sensing observations of deposits could be used in 
a similar spirit (Eckerstorfer and Malnes, 2015; Bühler et al., 2019). 
Second, as said before, more complex summaries of avalanche activity 
more relevant for specific operational problem could be defined and 
targeted, such as avalanche numbers weighted by avalanche size (de
posit volume or size class, McClung and Schaerer, 1981) that are 
routinely used in avalanche bulletins in several countries. 

6. Conclusion and outlooks 

In this work, we tackled the problem of classifying snow and mete
orological conditions according to their consequences in terms of nat
ural avalanche occurrence, and more precisely in three classes (no- 
avalanche days, and two classes of avalanche days separated by a two- 
year return level). We compared all the main statistical classifying ap
proaches currently described in the literature and demonstrated that 
random forest classifiers could be relevant. The variables of higher 
importance in the random forest classifiers have been shown to be 
coherent with current literature and a clustering based on these variable 
importances separates massifs which are known to have different 
avalanche activities (due to elevation, geographical and 

geomorphological particularities). 
These results show the potential of statistical methods to interpret 

snow cover model outputs in terms of expected avalanche activity or 
return level. This may be used in the future as an additional guiding tool 
for practitioners or avalanche forecasters in their analysis. We worked 
here on three classes, but our approach could be extended to different 
(and more relevant) classes. Eventually, it would be interesting to go 
beyond the deterministic approach developed here, modelling the 
probability of belonging to each class rather than attributing only one 
class to each meteorological and snow condition. Comparing these ap
proaches may help to break the walls, somewhat artificial, that still exist 
between different forecasting approaches and index classes (physical or 
empirical, local or regional, deterministic or probabilistic), with the 
ultimate goal to reach more efficient and reliable prediction of 
avalanche activity according to snow and meteorological conditions. 
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Appendix A. Details on statistical pre-processing 

A.1. Imputation of missing data 

The method proposed in (Audigier et al., 2016) was used to impute the few missing snow and weather data to generate in each massif the complete 
set of covariates required for several of the used machine learning techniques. Implementation was performed using the package missMDA (Josse and 
Husson, 2016) of the R software (function imputeFAMD()). The method works as follows:  

1) There is initially a table of mixed data with missing values.  
2) This table is transformed to obtain the matrix X coding categorical variables using an indicator matrix of dummy variables. A missing value on a 

categorical variable then leads to a row of missing values in the indicator matrix. Continuous variables are left unchanged.  
3) This data table is imputed according to the following algorithm:  

i) Set the missing elements at initial values, for example, the mean of the variable for the continuous variables and the proportion of the category 
for each category using the non-missing entries. Note that concerning the categorical variables, initial values can be non integer ones but the 
sum of the entries corresponding to one individual and one categorical variable must equal one;  

ii) Perform a Principal Component Analysis (PCA) on the completed dataset; 
iii) Input the missing values with values predicted by the reconstruction formula (defined by the fitted matrix obtained with the axes and com

ponents) using a predefined number of dimensions;  
iv) Repeat the steps ii) and iii) on the newly obtained matrix until the total change in the matrix falls below an empirically determined threshold.  

4) At the end of the algorithm, imputed values for the missing entries for the categories are not equal to 0 and 1 but are real numbers. However, the 
constraint in the initialization step makes that categorical variables are imputed with the most plausible values. 

A.2. Factorial analysis for mixed data (FAMD) 

The principle of FAMD is to obtain independent variables from potentially correlated variables and to balance the influence of the continuous and 
the categorical variables in the analysis (see Pagès, 2004; Husson et al., 2010b; James et al., 2013). The rationale is to weight the variables in such a 
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way that each variable of both types contributes equivalently to the construction of the dimensions of variability. It is the same idea as scaling for 
continuous variables in Principal Component Analysis (PCA), adapted to the use with combined continuous and categorical variables. The technique 
works as follows:  

i) The first step of FAMD consists in coding categorical variables using the indicator matrix of dummy variables. Continuous variables are 
conserved;  

ii) The second step is a weighting step: each continuous variable is standardized and each dummy variable is divided by the squared root of the 
proportion of individuals for which the value of the considered dummy variable is equal to one;  

iii) The final step consists in performing a PCA on the resulting weighted matrix. 

FAMD was performed in all massifs on the imputed snow and weather table. In each massif, the smallest number of the first principal components 
responsible for at least 95% of the total variability were kept as new covariates to be used in the classification step. The last remaining components of 
the FAMD were considered as noise and eliminated. 

A.3. Class balancing 

To balance in each massif our dataset of null, moderate and high activity days before applying machine learning techniques, we adopted the 
generic external approach described below:  

1. Let D denotes our class unbalanced data table in which the first p columns contain the values of snow and meteorological avalanche covariates 
while the last column contains the avalanche null-moderate-high class labels. The integers nx, ny and nz are the total number of winter days over the 
studied time period belonging to the null, moderate and high class, respectively.     

Covariates Class 
D = X1, 1 ⋯ X1, p null   

⋱ ⋮ ⋮  
Xnx, 1 ⋯ Xnx, p null  
Y1, 1 ⋯ Y1, p moderate   

⋱ ⋮ ⋮  
Yny, 1 ⋯ Yny, p moderate  
Z1, 1 ⋯ Z1, p high   

⋱ ⋮ ⋮  
Znz, 1 ⋯ Znz, p high    

2. Let D (X), D (Y) and D (Z) denote the sub-tables corresponding to the null, moderate and high classes, respectively     

Covariates Class 
D (X) = X1, 1 ⋯ X1, p null  

⋱ ⋮ ⋮ 
Xnx, 1 ⋯ Xnx, p null   

Covariates Class 
D (Y) = Y1, 1 ⋯ Y1, p moderate  

⋱ ⋮ ⋮ 
Yny, 1 ⋯ Yny, p moderate   

Covariates Class 
D (Z) = Z1, 1 ⋯ Z1, p high  

⋱ ⋮ ⋮ 
Znz, 1 ⋯ Znz, p high    

3. Let ‖⋅‖ be a norm on ℝp. let u be the permutation of the set {1,⋯,ny} such that 
⃦
⃦
⃦

(
Y ′

u(1),1⋯Y ′

u(1),p

)⃦
⃦
⃦ ≤ ⋯ ≤

⃦
⃦
⃦
⃦

(

Y ′

u(ny),1
⋯Y ′

u(ny),p

)⃦
⃦
⃦
⃦,

where (Yj, 1
′⋯Yj, p

′) ∈ ℝp, j = 1, ⋯, ny is the coordinate vector of the j-th row of D (Y) in the system defined by the p principal components resulting 
from the FAMD applied on D (Y) in which the class label variable is added. 

Let v be the permutation of the set {1,⋯,nz} such that: 

⃦
⃦
⃦

(
Z ′

v(1),1⋯Z ′

v(1),p

)⃦
⃦
⃦ ≤ ⋯ ≤

⃦
⃦
⃦

(
Z ′

v(nz),1⋯Z ′

v(nz),p

)⃦
⃦
⃦,
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where (Zk, 1
′⋯Zk, p

′) ∈ ℝp, k = 1, ⋯, nz is the coordinate vector of the k-th row of D (Z) in the system defined by the p principal components resulting 
from the FAMD applied on D (Z) in which the class variable is added.  

4. Extend the sub-tables D (Y) and D (Z) of the minority classes (moderate and high classes) to the sub-tables D̃ (Y) and D̃ (Z) by reordering and 
recycling successively their row elements up to the size nx of the majority class (the null class) as described below. The row vectors of the extended 
sub-tables D̃ (Y) and D̃ (Z) are given by 

(

Ỹ j,1⋯Ỹ j,p|moderate
)

=

{ (
Yu(r),1⋯Yu(r),p |moderate

)
if 1 ≤ r < ny(

Yu(ny),1⋯Yu(ny),p |moderate
)

if r = 0 j = 1,…, nx,

where r is the remainder of the Euclidean division of j by ny. 
(

Z̃k,1⋯Z̃k,p|high
)

=

{ (
Zv(s),1⋯Zv(s),p |high

)
if 1 ≤ s < nz(

Zv(nz),1⋯Zv(nz),p |high
)

if s = 0 k = 1,…, nx,

where s is the remainder of the Euclidean division of k by nz. Hence, we get:    

Covariates Class 
D̃ (Y) = Ỹ1,1  ⋯ Ỹ1,p  moderate  

⋱ ⋮ ⋮ 
Ỹnx ,1  ⋯ Ỹnx ,p  moderate   

Covariates Class 
D̃ (Z) = Z̃1,1  ⋯ Z̃1,p  high  

⋱ ⋮ ⋮ 
Z̃nx ,1  ⋯ Z̃nx ,p  high    

5. Combine row-wise the sub-tables D (X), D̃ (Y) and D̃ (Z) to obtain the class-balanced data table D̃     

Covariates Classes 
D̃ = X1, 1 ⋯ X1, p null   

⋱ ⋮ ⋮  
Xnx, 1 ⋯ Xnx, p null  
Ỹ1,1  ⋯ Ỹ1,p  moderate   

⋱ ⋮ ⋮  
Ỹnx ,1  ⋯ Ỹnx ,p  moderate  

Z̃1,1  ⋯ Z̃1,p  high   
⋱ ⋮ ⋮  

Z̃nx ,1  ⋯ Z̃nx ,p  high  

Appendix B. Full result tables 

This appendix reports overall misclassification error rates for all classifications performed in this study. Tables B.1 is related to the unbalanced case 
while Table B.2 is for the balanced case.  

Table B.1: Overall misclassification error rates (%) for all tested statistical learning methods applied to the original unbalanced datasets from the 23 massifs in the 
French Alps. The leave-one-out score or assessing prediction performance is used for all methods: the K-nearest neighbors (K-NN) method (K = 1), the linear 
discriminant analysis (LDA), the support vector machine with linear kernel (SVM_LK), the support vector machine with polynomial kernel (SVM_PK), the support 
vector machine with radial kernel (SVM_RK), the classification trees (Trees) method, the random forests (RF) method and the weighted random forest method (wRF).  

Massif names LDA 1-NN Trees RF wRF SVM_LK SVM_PK SVM_RK 

Aravis 61.9 62.4 61.8 66.6 61.8 61.8 61.8 61.8 
Bauges 65.2 65.5 65.1 66.7 65.1 65.1 65.1 65.1 
Beaufortain 65.5 65.9 65.5 66.7 65.5 65.5 65.4 65.5 
Belledonne 65.7 66.1 65.6 66.7 65.6 65.6 65.5 65.6 
Chablais 61.9 62.3 61.8 66.6 61.8 61.8 61.8 61.8 
Champsaur 65.0 65.4 65.0 66.7 65.0 65.0 64.9 65.0 
Chartreuse 66.6 66.9 66.5 66.7 66.5 66.5 66.4 66.5 
Devoluy 66.4 66.6 66.2 66.7 66.2 66.2 66.1 66.1 
Embrunais-Parpaillon 66.4 66.8 66.3 66.7 66.3 66.3 66.2 66.3 
Grandes-Rousses 65.3 65.6 65.1 66.7 65.1 65.1 65.1 65.1 
Haute-Maurienne 64.4 64.8 64.3 66.7 64.3 64.3 64.3 64.3 

(continued on next page) 
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(continued ) 

Massif names LDA 1-NN Trees RF wRF SVM_LK SVM_PK SVM_RK 

Haute-Tarentaise 64.8 65.2 64.8 66.6 64.8 64.8 64.7 64.8 
Haut-Var - Haut-Verdon 66.1 66.6 66.1 66.7 66.1 66.1 66.0 66.1 
Maurienne 62.3 62.6 62.1 66.6 62.1 62.1 62.0 62.1 
Mercantour 65.1 65.7 65.1 66.7 65.1 65.1 65.0 65.1 
Mont-Blanc 64.9 65.3 64.9 66.7 64.9 64.9 64.8 64.9 
Oisans 64.0 64.4 63.9 66.5 63.9 63.9 63.8 63.9 
Pelvoux 65.8 66.2 65.8 66.7 65.8 65.8 65.7 65.8 
Queyras 65.7 66.1 65.6 66.7 65.6 65.6 65.6 65.6 
Thabor 66.3 66.7 66.3 66.7 66.3 66.3 66.2 66.3 
Ubaye 65.2 65.6 65.1 66.7 65.1 65.1 65.0 65.1 
Vanoise 64.2 64.5 64.1 66.6 64.1 64.1 64.0 64.1 
Vercors 66.8 67.1 66.7 66.7 66.7 66.7 66.6 66.7   

Table B.2: Overall misclassification error rates (%) for all tested statistical learning methods applied to the balanced datasets from the 23 massifs in the French Alps. 
The leave-one-out scheme for assessing prediction performance is used for all methods: the K-nearest neighbors (K-NN) method (K = 1), the linear discriminant 
analysis (LDA), the support vector machine with linear kernel (SVM_LK), the support vector machine with polynomial kernel (SVM_PK), the support vector machine 
with radial kernel (SVM_RK), the classification trees (Trees) method and the random forests (RF) method.  

Massif names LDA 1-NN Trees RF SVM_LK SVM_PK SVM_RK 

Aravis 30.7 3.6 24.2 1.3 28.6 12.4 11.3 
Bauges 43.4 1.7 20.2 0.3 42.0 15.2 12.9 
Beaufortain 36.2 1.5 25.4 0.0 27.4 8.0 7.6 
Belledonne 37.2 1.2 26.4 0.0 29.4 6.7 6.0 
Chablais 29.3 3.5 23.8 1.2 27.8 12.9 12.2 
Champsaur 36.1 1.6 23.3 0.1 33.6 7.6 6.9 
Chartreuse 39.4 0.6 22.6 0.0 38.2 11.9 9.1 
Devoluy 31.7 0.8 21.2 0.0 24.2 4.9 4.4 
Embrunais-Parpaillon 34.7 0.7 25.2 0.0 28.2 3.8 2.9 
Grandes-Rousses 24.0 1.5 23.6 0.1 19.7 7.1 6.8 
Haute-Maurienne 25.7 1.8 22.5 0.3 25.1 8.1 7.9 
Haute-Tarentaise 27.8 1.8 24.4 0.3 22.2 6.9 6.5 
Haut-Var - Haut-Verdon 34.5 0.9 21.5 0.0 29.2 6.8 6.1 
Maurienne 27.7 3.1 21.0 1.1 22.6 11.1 10.6 
Mercantour 25.4 1.5 20.8 0.2 19.4 7.3 7.0 
Mont-Blanc 28.4 1.7 23.0 0.2 26.3 8.1 7.3 
Oisans 26.9 2.1 22.6 0.5 19.4 7.9 7.0 
Pelvoux 35.9 1.2 25.3 0.0 29.7 7.2 6.5 
Queyras 35.5 1.2 27.5 0.0 29.6 8.8 7.6 
Thabor 36.1 0.8 21.2 0.0 24.8 5.6 4.2 
Ubaye 20.4 1.5 20.5 0.1 17.3 7.0 7.0 
Vanoise 29.9 2.2 24.7 0.3 21.2 9.7 9.1 
Vercors 25.9 0.5 14.7 0.0 18.3 3.0 1.8  
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