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A B S T R A C T   

Vegetation optical depth (VOD) retrieved from microwave remote sensing techniques has been used as an 
important proxy for monitoring the vegetation dynamics at large scales. In a first study we developed a new X- 
VOD indice from inversion of the X-MEB model from the Microwave Scanning Radiometer 2 (AMSR2, 2012-pre
sent) observations. The Advanced Microwave Scanning Radiometer for EOS (AMSR-E, 2002–2011) and AMSR2 
share many characteristics, such as local crossing time, incidence angle, frequency at X-band, etc, which makes it 
possible to produce a consistent long-term X-VOD product over a long period spanning from 2002 to present. The 
objective of this study was to merge the AMSR-E and AMSR2 observations in order, in a second step, to produce a 
consistent long-term X-VOD product spanning over the combined periods of AMSR-E and AMSR2. 

The main challenges in retrieving a consistent X-VOD data set from AMSR-E and AMSR2 are that (i) there is a 
bias between observations from the two sensors; and (ii) the lack of overlapping observations between the two 
sensors makes it impossible to achieve a direct inter-calibration. Here, to overcome this problem, we used AMSR- 
E slow rotation data (AMSR-E L1S), which has similar characteristics as AMSR-E and provided observations 
concurrently with AMSR2, as a bridge to calibrate the AMSR-E brightness temperature (TB) observations with 
AMSR2 TB. 

As our main objective in this TB calibration study was to produce a consistent long-term AMSR-E/AMSR2 X- 
VOD product, we evaluated the retrieved X-VOD product based on different inter-calibration, either global-based 
or pixel-based, methods. Both AMSR-E and AMSR2 X-VOD were evaluated against the Aboveground Biomass 
(AGB), Leaf Area Index (LAI) and the Normalized Difference Vegetation Index (NDVI). The results suggest that 
global-based inter-calibration methods using homogeneous and temporally stable land covers (Evergreen 
Broadleaf Forests and Snow and Ice) as reference calibration data sets provided the best results. For instance, the 
spatial relationships between X-VOD and AGB/LAI/NDVI are highly consistent over the AMSR-E and AMSR2 
periods after the calibration work. This study laid a solid foundation for monitoring the dynamics of X-VOD, as a 
proxy of AGB, over the combined periods of AMSR-E and AMSR2 sensors (almost 20 years).   
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1. Introduction 

Vegetation dynamics plays an important role in the carbon-, water- 
and energy-cycles through regulating the carbon economy of plants, the 
water transformation from soil to plants and to the atmosphere by 
evapotranspiration, and the surface latent heat flux (Prigent et al., 2007; 
Duveiller et al., 2018; Wang et al., 2020; Yu et al., 2021). Vegetation 
optical depth (VOD), a variable used to parameterize microwave-based 
vegetation extinction effects, has supported these research fields by of
fering a proxy to study vegetation water content (Wigneron et al., 1995; 
Wigneron et al., 2017; Feldman et al., 2018; Tian et al., 2018), vegeta
tion water status (Konings and Gentine, 2017) or above-ground biomass 
(AGB) (Liu et al., 2015; Bastos et al., 2018; Brandt et al., 2018; Fan et al., 
2019; Tong et al., 2020; Wigneron et al., 2020; Qin et al., 2021). 
Consistent long-term VOD products are required in all the above- 
mentioned studies. 

A wide range of space-borne sensors have been used to retrieve VOD 
products at global scale (Du et al., 2017; Baur et al., 2019; Frappart 
et al., 2020; Wigneron et al., 2021). In particular, AMSR-E and its suc
cessor AMSR2 provide daily and global multi-frequency passive micro
wave observations from 2002 to the present (JAXA, 2009, 2016). We 
concentrated on the X-band (10.65 GHz) observations in the present 
study, considering its deeper penetration capacity than higher fre
quencies (W, Ka, and K-bands) (Kolassa et al., 2016) and its lower 
sensitivity to Radio Frequency Interference (RFI) than lower frequencies 
(C-band) (de Nijs et al., 2015). VOD products have been retrieved from 
X-band AMSR-E and AMSR2 signals using various algorithms (Owe 
et al., 2001; Du et al., 2015). Recently, Wang et al. (2021) used a method 
based on the inversion of the X-band microwave emission of the 
biosphere (X-MEB) model to retrieve X-VOD (referred to as INRAE 
Bordeaux (IB) X-VOD) in Africa. IB X-VOD was evaluated with AGB, LAI 
and NDVI and it showed a very satisfactory performance in comparison 
to the existing X-VOD products. 

Even though AMSR-E and AMSR2 sensors share many characteris
tics, there is still a bias between the observations from the two sensors 
(Wu et al., 2020). Thus, inter-calibrating the AMSR-E and AMSR2 TB 
observations is a pre-requisite to produce a consistent AMSR-E/AMSR2 
X-VOD products. In addition, a nine-month data gap between the 
termination of AMSR-E and the subsequent initiation of AMSR2 (JAXA, 
2009, 2016) further challenges the accuracy of inter-calibration algo
rithms. Therefore, the key question in producing a consistent AMSR-E/ 
AMSR2 X-VOD data set is to define how to bridge the gap between the 
AMSR-E and AMSR2 observations. For example, Moesinger et al. (2020) 
chose the Tropical Rainfall Measuring Mission Microwave Imager (TMI) 
as a bridge and used cumulative distribution function to merge the X- 
VOD products retrieved from different sensors. Du et al. (2014), simi
larly, chose a third sensor, the Microwave Radiation Imager (MWRI) on- 
board the FengYun 3B satellite, but mainly focused on the TB inter- 
calibration instead of the retrieved products. However, there are some 
potential issues in these approaches due to the discrepancy of some 
characteristics between AMSR-E/AMSR2 and the sensors used to make a 
bridge, such as the local crossing time and the incidence angle. 

In order to achieve a direct inter-calibration with the observations 
from its successor (AMSR2), AMSR-E was restarted with a slow rotation 
mode (2 rotations per minutes (rpm), hereafter called AMSR-E L1S). Hu 
et al. (2019) used AMSR-E L1S to calibrate K (18.7 GHz) and Ka (36.5 
GHz) bands of AMSR2 TB with AMSR-E TB as the reference data and 
then produced a continuous record of near-surface soil freeze/thaw 
status. Similarly, Meier and Ivanoff (2017) modified AMSR2 TB at K- 
(18.7 GHz, 23.8 GHz) and Ka- (36.5 GHz) bands into equivalent AMSR-E 
TB with the help of AMSR-E L1S, and depicted sea ice changes over a 
long period. However, AMSR-E L1S has not yet been exploited widely at 
X-band and the current studies (Yao et al., 2021) have been limited to 
SM retrievals. To the best of the authors’ knowledge, there is no AMSR-E 
L1S-based merging study investigating the consistency of retrieved X- 
VOD between AMSR-E and AMSR2 periods. 

Considering this context and in order to produce a consistent AMSR- 
E/AMSR2 X-VOD data set, the main questions we addressed in this study 
are:  

(i) to explore different calibration approaches in order to obtain 
consistent time series between AMSR-E and AMSR2 TB;  

(ii) to compare the consistency of the calibrated AMSR-E TB and 
AMSR2 TB;  

(iii) to retrieve X-VOD from the calibrated AMSR-E TB data using the 
X-MEB model and to assess the consistency of the relationship 
between X-VOD and AGB/LAI/NDVI spanning over the combined 
periods of AMSR-E and AMSR2. 

2. Data and methodology 

2.1. Data 

2.1.1. Microwave observations 
AMSR-E on board NASA Aqua satellite measured the Earth surface 

from June 2002 to October 2011 (https://nsidc.org/data/amsre/). Aqua 
had a Sun-synchronous sub-recurrent orbit, consequently leading to 
twice daily surface microwave observations by the AMSR-E sensor with 
ascending/descending orbit crossing time at 13:30/01:30 ± 15 mins 
local standard time, respectively. AMSR-E flied at an altitude of 705 km 
at an incidence angle of 55◦and with a ground swath of about 1450 km. 
The antenna had a size of 1.6 m and a normal rotation of 40 rotations per 
minutes (rpm). AMSR-E provided horizontally (H) and vertically (V) 
polarized TB observations and the frequency of X band is 10.65 GHz 
(Kawanishi et al., 2003). 

AMSR-E sensor stopped operating on October 4, 2011, but was 
restarted with a slow rotation mode of 2 rpm (AMSR-E L1S) for 3 years 
(December 5, 2012 to December 4, 2015, https://suzaku.eorc.jaxa.jp/ 
GCOM_W/research/). Fig. 1 illustrates the spatial distribution of the 
TB observed by AMSR-E L1S and AMSR2 on the same day (August 30, 
2014) and the limited number of observations made by AMSR-E L1S. 
The other characteristics of AMSR-E L1S, such as polarizations and 
frequencies, are the same as for AMSR-E (see Table 1). 

The Japanese Aerospace Exploration Agency (JAXA) launched 
AMSR2, on the Global Change Observation Mission 1st–Water (GCOM- 
W1) satellite (https://suzaku.eorc.jaxa.jp/) in May 2012. As a follow-on 
sensor, AMSR2 shares most of the characteristics as AMSR-E, such as a 
sun-synchronous sub-recurrent orbit, local crossing time, incidence 
angle, antenna rotation frequency, swath width and polarization. 
Compared with AMSR-E (Aqua), the differences for AMSR2 are: a 
slightly lower orbit altitude of GCOM-W1 (699.6 km) and a larger an
tenna size (2.0 m) (Imaoka et al., 2010; Zhang et al., 2021). 

The present study selected observations during night-time in 
consideration of the near-thermal-equilibrium circumstances of the 
surface soil, canopy and air as suggested by Owe et al. (2008). 

2.1.2. ERA5 reanalysis dataset 
The European Centre for Medium-Range Weather Forecasts 

(ECMWF) system releases a series of land surface reanalysis datasets 
(https://cds.climate.copernicus.eu/), of which ERA5 is a new genera
tion. ERA5 provides estimates with a spatial resolution of 0.25◦ and a 
temporal resolution of one hour, and shows visible improvements 
compared to its predecessor ERA-Interim (Ma et al., 2021). ERA5 dataset 
including soil moisture (SM, 0–7 cm), skin temperature, soil tempera
ture within 2 layers (0–7 cm and 28–100 cm) were used as input in the X- 
VOD retrieval from the X-MEB model. In order to keep the modelled and 
microwave datasets temporally consistent, we extracted ERA5 data from 
the closest observed time of the AMSR-E & ASMR2 observations for each 
pixel and each day. 

2.1.3. Evaluation datasets 
In order to assess the consistency of long-term X-band VOD retrieved 

M. Wang et al.                                                                                                                                                                                                                                  

https://nsidc.org/data/amsre/
https://suzaku.eorc.jaxa.jp/GCOM_W/research/
https://suzaku.eorc.jaxa.jp/GCOM_W/research/
https://suzaku.eorc.jaxa.jp/
https://cds.climate.copernicus.eu/


International Journal of Applied Earth Observation and Geoinformation 105 (2021) 102609

3

from the calibrated AMSR-E TB and AMSR2 TB data sets, we selected 
two AGB data sets around the year 2010, Bouvet AGB and GlobBiomass 
AGB and two optical vegetation indices, LAI and NDVI, and we evalu
ated their relationships with the retrieved X-VOD from the two AMSR-E 
and AMSR2 sensors. To keep the evaluation datasets spatially consistent 
with X-VOD, Bouvet AGB (25 m), GlobBiomass AGB (100 m), LAI (1 km) 
and NDVI (1 km) were resampled to a spatial resolution of 0.25◦. All 
these vegetation variables and indices are based on optical and Synthetic 
Aperture Radar (SAR) and inventory datasets. Therefore, the retrieved 
X-VOD in this study is absolutely independent of these vegetation 
variables. 

2.1.3.1. Bouvet AGB. Bouvet AGB was produced based on the Phased 
Array L-band SAR observations and has an overall good accuracy 
considering the validation result against the field measurements (root 
mean squared error (RMSE) = 17 Mg⋅ha− 1) (Bouvet et al., 2018). This 
AGB estimate only includes sparse vegetation, such as savannahs and 
woodlands. Conversely, Mermoz et al. (2015) produced a AGB distri
bution in the tropical forests. These two data sets were combined into an 
AGB dataset in the whole Africa (hereafter called Bouvet AGB). 

2.1.3.2. GlobBiomass. The GlobBiomass project, supported by the Eu
ropean Space Agency (ESA), aims at increasing the knowledge on the 
global distribution of AGB (http://globbiomass.org/products/global-ma 
pping). GlobBiomass was calculated by combining multiple satellite 
observations of SAR backscatter around the year 2010. Evaluation 

against measurements from field inventory plots showed that the spatial 
patterns and magnitude of AGB were well captured. The uncertainty of 
GlobBiomass AGB averaged over Africa was estimated at 23.6 % 
(Rozendaal et al., 2017). 

2.1.3.3. LAI and NDVI. LAI and NDVI are provided by the Copernicus 
Global Land Service (CGLS) (https://land.copernicus.eu/global/). These 
two products were derived from SPOT/VGT (Satellite Pour l’Observa
tion de la Terre - VEGETATION sensor) data since May 1998 until 
December 2013 and from PROBA-V (Project of on-board autonomy - 
VEGETATION instrument) since January 2014 onwards. As the present 
study focused on evaluating the consistency between the X-VOD data 
sets retrieved from AMSR-E and AMSR2, we did not consider the whole 
observation period of AMSR-E and AMSR2 but focused our study on the 
last running year of the AMSR-E period (September 2010 - August 2011) 
and the first running year of the AMSR2 period (August 2012 - July 
2013). Therefore, LAI and NDVI used in this study are both based on 
SPOT/VGT data. Quality control was conducted according to Swinnen 
and Toté (2017). 

2.2. Methodology 

TB calibration was performed at a global scale, while the X-VOD 
evaluation step was achieved only over the African continent because 
the X-MEB model used to retrieve X-VOD in this study has only been 
evaluated over Africa so far (Wang et al., 2021). The African continent 
includes a large variety of vegetation features and climates which is 
sufficient to make a detailed evaluation of the consistency of the 
retrieved X-VOD retrieved from both AMSR-E and AMSR2. 

2.2.1. Inter-calibration of the AMSR-E and AMSR2 TB observations 
There is a nine-month data gap after the AMSR-E instrument stopped 

until AMSR2 started providing observations, thus AMSR-E L1S was used 
to build a bridge between the AMSR-E and AMSR2 observations. Given 
that i) AMSR2 has a larger antenna diameter of 2.0 m, consequently 
providing a better footprint resolution along scanning and proceeding 
directions than AMSR-E, and ii) AMSR2 has an improved component, 
named high temperature noise source (HTS) and used for microwave 
absorbing warm-end calibration, leading to a higher radiometric quality 
than AMSR-E (Shimoda et al., 2012), we chose AMSR2 as the reference 
TB data set. The approach used is a two-fold approach consisting in: i) 
inter-calibrating the AMSR-E L1S and the AMSR2 TB observations using 
AMSR2 as the reference and ii) using this inter-calibration to calibrate 
the AMSR-E TB observations (assuming that the AMSR-E L1S and AMSR- 
E TB observations have very similar characteristics). 

We first pre-processed AMSR-E L1S TB by i) extracting the geomet
rical information for each pixel and each orbit; ii) removing data with 

Fig. 1. Brightness Temperature at H polarization for descending orbits observed on August 30, 2014 by AMSR-E L1S (a) and AMSR2 (b).  

Table 1 
Characteristics of the satellites/sensors used in this study.  

Specifications AMSR-E AMSR-E L1S AMSR2 

Satellite Platform AQUA AQUA GCOM-W1 
Period of Availability June 2002 - 

October 2011 
December 2012 - 
December 2015 

July 2012 - 
present 

Altitude (above the 
equator) 

705 km 705 km 699.6 km 

Antenna size 1.6 m 1.6 m 2.0 m 
Footprint (scanning ×

proceeding) 
29.4 km × 51.4 
km 

29.4 km × 51.4 km 24 km × 42 
km 

Antenna rotation 40 rpm 2 rpm 40 rpm 
Frequency at X-band 10.65 GHz 
Recorded spatial 

resolution 
0.25◦

Orbit Sun-synchronous sub-recurrent 
Crossing time (Local 

standard time) 
13:30/01:30 ± 15 mins for Ascending/Descending 

Incidence angle 55◦

Swath width 1450 km 
Polarizations H and V  
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poor quality according to the quality information (AMSR-E L1S, 2013); 
iii) integrating data from all descending orbits (usually 14 orbits each 
day) into daily observation data. Next, we calibrated the AMSR-E (L1S) 
TB observations using four methods. In consideration of the sparse ob
servations of AMSR-E L1S, global-based (Method 1 & 2) and pixel-based 
(Method 3 & 4) methods were tested. These four different methods are 
detailed below. 

2.2.1.1. Method 1. Method 1 builds a global linear function, respec
tively for H and V polarization, between AMSR-E L1S and AMSR2 TB 
using all non-water pixels. To ensure data comparability, we used the 
AMSR2 TB observations acquired in the periods during which AMSR-E 
L1S TB data were also available. We used the averaged TB values over 
the AMSR-E L1S period (December 5, 2012 - December 4, 2015) to build 
the calibrated functions for the two polarizations as follows: 

TBAMSR− E
calibrated = a × TBAMSR− E

original + b (1)  

where a and b represent, respectively, the slope and intercept which 
have to be calibrated. 

Previous literature suggested time-varying regression coefficients 
between AMSR-E L1S and AMSR2 TB should be used (Meier and Ivanoff, 
2017). Thus, in addition to calibrating using all land types (Method 1), 
we also tested calibrating using only temporally stable land covers 
(Method 2, see below) as the reference data set. 

2.2.1.2. Method 2. Method 2 is similar to Method 1 except that the 
calibration only includes TB observations over dense forest (EBF) and 
surfaces covered by permanent ice and snow. The rationale of using 

these surfaces is that they have a lower standard deviation of TB than the 
other land classes (Fig. 2) and should be more stable temporally to serve 
as calibration targets. Choosing homogeneous and temporally stable 
sites to do the comparison and calibration work has also be done in 
previous studies (Shimada, 2011; Bhatt et al., 2014). Das et al. (2014) 
additionally considered desert but we excluded barren areas in this 
study because they presented higher standard deviations than the other 
selected (dense forests, ice, snow) targets. Method 2 has the advantage, 
compared to Method 1, of avoiding errors resulting from seasonal 
instability of bias between AMSR-E (L1S) and AMSR2. In addition, the 
large range of TB values provided by high (EBF) and low (ice and snow) 
TB values enables to build a robust calibration function. 

2.2.1.3. Method 3 & 4. Method 3 and 4 are pixel-based methods which 
means that calibration functions were built (and then used) separately 
for each pixel. The two methods (3 & 4) consist of applying corrections 
so that AMSR-E (L1S) TB have the same mean (TB) and standard devi
ation values (σ(TB)) as AMSR2 TB. This method, as given in Eq. (2) and 
(3), has often be used to calibrate or merge two data sets (Haerter et al., 
2011; Fang et al., 2015). 

σ(TB) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1(TBi − TB)2

n

√

(2)  

TBAMSR− E
calibrated =

σ(TBAMSR− 2)

σ(TBAMSR− EL1S)×
(

TBAMSR− E
original − TBAMSR− EL1S

)
+ TBAMSR− 2 (3) 

In consideration of the limited available observations of AMSR-E L1S 
due to its slow rotation mode, two different methods were tested: 

Fig. 2. Standard deviation of AMSR2 TB over the AMSR-E L1S period (December 2012 - December 2015) for each IGBP class.  
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Method 3: only the AMSR-E L1S & AMSR2 TB data acquired at the 
same dates were kept; meaning that, for a given date, the AMSR2 TB 
data were kept only if AMSR-E L1S is also available; 

Method 4: all the available AMSR2 and AMSR-E L1S TB data over the 
AMSR-E L1S period were used. 

All the four methods tested here are very complementary: the 
advantage of Method 1 & 2 is that we have a large number of training 
data to build a robust and reliable function, however, the function may 
not be perfectly suitable for all pixels. It is the opposite for methods 3 & 
4: they are pixel-based methods, but for some pixels, we only have a very 
limited number of observations which may degrade the reliability of the 
calibrated functions. 

2.2.2. X-MEB model 
The X-MEB model is based on τ-ω model (a zero-order radiative 

transfer equation) (Mo et al., 1982). Wang et al. (2021) exclusively 
retrieve X-VOD from inversion of the X-MEB model, while the other 
parameters, such as SM, the effective soil temperature (TG) and vege
tation temperature (TC) were estimated from the ancillary data. 
Considering the good performance of ERA5 soil moisture against in situ 
measurements (Beck et al., 2020; Li et al., 2020), ERA5 SM was used as 
the input SM data set in the X-MEB model. TG was calculated from ERA5 
soil temperatures according to Wigneron et al. (2007b) and Wigneron 
et al. (2008). TC was calculated from ERA5 skin temperature. More 
details on the X-MEB model are given in Wang et al. (2021). 

2.2.3. Evaluation of the consistency of X-VOD 
Considering the reference values of VOD from in-situ measurements 

are not available, it is difficult to directly validate VOD at the satellite 
scale (Liu et al., 2011). Prior studies suggest strong links between X-VOD 
and AGB (Wigneron et al., 2007a; Liu et al., 2015), LAI (Kumar et al., 
2020) and NDVI (Jones et al., 2012; Tian et al., 2016). Accordingly, an 
alternative option to assess the X-VOD performances could be to 
compare X-VOD with these related parameters (Rodríguez-Fernández 
et al., 2018; Li et al., 2021). Similarly, here we assessed the consistency 
of the AMSR-E and AMSR2 X-VOD products over two periods by ana
lysing their spatial relationships with AGB/LAI/NDVI. The consistency 
between the AMSR-E and AMSR2 X-VOD products was evaluated using 
several error metrics (Eq. (10)–(14)): correlation coefficients (R), root 
mean squared error (RMSE), unbiased root mean square error (ubRMSE) 
and bias (Willmott, 1981; Chen et al., 2017). 

R =

∑n
i=1

[(
X − X) × (Y − Y)

]

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(X − X)2

√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(Y − Y)2

√ (4)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n

∑n

i=1
(X − Y)2

√

(5)  

ubRMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1

[(
X − X

)
−
(

Y − Y
) ]2

√

(6)  

Bias = (Y − X) (7)  

where X , Y and (Y − X) represent, respectively, the averaged values of 
X, Y and (Y-X). 

We present a flowchart summarizing the different steps of the 
approach, including i) the inter-calibration between AMSR-E and 
AMSR2 TB by different methods (marked with different colors); ii) the 
retrieval of X-VOD; and iii) the evaluation of the retrieved X-VOD 
products against three vegetation variables (AGB, LAI, NDVI). During 
the inter-calibration step, we used both the AMSR-E L1S and AMSR2 
datasets (reference data) acquired between December 5, 2012 and 
December 4, 2015 (the life period of AMSR-E L1S). For the two following 

steps (VOD retrieval and evaluation), the AMSR-E data come from the 
last running year of the AMSR-E period (September 1, 2010 to August 
31, 2011; note that we did not use the last month of the AMSR-E ob
servations to avoid any possible instability of the sensor just before 
termination) and AMSR2 data come from the first running year of the 
AMSR2 period (August 1, 2012 to July 31, 2013, similarly, AMSR2 
observations acquired during the first month of operation were not used 
to avoid possible instabilities of the sensor just after launch). The Bouvet 
and GlobBiomass AGB maps used in this study represent AGB circa year 
2010 which is close to both the selected AMSR-E and AMSR2 periods. 
The LAI and NDVI datasets, used to evaluate AMSR-E and AMSR2 X- 
VOD, come from the corresponding periods of the selected AMSR-E and 
AMSR2 observations. 

3. Results 

3.1. Comparison of the AMSR-E, AMSR-E L1S and AMSR2 TB data 

3.1.1. Comparison of AMSR-E and AMSR2 TB 
AMSR-E and AMSR2 TB were compared by plotting the time series of 

TB observations over two periods per 0.25◦ of latitude with each grid 
recorded as a longitudinally averaged TB (Hovmöller diagram, Fig. 3(a, 
b)). As shown in Fig. 3(a, b), both AMSR-E (June 2002 - October 2011) 
and AMSR2 (July 2012 - present) TB show similar spatio-temporal 
patterns during their respective operation periods. However, the TB 
observations from AMSR2 are warmer than those measured from AMSR- 
E for both H and V polarizations. In order to avoid perturbating effects 
due to surface changes, caused by vegetation growth or deforestation, 
etc, over the whole AMSR-E & AMSR2 period (almost 20 years), we 
chose the last running year of the AMSR-E acquisition period (September 
1, 2010 to August 31, 2011) and the first running year of the AMSR2 
acquisition period (August 1, 2012 to July 31, 2013) to evaluate the 
similarities and differences between the AMSR-E and AMSR2 TB ob
servations. AMSR-E and AMSR2 TB were found to be strongly correlated 
as expected, with correlation coefficient (R) reaching almost 1 (0.99) for 
the H (V) polarization (Fig. 3 (c, e)). The average biases between AMSR2 
and AMSR-E TB were 3.93 K and 3.10 K, respectively, for the H and V 
polarization, which is illustrated in the histogram of bias in Fig. 3 (d, f). 
The same analyses were conducted for homogeneous and temporally 
stable areas, such as EBF to further compare the two sensors (Appendix 
Fig. 1). Over those surfaces the bias and ubRMSE values decreased in 
comparison to values obtained over all land cover pixels, falling from 
3.93 K to 3.11 K (H) and from 3.10 K to 2.77 K (V) for bias, and from 3.54 
to 1.26 K (H) and from 3.09 to 0.70 K (V) for ubRMSE. In general, these 
results indicated the strong consistency between the AMSR-E and 
AMSR2 TB observations but also the presence of a clear bias. 

3.1.2. Comparison between AMSR-E and AMSR-E L1S TB data 
Considering the thermal environment around HTS may be different 

between 40- and 2-rpm observation modes (Imaoka et al., 2016), the 
AMSR-E and AMSR-E L1S TB observations were compared. As shown in 
Fig. 4(a, b), AMSR-E and AMSR-E L1S TB exhibit similar spatio-temporal 
patterns for both the H and V polarizations but with a trivial disconti
nuity in October 2013 due to missing data after quality control (data 
with poor quality were removed). To compare the yearly averaged TB 
from AMSR-E and AMSR-E L1S, we used high-quality AMSR-E L1S data 
acquired in a period from April 1, 2014 to March 31, 2015 during which 
TB observations were continuously recorded without data missing. As 
for AMSR-E, the last running year was chosen to reduce the temporal gap 
between the two datasets at its minimum. Fig. 4 (c, e) shows that AMSR- 
E and AMSR-E L1S TB are strongly correlated with R reaching 0.97 and 
0.98 at H and V polarizations, respectively. The bias between AMSR-E 
L1S and AMSR-E TB is very close to zero with mean values of 0.47 K 
(H) and 0.19 K (V) for all land covers and 0.49 K (H) and 0.12 K (V) for 
the EBF class (Appendix Fig. 2). These results indicate a good consis
tency between the AMSR-E and AMSR-E L1S TB data and confirm the 
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interest of using the AMSR-E L1S TB data for our AMSR-E/ AMSR2 
merging study. 

3.2. Inter-calibration between AMSR-E and AMSR2 

Four methods were applied to calibrate AMSR-E TB: two of them are 
global-based methods (Methods 1 & 2) and the two others are pixel- 
based methods (Methods 3 & 4). The calibrated formulas for the 
global-based methods are given in Table 2 and Appendix Fig. 3. The 

maps of slope and intercept for the pixel-based methods are showed in 
Fig. 5. 

Four different methods were preliminarily assessed by comparing the 
calibrated AMSR-E TB (the last running year, from September 2010 to 
August 2011) and the AMSR2 TB (the first running year, from August 
2012 to July 2013) (Fig. 6). There may exist some changes in surface 
conditions (vegetation and soil moisture) between two years, leading 
consequently to different TB values for a single pixel and single day. 
Therefore, comparisons were conducted in a global and yearly term 

Fig. 3. Hovmöller diagrams showing the monthly mean values of TB per latitude for AMSR-E and AMSR2 TB over they respective observation periods at H (a) and V 
(b) polarizations; Scatter plot of AMSR-E (September 2010 to August 2011) and AMSR2 (August 2012 to July 2013) TB observations at H (c) and V (e) polarizations; 
Histogram of the difference between AMSR2 and AMSR-E TB observations at H (d) and V (f) polarizations. 
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expecting that these spatial and temporal changes partly compensate 
each other at a large scale, leading to a low bias. It can be seen that the 
calibrated AMSR-E TB values computed with all the four methods are 
strongly correlated with the AMSR2 TB values both for the H and V 
polarizations (R > 0.99 at a global scale). However, results obtained 
from pixel-based methods (Method 3 and 4) appear to be slightly more 
scattered, as quantified by higher ubRMSE values ranging from 4.37 to 
6.97 K compared with Method 1 and 2 which produced, respectively, a 
range of 3.12 to 3.57 K. 

Fig. 4. Hovmöller diagrams showing the monthly mean values of TB per latitude for AMSR-E and AMSR-E L1S TB over they respective observation periods at H (a) 
and V (b) polarizations; Scatter plot of AMSR-E (September 2010 to August 2011) and AMSR-E L1S (April 2014 to March 2015) TB observations at H (c) and V (e) 
polarizations; Histogram of the difference between AMSR-E L1S and AMSR-E TB observations at H (d) and V (f) polarizations. 

Table 2 
Calibrated parameters for the global-based methods  

Method Polarization Slope Intercept RMSE (K) 

Method 1 H  0.98  8.76  5.35 
Method 1 V  0.97  10.46  3.20 
Method 2 H  0.98  7.91  3.95 
Method 2 V  0.98  9.18  2.81  
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As for EBF, mainly tropical forests, the results also show the ad
vantages of using global-based methods rather than pixel-based methods 
by producing higher R and lower RMSE and ubRMSE values (Appendix 
Fig. 4). In addition, results obtained with Method 2 presented a lower 
bias of 0.14 and 0.03 K, respectively, for the H and V polarizations, 
compared with an underestimation of around 0.5 K for Method 1 
(Fig. 7). Method 2 generally produced higher R values and lower RMSE, 
ubRMSE and bias (red colors) values than the three other methods. The 
result emphasized the interest of selecting homogeneous and temporally 

stable pixels to perform the calibration work. 

3.3. Evaluation of X-VOD retrieved from the inter-calibrated TB data 

The purpose of the TB calibration work described above was to 
merge the AMSRE and AMSR2 TB observations in order, in a second 
step, to produce a consistent long-term X-VOD product retrieved from 
the X-MEB model, spanning over the combined periods of observations 
of AMSR-E and AMSR2. In this section, we evaluated the consistency of 

Fig. 5. Slope (1st row) and intercept (2nd row) maps at H (1st column) and V (2nd column) polarizations for Method 3, and at H (3rd column) and V (4th column) 
polarizations for Method 4. 
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X-VOD retrieved from the calibrated AMSR-E TB with the X-VOD index 
retrieved from AMSR2. This consistency was evaluated by analysing the 
relationships between X-VOD (obtained from both AMSR-E and AMSR2) 
with AGB/LAI/NDVI. 

The consistency was evaluated for all the four AMSR-E TB merging 
methods (1 to 4) and for Original data (without calibration). Fig. 8 
shows the evaluation results (in terms of R, RMSE, ubRMSE and absolute 
values of bias) obtained by evaluating X-VOD against the AGB (Bouvet 
and GlobBiomass), LAI and NDVI data sets. It can be seen that AMSR-E 

X-VOD is strongly correlated with AMSR2 X-VOD, with R values 
exceeding 0.98, no matter which calibration method was used. The main 
reason could be that the X-MEB inversion algorithm considered the 
initial VOD (VODini) as a function of microwave polarization difference 
index (MPDI). It is likely that this step mitigated the effects of bias be
tween the AMSRE and AMSR2 TB data as MPDI is less sensitive to the TB 
biases. Pixel-based methods (Method 3 and 4) led to worse performances 
than Methods 1 & 2, and even worse than considering the Original TB 
data. Method 2 outperformed all the other methods by producing higher 

Fig. 6. Scatter plot of the calibrated AMSR-E TB (September 2010 to August 2011) by the four methods and AMSR2 TB (August 2012 to July 2013) at H (a, b, c, d) 
and V (e, f, g, h) polarizations. 

Fig. 7. Values of R, RMSE, ubRMSE and Bias between the calibrated AMSR-E and AMSR2 TB. Red > orange > yellow > light green > green > dark green represents 
the code of colours from the highest R, lowest RMSE, lowest ubRMSE and lowest Bias values to the lowest R, highest RMSE, highest ubRMSE and highest Bias values. 
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 8. Evaluation result of the X-VOD products retrieved from the four methods and Original TB against AGB (Bouvet, GlobBiomass), LAI and NDVI. Red > orange 
> yellow > light green > green > dark green represents the code of colours from the highest R, lowest RMSE, lowest ubRMSE and lowest Bias values to the lowest R, 
highest RMSE, highest ubRMSE and highest Bias values. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 
this article.) 

Fig. 9. Temporal correlation between LAI (a) and NDVI (c) and the combined X-VOD products over the combined AMSR-E (September 2010 to August 2011) and 
AMSR2 (August 2012 to July 2013) periods based on the four methods; The distribution of temporal correlation between LAI (b) and NDVI (d) and the combined X- 
VOD products based on Method 2. 
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R, lower RMSE and ubRMSE between the two X-VODs and by achieving 
higher spatial correlations with AGB, LAI and NDVI. 

The results of the temporal consistency analysis are shown in Fig. 9. 
In each vegetated pixel, temporal correlation between LAI/NDVI and X- 
VOD was calculated (Fig. 9 (b, d) and Appendix Fig. 5), where X-VOD 
was computed from both the calibrated AMSR-E X-VOD (September 
2010 to August 2011) and AMSR2 X-VOD (August 2012 to July 2013) 
products (used LAI/NDVI were from the corresponding two periods). 
Higher correlation was considered as corresponding to higher temporal 
consistency in the merging approach between the two periods. After 
averaging temporal correlation for all vegetated areas, we got histo
grams showing mean R for the four merging methods. Method 2 pro
duced the highest scores with mean temporal correlations reaching 
0.628 and 0.67, respectively with LAI and NDVI, then closely followed 
by Method 1. In comparison, pixel-based methods (Method 3 & 4) 
showed lower performances. It can be seen from the temporal correla
tion distributions that stronger correlations were mainly located in 
sparse vegetation while weaker correlations were found in dense vege
tation areas (where temporal changes in X-VOD are much lower). 

To be more specific, we illustrated in Fig. 10, the time variations of 
the five X-VOD products (Method 1, 2, 3, 4 and Original data) over a few 
randomly selected pixels with different land covers (GRA, EBF, SAV) and 
in different countries (Sudan, Cameroon and Central African Republic). 
These pixels had similar vegetation and soil moisture conditions over the 
selected AMSR-E and AMSR2 periods, so that they can be used to assess 
the performances of different methods. We generally found that the 
values of the different AMSR-E X-VOD products increased or decreased 
coherently. Method 2 generally produced more consistent AMSR-E X- 
VOD (including more consistent high and low values) with AMSR2 X- 
VOD. For pixels shown in Fig. 10(b) and (c), X-VOD retrieved from the 
Original TB data was underestimated, to some extent, compared with 
AMSR2 X-VOD. The calibrated results corrected the underestimation, 
but with a small over-correction for Method 3 and 4. The results illus
trate the advantage of using Method 1 and 2 for merging the AMSR-E 

and AMSR2 TB data in order to retrieve X-VOD. More results with 
pixels including X-VOD, LAI and soil moisture time series are shown in 
Appendix Fig. 6. 

3.4. Comparison of AMSR-E X-VOD by Method 2 with AMSR2 X-VOD 

Based on the evaluation results presented above, Method 2 provided 
the best performance by producing highest R, lowest RMSE and ubRMSE 
values between AMSR-E X-VOD and AMSR2 X-VOD and by achieving 
highest spatial correlations with AGB, LAI and NDVI. Therefore, we 
focus on Method 2 in the following analyses. Fig. 11(a) shows the spatial 
distribution of yearly averaged X-VOD retrieved from the Method-2- 
calibrated AMSR-E observations over the last running year of its 
period from September 2010 to August 2011. Generally, the X-VOD 
values in Africa ranged from 0 to 1.1, and presented a decreasing trend 
from the equator to higher-latitude regions. High values were mainly 
located in tropical forests (≈1.0), while low values were distributed near 
the Sahara Desert and the southwest coastline of Africa. Looking at the 
distribution of the X-VOD bias between AMSR2 (over the first running 
year) and AMSR-E (Fig. 11b), we can see large regions of Africa (green 
areas) were covered by subtle differences. High correlation values, low 
RMSE, ubRMSE and bias values between AMSR-E and AMSR2 X-VOD 
can be noted in Fig. 11(c). On the other hand, clear bias values could be 
noted in a few regions: positive values in Ethiopia and negative values 
mainly in the South of Africa. More specifically, the X-VOD differences 
varied significantly among different vegetation types. It can be seen 
from Fig. 11(d) that EBF, DBF, WSA, SAV, GRA, CRO and BAR classes 
shared a very low bias (lower than 0.01) compared with CSH and CVM 
that both presented a clear positive bias (>0.02) and OSH with a clear 
negative bias (≈ − 0.03). Even though the selected periods are close in 
time, there still is a gap of 11 months. So, the X-VOD difference over 
sparse-vegetated areas may be caused by vegetation growth/degrada
tion or changes in vegetation water content. 

The relationships between X-VOD and AGB/LAI/NDVI are quite 

Fig. 10. Time series of AMSR-E X-VOD for five different methods (yellow: Method 1, red: Method 2, blue: Method 3, green: Method 4, black: Original TB) and AMSR2 
X-VOD for one pixel over Grasslands (GRA) (a), Evergreen Broadleaf Forests (EBF) pixel (b) and Savanna (SAV) (c). (For interpretation of the references to color in 
this figure legend, the reader is referred to the web version of this article.) 
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consistent after calibration for AMSR-E and AMSR2 over their respective 
periods (AMSR-E: September 2010 to August 2011; AMSR2: August 
2012 to July 2013). The Bouvet and GlobBiomass AGB and LAI expo
nentially connect with IB X-VOD, while NDVI shows a good linear 
relationship (Fig. 12). The fitted lines (black) for AMSR-E X-VOD 
(Method 2) are closer to the fitted lines (blue) for AMSR2 X-VOD than 
the fitted lines (green) for AMSR-E X-VOD (Original TB). This result 

indicates that the merging method 2 has reduced the discrepancy of 
AMSR-E (based on Original TB data) and AMSR2 X-VOD. In addition, 
AMSR-E X-VOD had almost the same correlation values as AMSR2 X- 
VOD when it is compared to AGB, LAI, NDVI. The two fitted lines (black 
and blue) appear as almost totally overlapped in all plots which confirms 
the consistency of the calibrated functions between X-VOD and AGB/ 
LAI/NDVI, whether considering AMSR-E X-VOD (calibrated with 

Fig. 11. Spatial distribution of (a) X-VOD over the last running year of AMSR-E (September 2010 to August 2011) and (b) the difference between AMSR-E X-VOD and 
AMSR2 X-VOD for the first running year (August 2012 to July 2013); (c) Scatter plot of AMSR-E and AMSR2 X-VOD; (d) Histogram of the difference between AMSR-E 
X-VOD and AMSR2 X-VOD for each vegetation class. There are less than 30 pixels or even no pixels for ENF, DNF, WET, URB and SNO classes in Africa, so there is no 
X-VOD bias value for these classes. 

Fig. 12. Scatter plot between X-VOD retrieved from AMSR-E TB (calibrated based on Method 2) and AMSR2 TB and Bouvet and GlobBiomass AGB, LAI, NDVI. Green 
lines are the fitted lines between AMSR-E X-VOD (based on the original TB) and AGB/LAI/NDVI; Black lines are the fitted lines between AMSR-E X-VOD (Method 2) 
and AGB/LAI/NDVI; Blue lines are the fitted lines between AMSR2 X-VOD and AGB/LAI/NDVI. (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article.) 
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Method 2) or AMSR2 X-VOD. 
IB X-VOD was extended to the whole period of AMSR-E (June 2002 - 

October 2011) and AMSR2 (July 2012 - present) observations. Fig. 13 
illustrates the merged IB X-VOD (based on Method 2) over almost 20 
years in the whole Africa and in each IGBP class. It can be seen that IB X- 
VOD shows a high temporal consistency over the combined AMSR-E and 
AMSR2 periods after the calibration work. Even though the changes in 
the averaged X-VOD in the whole Africa are not equivalent to carbon 
stock changes as AGB is exponentially linked with X-VOD, some vege
tation losses and gains are shown in the X-VOD time series. X-VOD de
creases in 2003, 2011, 2015–2016 and increases in 2008–2009, 2017, in 
agreement with previous vegetation carbon stock studies (Liu et al., 
2015; Fan et al., 2019; Wigneron et al., 2020). More attention in our 
further work will be put on the dynamics of AGB (based on IB X-VOD) in 
Africa from 2002 to the present. 

4. Discussion 

In this study, four different methods were applied to merge the 
AMSR-E and AMSR2 TB observations, two of which are on a global basis 
(Method 1 & 2) and the two others are on a pixel basis (Method 3 & 4). 
We evaluated the effectiveness of the four methods by comparing 
directly the calibrated AMSR-E TB with AMSR2 TB, and also by evalu
ating the retrieved X-VOD against AGB/LAI/NDVI. The results suggest 
that pixel-based methods provided lower performance than global- 
based methods and even than the Original TB method (i.e. with no 
calibration of the AMSR-E TB data). Pixel-based methods slightly over
corrected the X-VOD values for some pixels (Fig. 10). This could be 
related to the fact that the pixel-based methods were based on a very 
limited number of observations (around or less than 40 overpasses in 
some areas (Fig. 14)), due to the slower rotation of AMSR-E L1S. Similar 
issues, namely insufficient overlapping observations, also exist in prior 
studies. For example, Du et al. (2014) used an inverse distance weighting 
method for spatial interpolation estimation of the slope and intercept 
from nearby pixels. But the function built in nearby pixels may not be 
suitable for the target pixel because of the heterogeneity in the land 
surface conditions. Moesinger et al. (2020) directly used observations of 
the last two years of AMSR-E and the first two years of AMSR2 to 
determine the scaling parameters which removed any potential trends in 
the combined periods and the gap period. The authors of this study 

chose global-based methods because it allows the use of a large number 
of observations as the training data. 

Method 2, based on homogeneous and temporally stable pixels (EBF 
and SNO) to build the calibration functions led to improved accuracy in 
comparison to Method 1, which considers all non-water pixels. This may 
result from the fact Method 2 is less sensitive to changing environmental 
conditions (in soil moisture and vegetation) between the two periods 
used to calibrate the merging function; these changing conditions 
affecting more the low vegetation pixels used in Method 1. Meier and 
Ivanoff (2017) displayed the regression coefficients (slope and intercept) 
of the 18, 36 and 89 GHz channels for different months which are very 
close to each other, but still show slight differences. In this study, 
choosing observations over the EBF and SNO classes (which keep more 
stable over the full year (Fig. 2)) as the training data sets to do the TB 
calibration avoids to be sensitive to seasonal vegetation effects over low 
vegetation classes. 

Even though Method 2, which produced the best performances, was 
chosen in this study, the uncertainty in the calibration method could 
come from that i) the calibrated global-based function does not account 
for the different vegetation structures of the various land cover classes; 
ii) the calibrated time-independent function may vary over different 
seasons due to the variable climate and environment even though the 
selected method presented mitigated seasonal variations. For instance, 
as shown in Fig. 15, the functions (slope and intercept) based on Method 
2 indicate a generally stable but locally fluctuating tendency over 
different months. On the other hand, the fact that the selected method 
(Method 2) is not a season- or IGBP-based method is an advantage, as it 
made the method more simple and robust. 

In this study, two optical vegetation variables (LAI and NDVI) were 
used to evaluate the consistency of X-VOD obtained from both the 
calibrated-AMSR-E and AMSR2 TB data. However, the greenness 
changes in vegetation detected by the optical techniques may be asyn
chronous with the microwave-based vegetation features (VOD). For 
example, the vegetation indices retrieved from optical observations can 
be affected by the sun-sensor geometry (Morton et al., 2014). In addi
tion, there may be time lags between the optical-based leaf phenology 
and the microwave-based plant water storage, especially in dense 
vegetation (Tian et al., 2018). Introducing a third index (LAI/NDVI) to 
calculate the temporal correlation with the combined AMSR-E and 
AMSR2 X-VOD can help to assess the temporal consistency of the 

Fig. 13. IB X-VOD over the AMSR-E and AMSR2 periods. Black lines and dots mean data in the whole year are available, while year 2001, 2011 and 2012 are marked 
in grey color because they are the years when AMSR-E/AMSR2 started or terminated and data in some months are unavailable. 
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merged X-VOD in considering the real vegetation growth and degrada
tion. It should be also noted that the errors associated with the LAI/NDVI 
indices may introduce uncertainty in the evaluation step. 

5. Conclusion 

The aims of the present study were to evaluate the use of four 
different approaches in merging brightness temperature observations 
from both the AMSR-E and AMSR2 sensors, and then to retrieve a 

consistent X-VOD product. The evaluation considered both (i) the 
comparison results between the calibrated AMSR-E TB and AMSR2 TB 
and (ii) the evaluation results of the X-VOD data sets retrieved from 
those two TB data sets against AGB (Bouvet and GlobBiomass)/ LAI/ 
NDVI. Both evaluations (i) and (ii) suggest that Method 2, which built a 
global-based calibration function based on homogeneous and tempo
rally stable land covers (EBF and SNO), showed distinct advantages over 
the other methods. In addition, the fitted relationships between X-VOD 
and AGB/LAI/NDVI match very well over the AMSR-E and AMSR2 

Fig. 14. The global distribution of the number of available AMSR-E L1S observations from December 2012 to December 2015.  

Fig. 15. Monthly global regression coefficients (a: Slope, b: Intercept) fitting AMSR-E L1S to AMSR2 observations.  
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periods after the calibration work, making us confident in the possibility 
of producing a consistent X-VOD product over a long period. Note, more 
generally the specific method developed in this study to merge obser
vations from different sensors can be extended to other satellite datasets 
or products. 

Future works will consider: i) to extend IB X-VOD to the whole 
observation periods of AMSR-E (June 2002 - September 2011) and 
AMSR2 (July 2012 - present), and then to analyse the dynamics of X- 
VOD (as a proxy of AGB) in Africa over the whole period (2002-present) 
of almost 20 years; ii) to extend the X-MEB model to the global scale, 
paying particular attention to the RFI effect particularly in Europe 
(Lacava et al., 2012). The validation of the merging Method 2, evaluated 
here only over Africa, will also be extended to the global scale; iii) to 
retrieve VOD at C-band (C-VOD) and examine the different sensitivities 
of C- and X-VOD to vegetation. 
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