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Abstract

Traditional methods to measure spatio-temporal variations in biomass rely on a labor-inten-

sive destructive sampling of the crop. In this paper, we present a high-throughput phenotyp-

ing approach for the estimation of Above-Ground Biomass Dynamics (AGBD) using an

unmanned aerial system. Multispectral imagery was acquired and processed by using the

proposed segmentation method called GFKuts, that optimally labels the plot canopy based

on a Gaussian mixture model, a Montecarlo based K-means, and a guided image filtering.

Accurate plot segmentation results enabled the extraction of several canopy features asso-

ciated with biomass yield. Machine learning algorithms were trained to estimate the AGBD

according to the growth stages of the crop and the physiological response of two rice geno-

types under lowland and upland production systems. Results report AGBD estimation corre-

lations with an average of r = 0.95 and R2 = 0.91 according to the experimental data. We

compared our segmentation method against a traditional technique based on clustering. A

comprehensive improvement of 13% in the biomass correlation was obtained thanks to the

segmentation method proposed herein.

1 Introduction

Accurate and precise high-throughput phenotyping platforms are necessary to enable high-

resolution linkage mapping for training genomic selection models in plant improvement [1,

2]. In rice, several morphological and physiological characteristics require spatio-temporal

precise measurement for that purpose. Biomass is a key variable for quantifying grain yield

and assessing crop health status. To overcome the limitations of traditional destructive meth-

ods for biomass sampling, above-ground methods to capture several canopy traits have gained

traction. Most of the existing body of work uses near-infrared (NIR) aerial images for the
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calculation of canopy light reflectances at different wavelengths [3–5]. In this regard, a diverse

set of Vegetation Indices (VIs) that highly correlate with the Above-Ground Biomass Dynam-

ics (AGBD) have emerged. The use of high-quality multispectral aerial imagery has enabled

the estimation of the AGBD by using Unmanned Aerial Vehicles (UAVs) [6–9].

In [10], a lightweight UAV was used for the above-ground estimation of biomass and pani-

cles of rice. Spatio-temporal variations in several VIs were analyzed by fusing both visual

(RGB) and multispectral (NIR) images into a single crop surface model. Linear regressions

models were used for correlating the VI variations with the Above-Ground Biomass (AGB).

Experimental results determined that both MVARI and VDVI indices enabled higher AGB

estimations (R2 = 0.9), mostly due to the computation of the crop surface model with fused

VIS/NIR imagery. However, the approach in [10] required expensive offline image processing

calculations.

Several authors have also tackled the estimation of plant growth-related traits by data fusion

from different sensors [11–14] for the computation of crop surface models based on image

mosaicing methods [15–18]. Other approaches rely on the computation of individual aerial

images. In this regard, several techniques for plot segmentation and image registration have

enabled real-time image processing for the extraction of relevant features associated with the

leaf/canopy biomass. In general, traditional methods based on edge detection thresholding,

color histograms and clustering (otsu, K-means, watershed) are used in agriculture for plot

segmentation [19–21]. Recently, the advent of low-cost UAVs with powerful computing capa-

bilities has enabled more precise and sophisticated methods for image segmentation. In [22], a

semantic segmentation method based on fully convolutional networks was proposed to extract

features from RGB images that enable the classification of pixels corresponding to rice leaves,

background, and weeds in the paddy field crops. The method achieved an average accuracy of

92%. Others have used machine learning methods for plot segmentation, and classification

[23, 24]. All of these methods require training stages that limit real-time functionality.

The combination of several VIs to associate the biomass and grain yield with the light

reflectance variations captured at different wavelengths. In [25], rice grain yield was predicted

based on the dynamic changes in VIs directly calculated from a spectrometer device. Both lin-

ear and sigmoid-style dynamic models were found relating the spectral indices with the grain

yield, demonstrating the accuracy of the selected VIs (R2 > 0.9 and RMSE< 5%). The pro-

posed mechanisms in [26, 27] have also applied similar mathematical models for fitting linear

relationships between several combined VIs and the physiological crop variables. Other

authors have reported the use of machine learning methods to predict crop yield based on the

non-linear relations obtained with narrow-band vegetation indices [28], as well as above-

ground biomass estimation using classical vegetation indices [7, 8].

Our preliminary work in [29] presented a comprehensive survey from the specialized litera-

ture to identify which VIs were suitable for estimating rice biomass as a function of the growth

stage of the crop. Seven spectral VIs were calibrated and combined in the form of multi-vari-

able linear regressions for the estimation of the AGBD. Three different mathematical regres-

sions were determined for each crop stage independently. Also, the K-means clustering

classification was used for plot segmentation. Experimental results reported an average AGBD

correlation of 0.76 compared with the biomass measurements taken with the traditional man-

ual destructive method (ground-truth data).

In this work, we present a comprehensive architecture for the estimation of the AGB in rice

crops, as detailed by Fig 1. Multispectral imagery is captured and segmented by using a novel

NIR-image segmentation method called GFKuts. This method solves an optimization problem

using an energy function that allows the proper labeling of texture in the NIR image by using a

Gaussian mixture model. After applying GFKuts, we use a second refinement process based
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on a Guided-Filter by taking into account information from all band channels of the multi-

spectral camera: green, red, red-edge and near-infrared. The resultant NIR image-mask

includes only relevant pixel information that accurately represents the canopy for the estima-

tion of the AGBD. In turn, several VIs formulas are calculated and used as features for training

our machine learning algorithms. Elastic-Net regressions are used to identify the canopy bio-

mass according to the physiological response of two rice genotypes: Line23 and IR64 varieties,

whereas neural networks are trained to estimate the AGBD according to the growth stages of

the crop: vegetative, reproductive and ripening. Here, we addressed two challenges:

• The introduction of the GFKuts algorithm for the precise segmentation of NIR imagery with

richer detail of the canopy structure, enabling improvements in the estimations of the

AGBD.

• The integration of elastic-net regressions and neural networks to process nonlinear biomass

dynamics with the calculations of the VIs during all stages of crop growth, and the associa-

tion of physiological responses for two rice genotypes: Indica (IR64) and the Tropical Japon-

ica subspecies (Line23).

Fig 1. UAV-driven remote sensing of above-ground biomass in rice crops based on NIR imagery.

https://doi.org/10.1371/journal.pone.0239591.g001
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2 Materials and methods

Rice crops and UAV System

Fig 2(a) describes the rice crop setup. The crops were designed with 3 spatial repetitions con-

taining two rice varieties (genotypes) contrasting to biomass accumulation and flowering

cycle: genotypes Indica (IR64) and the Tropical Japonica subspecies (Line23). IR64 is adapted

to flooded rice paddies (lowland cultivation) whereas Line23 to dry soils (upland cultivation).

As shown in Fig 2(b), each plot was designed with a distance between plants of 25cm and

30cm between rows. Within each plot, we defined 6 linear sampled areas conformed by four

plants, where ground-level markers were located and geo-referenced to enable air-ground

image registration. Both rice varieties were combined within the same plots. Furthermore,

both lowland and upland rice production systems were designed and implemented to assess

the biomass dynamics during the entire phenological cycle of the crop, ranging between 95–

110 days. This cycle was divided into three growing stages: vegetative, reproductive, and

ripening.

Here, we report on 72 sampled areas, evaluated from the vegetative through the ripening

stage, capturing around 2.000 NIR images per crop stage, yielding a dataset of 6.000 images

per trial. We conducted two trials (3 months each) of in-field testing, in which our UAV plat-

form performed 10 flights per crop stage, capturing an overall of 12.000 images. In this regard,

the machine learning algorithms applied for the estimation of biomass (as detailed in Fig 1)

used 60% of the dataset for training, whereas the testing accounted for the remaining 40% of

the images.

Along with the UAV-based aerial sampling, we manually collected several plants corre-

sponding to sampled areas previously mentioned. Fig 2(c) depicts this process for destructive

biomass sampling. The Ground-Truth was defined by weighting the collected samples from

each plot. The estimated dry weight of total aerial biomass was estimated after 3 days in the

oven at 65˚C. Fig 2(d) shows an example of the assembled Ground-Truth database.

Our aerial samples were acquired with the commercial quadcopter UAV Asctec Humming-

bird, manufactured by INTEL’s Ascending Technologies GmbH. By using the UAV’s onboard

ARM High Level Processor (HLP), we integrated the Parrot Sequoia multispectral sensor. Fig

3 gives a detailed presentation of the UAV setup.

Fig 2. Crop setup: (a) Rice crops. (b) Each plot was designed with an area of 4.95m2. (c) Destructive biomass sampling. (d) An example of a Ground-Truth

biomass (BM) dataset. The crop field was designed with three spatial repetitions (Rep) containing 2 contrasting rice genotypes.

https://doi.org/10.1371/journal.pone.0239591.g002
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Next, we present how the proposed GFKuts segmentation technique enables the precise

selection of the crop areas under study, during each crop stage. The GFKuts method solves an

optimization problem for properly labeling texture and color information using a Gaussian

mixture model. It relies on a Guided-Filter refinement process that requires both NIR and

RGB imagery. The Parrot Sequoia camera delivers high resolution RGB images with

4608 × 3456 pixels enhancing the resultant NIR image-mask, since the other 4 spectral sensors

of the camera deliver images with 1280 × 960 pixels in resolution.

GFKuts-driven image segmentation

This section introduces our proposed algorithm, GFKuts, which consists of: (i) a modified ver-

sion of the GrabCut algorithm [30], fed with a pair of binary masks obtained from a

Fig 3. Detailed presentation of the UAV system utilized in this work.

https://doi.org/10.1371/journal.pone.0239591.g003
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Montecarlo-sampled K-means segmentation over the image [31], (ii) followed by a refinement

step using Guided Filtering [32] to smooth the pixel information associated with the plant’s

canopy. The proposed algorithm can operate in the sRGB color, with single-channel images,

or a custom composed-channel images according to a desired VI to be estimated, e.g.,

concatenating a 3-channel image with multispectral images.

Segmentation algorithms can be divided in two types, hard and soft, according to the out-

put mask. Hard segmentation algorithms create a binary output with only two levels for the

background and foreground, while soft segmentation algorithms create a set of levels between

those two. In GrabCut, the segmentation is represented in each pixel by a set of levels

a ¼ ða1; . . . ; aNÞ. For GrabCut, as a hard segmentation algorithm, a takes only two values {1,

0}.

GrabCut algorithm. The GrabCut image segmentation method, was proposed as a semi-

manual and iterative method to improve the segmentation in each iteration of the binary

mask. GrabCut uses an interactive foreground extraction methods to improve over the original

GraphCut method [33]; changing the energy minimization method and the initialization

steps. Grabcut requires the creation of three image-masks: one binary mask for the back-

ground (TB), one binary mask for the foreground (TF) and a final mask with uncertainty pixels

(TU), that can be binary or have more quantization levels. These three mask are known as the

trimap.

GrabCut uses an internal representation based on a Gaussian Mixture Model (GMM) to

store image probability of a pixel being segmented. This model allows for a three-color chan-

nel, as well as, monochrome input images. The energy minimization is applied several times in

an iterative process to improve the results. As most global optimization methods in computer

vision [34], GrabCut uses an energy framework that minimizes a function using two parts: (i)

a data function U() and (ii) a smoothness function E(). The minimum cut algorithm is used by

both GraphCut and GrabCut methods in order to obtain the hard segmentation that finds for

an a that minimizes Eq 1.

Eða; k; y; zÞ ¼ Uða; k; y; zÞ þ Vða; zÞ: ð1Þ

The first function U() is called the data function, which measures the fit between the seg-

mentation and the image values z. The terms { y and k} correspond to the GMM parameters.

The smoothness function E() evaluates the dissimilarity of neighbouring pixels and depends

only on the hard segmentation a and the image values z. Further details on the method

described by Eq 1 can be found in [34].

The original Grabcut paper and its implementation follows a procedure that involves 3

steps:

1. An initialization of the trimap by manually supplying a rectangular region of TB. The fore-

ground TF is set to zero, TU ¼
�TB the values of α are initialized with the supplied TB.

2. Min-cut optimization over the model.

3. Ask the user for new points for TB and TF to refine the segmentation, and repeat the optimi-

zation until the user approves the convergence.

GrabCut is widely used for its ease of implementation and for the excellent results in gener-

ating a binary classification, however, it suffers from the drawback of being a semi-manual

algorithm. Like other global optimization methods, the main advantage of a GMM model and

the min-cut optimization relies on the smooth segmentation of the image and the fast-growing
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convergence. By applying the Montecarlo Sampled K-means, we provide an initial mask to

GrabCut that does not require any user input.

Algorithm 1 Montecarlo Sampled K-means.

the input of the algorithm is the image z and the number of samples l
for Each pixel in range (1 . . . l) do
Select a random pixel from z
Append its value to zl
Store its coordinates in zx,y

end for
Run a binary K-means over zl to get the labels zl,0 and zl,1
if length of (zl,0) > length of (zl,1) then
Create a mask TF and set the coordinates in zx,y of each pixel in zl,0

as the foreground (in our case, the canopy).
Create a mask TB and set the coordinates in zx,y of each pixel in zl,1

as the background (in our case, the soil).
else
Create a mask TF and set the coordinates in zx,y of each pixel in zl,1

as the foreground (in our case, the canopy).
Create a mask TB and set the coordinates in zx,y of each pixel in zl,2

as the background (in our case, the soil).
end if

Montecarlo sampled K-means. The Montecarlo methods are a broad class of computa-

tional algorithms that rely on random sampling until a particular fitness function is met.

K-means on the other hand is a clustering algorithm, usually integrated in image segmenta-

tion techniques to separate colors. The main drawback of using K-means for binary segmenta-

tion is the lack of spatial coherence in the result. K-means can be classified as a local algorithm

and can be heavily affected by under or overexposed regions, shadows or noise.

The proposed Montecarlo Sampled K-means works as follows: a subset of pixels denoted as

zl are randomly selected by the algorithm in order to separate the image values z into two

groups, where the subscript l indicated the length of the selected array. The clustering is based

on the colors associated with each pixel.

These two new clusters follow all the desired properties for a (TB,TF) initialization trimap.

In our context, plot images have two important characteristics: (i) large areas correspond to

the canopy, and (ii) minor areas correspond to soil and exogenous elements. The largest clus-

ter will be related to the canopy, and the other to soil areas. Each sampled pixel zl is associated

with its respective position zx,y in order to generate masks that will be used later as TB and TF.

As seen in Algorithm 1, a random selection of pixels in the image is made using their spatial

dimension. Applying a binary K-means algorithm to this set of pixels, will group a scattered

distribution of samples uniformly over the image. The above process can be applied to images

with one or three channels. Fig 4 shows an example of these two clusters in the Red-Green-

NIR (RGN) color space obtained with K-means and the TB and TF masks. Fig 5 presents an

image in the RGN color space as a reference, in which the samples follow a uniform

distribution.

Guided filter refinement. Given the binary output of GrabCut and the complex structure

of the canopy in which the leaves create an elaborate net of high-frequency formations (see Fig

6), it is necessary to refine the masks to follow the structures created by the canopy. With this

in mind, the Guided Filtering emerges as an alternative that involves a fast and local method,

with a performance similar to techniques based on global optimization such as anisotropic dif-

fusion [35], yet with an O(n) computational complexity.

The Guided Filter (GF) [32] is a non-linear filter in which the convolutional kernel changes

according to the spatial and radiance characteristics of the image. Similarly to others
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convolutional filters, the GF output q (for each image pixel p), can be expressed as a weighted

average across the convolutional window Wij, as shown in Eq 2, where i, j designates the pixel

coordinates of the input and output images.

qi ¼
X

j

Wijpj ð2Þ

The existence of a variable window implies that it may depend on a second input image,

this is known as the guidance image. We exploited this approach to filter the output of the

GrabCut algorithm and refine its binary segmentation with the original image as reference.

Fig 4. The two clusters in the RGN space, the foreground (TF) and background (TB), created following Algorithm 1. The segmented RGN image was captured

using the Parrot-Sequoia, stacking the respective multi-spectral camera bands, after aligning the images according to the camera intrinsics and drone altitude.

https://doi.org/10.1371/journal.pone.0239591.g004

Fig 5. Uniform random distribution of grouped and classifiedpixels on RGN image. White pixels are associated with vegetation, while black pixels are

associated with soil.

https://doi.org/10.1371/journal.pone.0239591.g005
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The weight used by the GF is determined by using Eq 3.

WGF
ij ðIÞ ¼

1

joj
2

X

k;ði;jÞ2ok

1þ
ðIi � mkÞðIj � mkÞ

s2
k þ �

� �

ð3Þ

The term WGF
ij depends on the reference image I. The parameters μk and s2

k are the guid-

ance-image mean and variance estimated over a window wk, � is called a regularization param-

eter and |ω| counts the number of pixels in the window wk. However, the direct calculation of

the window WGF
ij is not performed due to its high computational cost. The implementation of

the GF follows an O(n) procedure detailed by Algorithm 2.

Algorithm 2 Guided Filter Calculation.

Er(I) denotes a function that calculates the image mean over a radius r, � is a regularization

parameter, the operations .� and ./ denotes the matrix element-wise calculation, and q is the

image output.
Step 1: Input image p, input guidance I, radius r and regularization �.
1: μI  Er(I), μp  Er(I), CorrI  Er(I. � I), CorrIp  Er(I. � p).
2: s2

I  CorrI � mI.
� μI, s2

Ip  CorrIp � mI.
� μp

3: a s2
Ip:=ðs

2
I þ �Þ, b  μp−a. � μI

Fig 6. (a-topleft) The original image in RGN color space, (b-topright) the hard segmentation output of the GFkuts algorithm after 5

iterations, (c-bottomleft) the soft segmentation result of the GF refinement, (d-bottomright) and the adaptive thresholding output to create

a binary mask of the canopy.

https://doi.org/10.1371/journal.pone.0239591.g006
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4: μa  Er(a), μb  Er(b)
5: q = μa. � I + μb
GFKuts algorithm. The proposed algorithm, GFKuts, integrates the methods previously

explained: (i) the Montecarlo Sampled K-means, (ii) the optimization and modeling of Grab-

Cut, (iii) the GF refinement, and finally (iv) an adaptive threshold. GFKuts exploits the best

characteristics of each one of these algorithms, by combining local and global methods, in

order to obtain a detailed image of the canopy.

Fig 6 shows the results of each step of GFKuts. The sparse initialization of GrabCut creates

a uniform surface on which the global optimization performed by min-cut can grow according

to the canopy textures. In practice, at least five iterations are required to cover the entire image

surface, as seen in Fig 6(b).

The GF refinement operates on the convolutional kernel vicinity and the guidance smooths

the binary image according to its radiance and texture. This process is known as feathering

and has the property of creating a grayscale mask or soft segmentation from a hard segmenta-

tion output. Finally, GFKuts performs an adaptive threshold of the soft segmentation output of

the GF refinement, if a hard segmentation is needed. The entire GFKuts algorithm is detailed

in Algorithm 3.

Algorithm 3 GFKuts,

z is the plot input image, l is the number of samples used in K-means, n is the number of

iterations of GrabCut, r is the GF radius, � is the regularization.
{TB, TF}  MontecarloSampledK-means (z, l)
while α converges or run n iterations do
All pixels not set in TB or TF are set as a possible foreground pix-

els TUF
α  GrabCut(z, TB,TF)
Use the segmented image α as the new possible foreground pixels TUF

end while
α1  GF (Image = α, Guidance = z)
α2  adaptiveBinaryThreshold(α1)

3 Results and discussion

NIR-image segmentation metrics

The performance of the proposed GFKuts method is evaluated by computing the Accuracy,

Precision, Recall and F1-score. These metrics are also compared against traditional image seg-

mentation methods such as Thresholding [41] and K-means [42], but also against the original

GrabCut method [33].

Table 1 contains the numerical results regarding the evaluation of the aforementioned seg-

mentation algorithms. On average, the proposed GFKuts approach outperformed the other

methods, concretely in comparison with the Thresholding and K-means. The overall perfor-

mance data is also presented in Fig 7. As mentioned, the proposed GFKuts is based on the

standard GrabCut method, that requires a manual input during the algorithm iteration in

Table 1. Image segmentation performance. Mean results over 400 NIR images (image sub-regions of 10 × 10 pixels).

Thresholding K-means GrabCut GFKuts

Accuracy 0.701 0.54 0.898 0.91

Precision 0.845 0.95 0.951 0.954

Recall 0.729 0.457 0.92 0.93

F1-score 0.778 0.605 0.936 0.942

https://doi.org/10.1371/journal.pone.0239591.t001
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order to properly determine both background TB and foreground TF values (see Section 2).

Given that, the original semi-manual GrabCut method also achieves higher performance in

terms of F1-score and Accuracy.

On the other hand, our GFkuts method is fully automatic, using the Montecarlo sampled

K-means described in Algorithm 1 to optimally separate the vegetation from the soil, as shown

in Fig 4. As detailed in Fig 7(a), GFkuts slightly improved over GrabCut in terms of data dis-

persion and F1-score, i.e., the mean between precision and recall. Thanks to the GFKuts seg-

mentation presented herein, our system counts with an optimal, accurate and automatic

method for NIR imagery segmentation, enabling richer detail of the rice canopy that improves

on the VI-based feature extraction and the estimation of above ground biomass, as detailed in

Fig 8.

Vegetative index

Vegetation Indices (VIs) are well-known parameters used to quantify several physico-chemical

variables in plants, by associating spectral reflectances that are highly related to the variable of

interest. Different wavelengths of light have a different level of plant absorption depending on

the leaf composition given by several genetic traits. In particular, the relation between the VIs

with the photosynthetic activity and canopy structural properties has allowed new methods for

non-destructive Above-Ground Biomass Estimations (AGBE).

Table 2 presents the result of a comprehensive literature review, by selecting a set of VIs cal-

culated from different wavelength reflectances, specially the green, red, red-edge and near

infrared bands. The selected VIs exhibit a strong dependence on the NIR reflectance due to

leaf chlorophyll absorption, providing a non-invasive approach to determine the health status

of the plants and the canopy biomass. Most of the existing body of research focused on NIR-

based above-ground biomass estimations [4, 10, 11], combine the information provided by

several vegetation indices in order to avoid saturation issues. For instance the NDVI, which is

one of the most common VIs used to assess the crop biomass, tends to saturate with dense

Fig 7. F1-score and accuracy for all tested algorithms reported in Table 1.

https://doi.org/10.1371/journal.pone.0239591.g007

PLOS ONE UAV-driven above-ground biomass estimation in rice crops

PLOS ONE | https://doi.org/10.1371/journal.pone.0239591 October 5, 2020 11 / 20

https://doi.org/10.1371/journal.pone.0239591.g007
https://doi.org/10.1371/journal.pone.0239591


vegetation. In turn, the NDVI alone is not accurate during the reproductive and ripening

stages of rice growth. Here, by combining several VIs across the crop stages, we ensure to cap-

ture data on wavelengths located in the red-edge and another spectral reflectances that accu-

rately express the healthy status of the leaves (higher NIR and green band readings).

As previously mentioned, we used the spectral indices in Table 2 as the features to extract

from the acquired aerial imagery. Since the estimation of the accumulated biomass depends

on the accuracy and reliability of the extracted VI-based features, it is important to compare

the correlations between the aerial and the ground-level features, i.e, canopy-plant scales. To

this purpose, the VI-based features were calculated by applying the formulas in Table 2 to both

ground-level and aerial samples. Given that, the former relies on the assembled ground-truth

database described in Fig 2(d), while the latter relies on the canopy imagery.

Fig 9 presents the feature correlation results obtained for both rice production systems:

upland (dry soils) and lowland (flooded paddies). Correlations were calculated using Eq 4, as

follows:

r ¼
Pn

i¼1
ðxi � �xÞðyi � �yÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1
ðxi � �xÞ2ðyi � �yÞ2

q ð4Þ

Fig 8. Rice canopy detail after the segmentation process: (a) segmentation results for each tested algorithm. (b) reconstructed image using four channel data space

depicted in (c) RGN+(red-edge) space.

https://doi.org/10.1371/journal.pone.0239591.g008

Table 2. Near-infrared vegetation indices for non-destructive above-ground biomass estimations. The term ρf
refers to the reflectance value at the frequency f ).

VI Formula

Normalized Difference Vegetation Index [36] NDVI ¼ r780 � r670

r780þr670

Green Normalized Difference Vegetation Index [37] GNDVI ¼ r780 � r500

r780þr500

Difference Vegetation Index [38] DVI = ρ780 − ρ670

Corrected Transformed Vegetation Index [38] CTVI ¼ NDVIþ0:5

jNDVIþ0:5j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jNDVIþ 0:5j

p

Soil-Adjusted Vegetation Index [39, 40, 37] SAVI ¼ ð1þ LÞ r800 � r670

r800þr670þL

� �
with L = 0.5

Modified SAVI [39, 40]
MSAVI ¼ 1

2
2r800 þ 1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2r800 þ 1Þ
2
� 8ðr800 � r670Þ

q� �

Simple Ratio [36] SR ¼ r780

r670

https://doi.org/10.1371/journal.pone.0239591.t002
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From Fig 9, two very interesting conclusions are found. First, some of the vegetation indices

(VIs) calculated in an independent manner show positive correlations with dry- (D-BM) or

fresh- (F-BM) biomass, as seen in the two first columns of the correlation matrices (specially

with D-BM); to find a stronger correlation between VIs and biomass, the combination and cal-

ibration of several VIs is required. Given that, the dry biomass Ground-Truth measurements

will be used in the training phase of our machine learning algorithms, along with the VIS cal-

culations, to estimate dry biomass.

However, there is a strong correlation between different indices. For instance, MSAVI has a

strong correlation (strong red squares) with NDVI, DVI and SAVI, in a similar way as CTVI is

related to SR. The only VI that is clearly isolated is GNDVI. With this in mind, it would be use-

ful to consider a dimensionality reduction in the number of inputs in order to reduce the

computational complexity of these calculations. Considering a future on-board online imple-

mentation of our algorithms, such a scenario is extremely beneficial.

In order to analyze the variance of these features through an entire phenological cycle, we

conducted several VI measurements. At canopy-level, several factors affect the spectral reflec-

tances of the crop: solar radiation, plant morphology and color, leaf angles, undergrowth, soil

characteristics and water. In our system, the Sequoia multispectral camera comes with an inte-

grated sunshine sensor to compensate light variations in the resultant image. Also, the image

segmentation method deals with the filtering of undergrowth and other soil noises. In this

regard, the change in the leaves color is the most notably variation of the crop through the phe-

nological cycle. Fig 3 highlights these changes. As previously mentioned, the maturation of the

plants occur while the leaves begin to senesce, in the ripening stage.

Given that, it remains crucial to validate the accuracy of the selected VIs in terms of their

variance during each crop stage. Fig 10 shows the results for our most representative VIs: SR,

NDVI, GNDVI and MSAVI. Note from Fig 9 that these VIs exhibit some unique responses

when comparing both crop production systems: upland or lowland. For instance, the GNDVI

Fig 9. Correlation matrix for the extracted features for (a) up-land and (b) low-land production systems. The terms D-BM and F-BM correspond to the dry

and fresh biomass, respectively. WC is the water content, while the rest of the features correspond to the Vegetation Indices (VIs) defined in Table 2.

https://doi.org/10.1371/journal.pone.0239591.g009
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has an exclusive positive correlation with the biomass in both crop systems, being an unique

feature since it has none correlation with other VIs. In general, the selected VIs shown in Fig

10(a) present a low variance through the entire phenological cycle, being reliable for our appli-

cation. For this test, we computed the VIs from 360 random images per stage.

Next, we present the experimental results regarding the estimation of the AGBD using arti-

ficial neural networks trained with the selected VI-features. As previously mentioned in Sec-

tion 2, datasets were divided 60% for training while the remaining 40% for testing.

Biomass estimations

Fig 11(a) details how the crop data was captured. The UAV was programmed to cover the crop

by following GPS-waypoints at a constant altitude of 20m above the crop, with a maximum lin-

ear velocity of 1.5ms−1. The parrot Sequoia multispectral camera offers a resolution of

1280 × 960 for each independent spectral sensor, yielding a crop-to-image resolution of

1.83cm/pixel according to the flying altitude. At each waypoint, the UAV hovers during 3s to

capture geo-referenced NIR images of the plot of interest. As shown by Fig 11b and 11c, all the

images were registered to match with the positions of the ground-level markers. The Parrot

Sequoia camera was equipped with GPS, IMU+magnetometer and a solar radiation sensor

enabling geo-tagging, image perspective correction and the regulation of the amount of

absorbed light, respectively. As a result, all the images generated by each independent band

(green, red, red-edge and near-infrared) were automatically compensated for changing

weather conditions and canopy reflections.

Now, in Fig 12 we compare the impact that the applied segmentation method plays for an

accurate biomass estimation. In turn, the upper plots (a-c) show the results of applying a stan-

dard K-means segmentation approach, whereas the lower plots (d-f) show the AGBD estima-

tion results achieved by the proposed GFKuts method introduced in Section 2. As shown in

plot (d), the GFKuts approach achieved smooth pixel information with richer detail of the can-

opy structure, enabling the accurate segmentation of the NIR imagery acquired. After the

Fig 10. Vegetation Index computation: (a) VI variance through an entire phenological cycle. (b) An example of the VI-feature dynamics during a single

growing stage. The inset shows the rice-leaf healthy status based on different wavelength readings.

https://doi.org/10.1371/journal.pone.0239591.g010
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Fig 11. UAV crop coverage: (a) 3D flight trajectory. The UAV was set to fly at 20m over the crop at a maximum speed of 1.5ms−1. The black dots at ground-level

correspond to the GPS-tracks of aerial imagery samples. (b) Crop fields—CIAT base station. (c) Parrot-Sequoia multispectral camera bands.

https://doi.org/10.1371/journal.pone.0239591.g011

Fig 12. AGBD estimation results: (a,d) plot segmentation comparative results between the K-means and the proposed GFKuts approach. (b,e) ANN-driven

estimations in biomass VS Ground-truth measurements. (c,f) ElasticNet-driven identification of the biomass readings according to the planted rice varieties under

lowland and upland production systems.

https://doi.org/10.1371/journal.pone.0239591.g012
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segmentation, the seven VI-features introduced in Table 2 are extracted from the images.

Given that, plots (b) and (e) show the results of the Artificial Neural Networks (ANN) trained

with the selected VIs to predict the biomass dynamics during the entire crop phenological

stages. In both cases, we used ANNs with one hidden layer composed by 15 neurons and the

Levenberg-Marquardt non-linear training function. This configuration was selected according

to the findings previously reported in [29], where strong non-linear dependencies between the

vegetation indices with the biomass variations were found through the phenological cycle,

concretely, when the rice plants began to senesce, making the yellow color of the plants pre-

dominant. On the other hand, deep-learning methods such as Convolutional Neural Networks

(CNN), tend to require more computational time during the pooling through lots of hidden

layers in order to detect data features. For this application, we use well-known Vegetative

Index features that have been widely used and validated in the specialized literature [3, 4, 7].

Other image-based features such as color, structure, and morphology do not work well with

low-resolution multispectral imagery. In fact, the main advantage of using Vegetative Indices

(as features for training), relies on having information from several light reflectances at differ-

ent wavelengths, providing key information of the plant health status and variables.

As shown in Fig 12(e), a significant improvement was obtained for the AGBD estimation

based on the GFKuts-driven input data. The performance was measured in terms of the linear

correlation (r) and the coefficient of determination (R2). On average, we obtained an AGBD

correlation of 0.9568 with R2 = 0.9154, increasing the estimation in about 13%. The samples-

axis in both figs (b) and (e) correspond to the aerial imagery used for the estimation of biomass

thought the phenological cycle. As previously mentioned in Section 2, biomass destructive

measurements were conducted for selected crop plots, in order to assemble the Ground-Truth

dataset. Given that, our system selects those aerial samples matching with the GPS coordinates

of the ground measurements.

Lastly, Fig 12c–12f present the comparative results of both approaches for the estimation of

the AGBD according to the physiological response of two rice genotypes under lowland and

upland production systems. Elastic-Net regressions [43] were used to determine these relation-

ships. This method overcomes several limitations of standard multi-variable regressions by

combining the penalties of both lasso and ridge regression methods, with the aim of minimiz-

ing the following loss function:

LnetðbÞ ¼ MSEþ ra
Pn

i¼1
jbij þ

1 � r
2
a
Pn

i¼1
b

2

i ; ð5Þ

where r is the mixing parameter between ridge r = 0 and lasso r = 1. The MSE term is the mean

squared error, while α enables the regularized regression for the penalty function. Eq 5 was

trained with two different Ground-truth data; one for lowland and the other for upland. As

observed in plot (f), we obtained an accurate separability for lowland, but it still remains chal-

lenging to identify the biomass readings for each rice variety in upland systems. This could be

happening due to both varieties has an inversely proportional relation between biomass pro-

duction and plant stature, e.g. although Line23 is adapted to upland rice cultivation, IR64

tends to produce more biomass with a shorter stature, whereas Line23 is exactly the opposite.

In upland (dry soils), concretely after the reproductive stage, it is more difficult to distinguish

in between varieties since the differences among biomass accumulation, plant stature and soil

noise are barely detected. In lowland (flooded paddies), the water layer facilitates the segmen-

tation process, which in turn, reduces the background noise.
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4 Conclusions

The proposed plot segmentation approach (GFKuts) enabled the precise characterization of

Vegetative Index (VI) features, by associating different spectral reflectances with smooth pixel

information and richer detail of the canopy structure. This segmentation process was fully

automatic thanks to the Montecarlo-sampled K-means integration and it can run embedded

on board the UAV’s computational kernel. Our segmentation method was applied by combin-

ing pixel information from four channels, in which the Red-Green-NIR (RGN) and the red-

edge color space enabled the most accurate and fine identification of the canopy cluster. It is

important to highlight that most of the existing body of work in image processing for crop

phenotyping apply traditional thresholding, histograms or clustering methods for plot

segmentation.

On average, we obtained an Above-Ground Biomass correlation of 0.9568 with R2 = 0.9154,

increasing the estimation in about 13% compared to the standard K-means approach (cf. Fig

12e). Neural network models were trained with the extracted VIs by including both time-inde-

pendent imagery samples and time-dependent VI dynamics i.e, the evolution of the features

over time, as shown by Fig 10c, while imagery was captured with a sampled frequency of 2Hz.

In addition, as the biomass increased and the plants began to senesce, panicles also

appeared during the reproductive and ripening stages (cf. Fig 3). We found these changes in

the canopy make it difficult to associate the extracted VIs with the canopy’s biomass, therefore

decreasing both correlation and coefficient of determination for the final crop stages. Although

some VI features did not saturate for higher values of biomass (e.g. CTVI), they neither pro-

vided a precise estimation of the biomass during the ripening stage, since their correlation

with D-BM and F-BM was lower, as seen on Fig 9. In fact, this is the reason why our methods

rely on the combination of several VIs, allowing an accurate biomass estimation regardless of

the crop production system (lowland or upland).

Future work will focus on the characterization of new VIs that do not saturate at higher val-

ues of biomass, and incorporate other morphological features at the plant-scale required to

enhance the training dataset for the machine learning models.
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