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Although neo-Darwinian (and less often Lamarckian) dynamics are regularly invoked to
interpret cancer’s multifarious molecular profiles, they shine little light on how
tumorigenesis unfolds and often fail to fully capture the frequency and breadth of
resistance mechanisms. This uncertainty frames one of the most problematic gaps
between science and practice in modern times. Here, we offer a theory of adaptive
cancer evolution, which builds on a molecular mechanism that lies outside neo-Darwinian
and Lamarckian schemes. This mechanism coherently integrates non-genetic and genetic
changes, ecological and evolutionary time scales, and shifts the spotlight away from
positive selection towards purifying selection, genetic drift, and the creative-disruptive
power of environmental change. The surprisingly simple use-it or lose-it rationale of the
proposed theory can help predict molecular dynamics during tumorigenesis. It also
provides simple rules of thumb that should help improve therapeutic approaches
in cancer.

Keywords: tumor evolution, adaptation, cell growth, stress response, natural selection, environment,
cancer therapy
INTRODUCTION

Cancer cells are often thought of as a pile of aberrant genetic variants, hence the prevailing view of
cancer as a genetic disease (1). However, cancer is also — and first of all — an adaptation to its
microenvironment with a strong non-genetic component (2–10). Transcriptional plasticity and
epigenetic heterogeneity are increasingly recognized as major players in the ability of cancer cells to
evade therapies (11–19). This growing body of evidence revises the view of mutations as sole or
principal drivers of drug resistance (20–26), and offers more than an additional perspective on an
old problem. It implies that interpreting therapeutic resistance as an unambiguous indicator of
selection of random beneficial mutations may be inaccurate. This potential inaccuracy may have
direct and serious consequences for cancer patients. Moreover, as it is possible that the adaptive
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dynamics that foster therapeutic resistance also unfold during
tumorigenesis, it calls for a more cautious interpretation of
previous findings related to cancer initiation and progression.
THE PROBLEM

Although non-genetic resistance to chemotherapy/target-
selective drugs appears to be pervasive in cancer cells, the
molecular mechanisms that drive this resistance are yet
incompletely understood (12, 27). Non-genetic resistance can
be acquired by environmental induction, i.e., drug-induced
epigenetic reconfigurations can enhance cells’ survival to the
very therapeutic environment (28, 29). Alternatively, epigenetic
configurations that are advantageous in the therapeutic
environment may be pre-existing and undergo positive
selection (30, 31). Moreover, while resistance can be coupled
with purely epigenetic or purely genetic changes, it is also
possible that initially non-genetic changes become genetically
hardwired/assimilated over time, i.e., an environmentally
induced phenotype is made constitutive (12, 32, 33). In sum,
cancer populations can achieve drug resistance through genetic
and/or non-genetic means and via a mix of neo-Darwinian and
quasi-Lamarckian mechanisms of adaptive evolution (a fully
Lamarckian scheme of adaptation would entail, inter alia, that
environmental factors cause directed adaptive changes).

This wealth of possible paths to resistance is confusing and
consequently not good news for the design of effective cancer
therapies. On the positive side, several observations (27, 34, 35)
indicate that mechanisms similar to those that drive therapeutic
resistance in cancer cells may also drive adaptive phases during
the poorly understood process of tumorigenesis. Thus, the
insights gained in the context of therapeutic resistance may
shine light on tumorigenesis and help reveal some general
principles and/or deterministic dynamics (36), which can in
turn contribute to the development of more effective cancer
prevention. Here, we explore this possibility. More specifically,
we ask two questions: Are there distinct intracellular
mechanisms and simple evolutionary dynamics (not
necessarily neo-Darwinian or Lamarckian), which can help
explain the progression of events during oncogenic
transformation? And if so, can these mechanisms/dynamics
have clinical utility and general implications for cancer
evolution and therapy? An empirically supported positive
answer to these questions can be given when the dominant
and deep-rooted neo-Darwinian (ND) model of adaptive
evolution is bypassed.
A SHORT OVERVIEW OF THE
NEO-DARWINIAN MODEL

The ND model is nearly universally invoked to explain how
living beings adapt to their surroundings. In this model, which
integrates Darwinian dynamics and Mendelian genetics, natural
selection acts on spontaneous genetic mutations, favoring the
Frontiers in Oncology | www.frontiersin.org 2
spread of heritable variants that are advantageous in the
prevailing conditions (37). Selectable genetic changes predate
adaptation and chance plays a central role in the occurrence of
genetic changes. The ND model is powerful: its implications are
entrenched in modern thinking and far-reaching.

Against this background, it may come as no surprise that the
ND model is also widely leveraged for explaining the genesis and
the evolution of adaptive traits in cancer (21, 38–44). For
example, positive selection is widely thought to promote
recurring inactivating mutations in TP53, the most mutated
gene across human cancer types (45). More generally, it is
most often undisputed, let alone plausible, that accidental
genomic variants that are advantageous in prevailing
conditions drive adaptations of cancer cells to the tumor
microenvironment and therapy resistance. The ND model
serves as an evolutionary framework for cancer genomics
studies to reconstruct clonal evolution: mutation and selection
of new mutations that happen to be beneficial in the tumor
microenvironment drive the expansion of subclones (46).

In the ND model, the speed of adaptation partly relies on the
rate at which beneficial mutations appear, survive, and spread
(47). As plausible as the fixation of beneficial mutations is, the
chance of it happening may be miniscule (48). Beneficial (driver)
mutations in cancer cells emerge and/or segregate in a context
where most co-occurring (passenger) mutations are deleterious
(44). Ubiquitous purifying selection is expected to most often
purge these cells alongside possible beneficial mutations that
frequently confer only a minimal selective advantage (49). Even
when purifying selection is relaxed, the mere interaction of
accruing deleterious mutations may facilitate adaptation (50,
51). Finally, random genetic drift can lead to the fixation of
deleterious mutations by sheer chance (52–56), and this drift also
limits the ability of selection to refine a phenotype (57). In short,
it is certainly not a given that beneficial mutations, if present,
spread and reach fixation. Consistent with this, no beneficial
mutations followed by selective sweeps and clonal expansion
were detected in recent cancer genomic studies (58, 59). Besides,
when driver genes are reported [e.g., (60)], the evidence that
these typically highly mutated genes are positively selected for
(often inactivating) tumorigenesis-driving mutations does not
rule out alternative explanations (see below and Box 1). More
generally, although selection of beneficial mutations has for long
time provided the primary mechanistic account for the origin of
adaptive phenotypic traits (61, 62), unambiguous cases of
evolved adaptation driven by positive selection of both new
rare beneficial mutations and standing genetic variation appear
to be relatively rare (63) or unsubstantiated (64). In the majority
of cases they rely largely or entirely on the statistical analysis of
sequence data without a biological mechanism that underlay the
presumed selection (65).

This raises a question that deserves careful consideration:
does the ND model offer the only possible account for the
evolution of adaptive traits? Shifting our focus on cancer, are
there other equally viable mechanisms of adaptation, which
could help explain how tumors emerge or therapy resistance is
acquired (see also Box 1)? In a time where cancer is among the
September 2021 | Volume 11 | Article 732081
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leading causes of death globally, an alternative or additional
mechanism of adaptive evolution could offer new perspectives on
how to interpret cancer genomic data and address cancer as a
health problem. An additional and equally viable mechanism of
adaptive evolution would also provide a null hypothesis against
which the explanatory power of the ND model can be measured
[reminiscent of the neutral theory of molecular evolution (73)
and the mutational hazard hypothesis (74, 75)].
A MECHANISM OF ADAPTIVE EVOLUTION
WITHOUT POSITIVE SELECTION

Like the ND model, a non-Darwinian model that describes how
evolved adaptations may arise during tumorigenesis or in
response to therapy should help explain and interpret a wide
range of observations. Ideally, it should have several properties.
For example, it should help integrate ubiquitous and well-
established phenomena such as pleiotropy, plasticity, and
trade-offs (76). Also, it should be explicit about the relative
contribution of evolutionary forces in the onset of adaptations
as well as the interaction between these forces and the
environment [e.g., surrounding tumor cells (77)]. Further, it
should be able to integrate genetics and epigenetics, both of
which play a central role in the emergence of cancer and cancer
drug resistance [e.g., (13)]. It should also generate testable
hypotheses. Last, it should help make predictions.

An elegant non-Darwinian and non-Lamarckian mechanism
that exhibits all of the foregoing properties has been previously
proposed (78), and largely overlooked. Dubbed plasticity-
relaxation-mutation, this mechanism builds on the idea that
environmentally-induced traits may become genetically
determined (or assimilated) (79–83), and that phenotypic
plasticity precedes the origin of evolutionary adaptations (84,
85). The rationale of this mechanism is simple (Figure 1A). Let
us imagine two alternative phenotypes (PA and PB), each of
which is expressed in one of two different environments (EA and
Frontiers in Oncology | www.frontiersin.org 3
EB, respectively). An environmentally regulated genetic switch
controls the expression of PA or PB. Lastly, PA-expressing
organisms/cells in EA are assumed to exhibit a higher
reproductive success relative to those expressing PB in EA
(conversely, PB in EB has a higher fitness than PA in EB). In
these circumstances, the expression of the phenotype PA in the
environment EA shelters the molecular determinants of the
alternative phenotype PB from purifying selection. Given a
sufficiently long exposure to EA, the DNA sequences that
underlay the unused phenotype PB may accrue silencing
mutations, which can spread by random genetic drift. Thus,
habitual exposure to an environment can promote the
permanent expression of one phenotype while favoring the loss
of the alternative phenotype alongside the inactivation of its
molecular basis.

The explanatory power of the plasticity-relaxation-mutation
mechanism ( (78) and below) may be further expanded when the
genetic switch is explicitly treated as non-binary (i.e., a
continuum of states) and the regulation of the phenotypes is
unpacked (Figure 1B). In an environment (EA) where PA is
favored and the alternative PB is disfavored/unused (with PA and
PB being antagonistically regulated), the positive regulators of PB
are downregulated. In these circumstances, the persistent nonuse
of PB in EA renders PB’s negative regulators redundant and hence
vulnerable to inactivating mutations. Thus, the negative
regulators of a phenotype that is disfavored/unused in a
habitual environment are likely to be the first molecular
components to be taken out of action by silencing mutations.
On the other hand, the persistent up-regulation of PA’s positive
regulators in the environment EA may favor their sequence
amplification via physiological intracellular mechanisms (see
below). Hence, the positive regulators of a phenotype that is
favored in a habitual environment are the most likely to accrue
copy number variants. Finally, the molecular inactivation of a
disfavored/unused phenotype could have surprisingly wide
phenotypic effects. Besides being viewed as individual traits,
the alternative phenotypes, PA and PB, may each be viewed
Box 1 | Is dN/dS > 1 irrefutable evidence for positive selection?
The use-it or lose-itmodel does not exclude that positive selection may play a role in evolutionary adaptation. At the same time, it offers a null hypothesis against which the
explanatory power of the neo-Darwinian framework can be measured. Genes with cancer-associated mutations in healthy tissues are a valuable test bed for assessing the
explanatory power of the use-it or lose-it model vs. the commonly assumed neo-Darwinian dynamics.

In healthy somatic tissues, genes that operate as cancer drivers have been reported to preferentially accrue mutations and to be under positive selection (dN/dS > 1)
(66). If dN/dS > 1 is irrefutable evidence for positive selection, then this finding is in contradiction with the use-it or lose-itmodel, so we decided to reexamine it. In the use-it
or lose-it model, the mutational enrichment of cancer driver genes in healthy somatic tissues suggests that healthy cells and cancer cells can experience similar
microenvironmental conditions, as expected given that cancer cells originate from healthy cells. It also implies that cancer-inducing microenvironmental conditions can
occur throughout the human body without necessarily giving rise to cancer but presumably increasing the risk of developing it (67). Finally, in the use-it or lose-itmodel the
preferential accumulation of cancer mutations in healthy tissues flags relaxed purifying selection (rather than positive selection) in the presence of a cancer-inducing
environment. It predicts that the somatic genes under focus should accumulate inactivating mutations and exhibit dN/dS values ≈ 1.

Interestingly, genes with cancer-associated mutations in healthy tissues do exhibit dN/dS values ≈ 1 when missense mutations are examined. dN/dS values > 1 are
only detected when inactivating mutations are considered (66). Thus, the putative signature of positive selection reported for cancer driver genes in healthy somatic tissues
rests only on the preferential accrual of inactivating mutations, which is in line with the use-it or lose-it model. How about the dN/dS ratio >1, which is interpreted as
indicating the presence of beneficial mutations? According to the use-it or lose-itmodel, this interpretation may be inaccurate. In addition to previously reported problems
with using the dN/dS metric as an unambiguous indicator of evolutionary adaptation (68–70), a couple of remarks support this possibility. First, a focus on nonsense
mutations can lead to an increased dN/dS ratio because termination codons are A + T rich, and in the human genome (as well as others) a mutational bias toward A + T
has been found (71). Second, it is not clear how healthy cells, which lack a “self-defined” fitness (72), may benefit from selectively advantageous mutations. Back to the
use-it or lose-it model, the inactivating mutations that accrue in cancer driver genes in healthy tissues are predicted to be effectively neutral because they follow the
environmentally induced and epigenetically controlled manifestation of the adaptive (alternative) phenotype in the pre-tumor environment.
September 2021 | Volume 11 | Article 732081
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also as a collection of traits, which were molecularly linked over
evolutionary time because of the selective advantage conferred by
their functional integration. If so, mutations that inactivate even
one or a few components of the molecular basis of, say, PB in EA
can at once impact the expression of multiple linked traits.
Frontiers in Oncology | www.frontiersin.org 4
In sum, the dynamics proposed by the plasticity-relaxation-
mutation mechanism support a use-it or lose-it model where
genes/pathways that are persistently not used in an environment
culminate in being permanently silenced and possibly physically
lost (Table 1). In contrast, the genes that are activated in a
A

B

FIGURE 1 | Graphic representation of the plasticity-relaxation-mutation model (Hughes, 2012) and its expanded version (this study). (A) A genetic switch controls
the expression of two alternate pathways (a, b) leading, respectively, to two alternate phenotypes (a, b) in response to two different environments (a, b). When
environment A is no longer encountered by the organism/cell, there is no longer purifying selection against mutations that eliminate pathway a (modified after
Hughes, 2012). (B) If phenotype A and phenotype B are antagonistically regulated, then the negative molecular regulators of the disfavored phenotype A are
redundant and preferentially accumulate mutations. The positive regulators of the adaptive phenotype B are highly expressed, and their copy number may increase
as a result of intracellular processes.
September 2021 | Volume 11 | Article 732081
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habitual environment and underlie the favored (adaptive)
phenotype can experience amplification, which could be seen
as a use-it and improve-it dynamic. In this model, relaxed
purifying selection together with random genetic drift and
effectively neutral or nearly neutral mutations play a central
role in the adaptive reconfiguration of genomes and phenotypic
(individual or integrated) traits.
THE USE-IT OR LOSE-IT MODEL OF
ADAPTIVE EVOLUTION HAS
CONSIDERABLE EXPLANATORY POWER
AND MAKES TESTABLE PREDICTIONS

The foregoing propositions are compatible with many
observations. For example, they are consistent with empirical
findings showing that environment-induced plasticity can
promote adaptive evolution (90, 91), that expression variability
among environments can affect gene evolution (92), and that a
trait’s variance may be controlled by genes that are not directly
Frontiers in Oncology | www.frontiersin.org 5
involved in the trait being considered [the Omnigenic Model
(93)]. They align with the increased rate of tandem duplications
frequently associated with up-regulated stress-responsive genes
in several organisms (94–96) and with the predictable and
frequent formation of de novo copy number variation in
independent experimental evolution lines of yeast (97–99).
One fulfilled prediction of the use-it or lose-it model is that the
rate of adaptive molecular evolution scales negatively with the
intensity of natural purifying selection (100). Another fulfilled
prediction is that an adaptation to a certain environment may
limit evolutionary potential under environmental change (101)
and can be deleterious in other environments (102–104).

The use-it or lose-itmodel accounts for— without depending
on — the role of epigenetic changes in favoring the onset of
evolved adaptations (78). Epigenetic mechanisms, such as DNA
methylation or small RNA-mediated epigenetic modifications,
can help directly regulate the proposed coordinated antagonistic
expression of PA and PB (105, 106) (Figure 1) and may be
inherited (107). It can also account for the adaptive contribution
of spatial and temporal non-genetic heterogeneity in populations
of genetically narrow or uniform cells (28, 108, 109). For
TABLE 1 | Putative mechanisms responsible for the origin of evolved adaptations.

Theory of
evolution

Mechanism of adaptation Driving factor Predictions (sample) Refs

Neo-
Darwinism

Natural selection acts on heritable
variability that originates through
accidental changes in the genetic
material.

Positive Selection, Mutation • Positive selection is necessary for evolutionary
adaptation.

• DNA sequence contributes more to adaptive
evolution than epigenetic variants.

• Mutational trajectories are not influenced by the
environment.

• Adaptive phenotypes are usually built up by a
series of relatively small changes.

• The frequency of potentially advantageous genetic
mutations is extremely low.

• Adaptation is limited by mutations.

(37, 64, 86, 87)

Neo-
Lamarckism

A new environment directly induces
adaptive and heritable phenotypic
changes. Environmental epigenetics
and epigenetic transgenerational
inheritance provide molecular
mechanisms for this process.

Environment, Epiallelic change
(Mutation)

• Selection is not involved in the spread of heritable
and adaptive changes that a particular
environmental treatment tends systematically to
induce.

• Induced epigenetic changes can be stably
transmitted over many generations in the absence
of the treatment.

• Stable epiallelic variants without associated DNA
sequence variants are abundant among
spontaneous mutations.

(37, 88, 89)

Use-it or
Lose-it

In an environment where a phenotype
is permanently expressed, the
molecular basis of alternative
phenotypes is relaxed. Mutations that
permanently eliminate pathways
leading to alternative phenotypes can
be fixed by genetic drift. Genes that
underlie the favoured phenotype may
undergo recombination-mediated
amplification.

Environment, Phenotypic
plasticity, Purifying selection,
Mutation, Genetic drift,
Recombination

• Positive selection is not necessary for evolutionary
adaptation.

• Phenotypic plasticity precedes the fixation of
evolved adaptations.

• Copy number variants are a frequent contributor to
adaptation.

• Evolved adaptations originate from pre-existing
traits that are co-opted for a new function.

• Loss-of-function mutations are associated with the
evolution of phenotypic novelties.

• Evolutionary adaptation can be achieved even
when effective population size is small.

• Epigenetic silencing of genes involved in the
disfavoured pathway could accelerate evolution
because it shelters genes from purifying selection.

(87) This study
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example, prolonged proximity to a new and confined source of
stress (e.g., inflammation) is expected to locally promote non-
genetic changes that are more stable and thus more likely to
reoccur across generations compared to changes that occur
further apart from the source of stress. Under these
circumstances, the use-it or lose-it model predicts that
mutations that silence the molecular basis of the unused
phenotype are most likely to accrue locally around, more than
further apart from, a changed environment. More broadly, the
model makes the testable prediction that non-genetic
heterogeneity, the likelihood of genetic inactivation and the
loss of phenotypic plasticity all correlate with the intensity/
duration of, and distance from, a localized source of stress.

Exposure to a new environment triggers a physiological
adaptive response (also known as acclimatization), which in the
use-it or lose-it model shapes evolutionary adaptive trajectories.
This means that evolutionary adaptive trajectories could be to
some degree predicted via ecological studies, e.g., via the study of
transcriptional variation in response to environmental change, in
line with previous suggestions (110). Finally, the use-it or lose-it
model aligns with the widespread evidence for convergence by
parallel evolution (111–114). It predicts that individuals/cells that
are habitually exposed to the same biotic or abiotic environment
(e.g., diet, medication, hygiene levels, pollutants, oxygen
concentration, population density) accumulate inactivating
mutations in the molecular basis of the same alternative
phenotype that is disfavored/unused in that environment. This
prediction matches the increasingly acknowledged role of gene
loss for evolutionary adaptation (115–122). It also provides a
plausible explanation for recurrent mutations in cancer cells (see
below), recurring intratumoral phenotypic clusters (77, 123, 124),
and the convergence towards the relatively few hallmarks of
cancer (125). Importantly, most if not all the evidence
presented above is commonly interpreted as, and may indeed
be, the result of positive selection. However, the use-it or lose-it
model offers an additional and equally viable interpretation for
these observations.
PHYSIOLOGICAL ADAPTATION TO THE
PRE-TUMOR ENVIRONMENT

How far can the use-it or lose-it model take us with regard to
improving current understanding of cancer initiation and
evolution? Below, we provide a broad-brush overview of events
that may unfold during tumorigenesis. This work of synthesis
illustrates how the use-it or lose-it model can be used as a lens to
interpret common observations and, more generally, as a
valuable guide for gaining insights into cancer adaptive dynamics.

Although the exact timing and order of events that determine
tumor initiation is not yet fully elucidated (126), it seems clear
that tumorigenesis is a multi-stage (127) cumulative (128)
process, and that the onset of cancer depends heavily on the
surrounding microenvironment. Indeed, chronic inflammation
and other types of long-lasting microenvironmental stresses are
strongly associated with an increased risk of cancer (129–131). In
Frontiers in Oncology | www.frontiersin.org 6
healthy somatic cells, microenvironmental stress is expected to
induce a stress response. As a part of this response, human cells
physiologically upregulate the expression levels of genes such as
those encoding HSP70 and p53. The former is a family of
proteins, amongst the most conserved across the tree of life
(132, 133). The latter is a metazoan invention (134), and its
encoding gene is among the most frequently mutated across
cancer types in human (135–137). Stress-related proteins such as
HSP70 and p53 can play multiple functions in the cell
(pleiotropy). For example, HSP70 is also a positive regulator of
mitotic cell division (138), whereas p53 negatively regulates the
cell cycle (139). Moreover, these functions may be mutually
exclusive (antagonistic pleiotropy). In accordance with the above
example, stress resistance and cell growth are inversely regulated
across the tree of life (110, 140). Finally, stress resistance and cell
growth are not isolated biological processes. Energy stores
mobilization and cell motility, for example, are evolutionarily
and molecularly linked with the cell stress response (141, 142).
Instead, processes such as microenvironment sensing, adhesion
signaling, programmed cell death, and circadian clock are
intimately connected to cell cycle progression (143–145). Given
these connections, when the molecular basis of one of these
processes is altered, then other interlinked processes may also
be affected.

This brief account exemplifies how upon exposure to pre-
malignant microenvironmental stress, multipurpose proteins
such as HSP70 could take on the role of environmentally
controlled genetic switch that is hypothesized in the plasticity-
relaxation-mutation mechanism (78) (see above and Figure 1).
The switch could simply reflect a biased allocation of pleiotropic
factors between the competing demands of growth and stress
resistance/somatic maintenance e.g., following post-translational
modifications (146, 147). In any case, proteins with critical roles
in stress response and cell cycle progression such as HSP70 may
fail to accurately mediate cell division in a stressful environment
(148). This is expected to hinder cell growth and may generate
ploidy alterations (149) and copy number variation (98) in a
context, the pre-malignant environment, where stress resistance
is the adaptive phenotype. According to the use-it or lose-it
model, the positive regulators of this stress-resistance phenotype
are upregulated and may accrue structural changes (Figure 1B).
Instead, cell growth is the alternative disfavored/unused
phenotype, whose expression is antagonistically regulated via
epigenetic changes, and whose molecular negative regulators
preferentially accrue silencing DNA mutations (Figure 1B).

The above dynamics align well with observations from long-
term experimental evolution studies. In one example,
independently evolving yeast populations accumulate adaptive
copy number variants in response to stress. These variants
predictably emerge across replicates and appear to result from
DNA replication-mediated processes (97). These findings and
others (150–153) align with the suggestion that in a constant
environment active transcription can contribute to the formation
of copy number variants (Figure 1B). In a constant environment,
these variants can be repeatedly generated across individuals/
cells and hence they can increase frequency in a population even
September 2021 | Volume 11 | Article 732081
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when the power of selection is weaker relative to the power of
genetic drift.

In a second example, independently evolved yeast clones
frequently undergo adaptive self-diploidization in response to a
chronically stressful environment (i.e., limiting glucose) (154).
Self-diploidization is strongly associated with enhanced stress
resistance (155) and produces similar phenotypic effects as those
observed when cell cycle progression-related genes are repressed
(156). These obervations hint at the expected link between stress
response and cell growth in yeast. Furthermore, independently
evolved yeast clones with no self-diploidization were reported to
accumulate a large number of large-effect adaptive mutations in a
few genes that affect cell growth (154). Not only do these
recurrent mutations inactivate preferentially negative regulators
of the nutrient-responsive Ras/PKA pathway, but mutations
that decrease the activity of Ras/PKA genes are known to have
strong pleiotropic effects and enhance yeast’s response to stress
(157–160). These dynamics align with those described in
Figure 1B. Under the ND model, the discussed mutations
accrue as a result of positive selection. Under the use-it or lose-
it model, relaxed negative selection favors the accrual of these
growth-inhibiting mutations, which in a stressful environment
stabilize the enhanced stress response.

In a third and last example, a constant environment with
predictable nutrient supply is reproducibly associated with
perturbed/disrupted environment-sensitive and growth rate-
governing signaling pathways in the single-celled ciliate
Paramecium (161) and yeast (162). In the yeast study, clones
adapted to the constant environment show also reduced viability
in a fluctuating environment where nutrient abundance varies
(162). These findings align with the use-it or lose-itmodel: habitual
exposure to a constant environment is expected to wear down the
ability to respond to environmental changes. This latter aspect
may play a crucial role in oncogenic transformation (see below).
MECHANISMS UNDERLYING
ONCOGENIC TRANSFORMATION

But how can the foregoing physiological adaptive dynamics lead to
an oncogenic transformation? The use-it or lose-itmodel generates a
specific prediction based on a few previous observations. First, it is
widely known that the growth-inhibitory activity of p53 is elevated
in the presence of stress but drops during tumorigenesis (163).
Second and last, across multiple cancer types the p53-encoding gene
TP53 preferentially accrues inactivating mutations, many at the
early phases of tumorigenesis (137, 164). Based on this and the
above-presented work of synthesis, the use-it or lose-it model
predicts that the emergence of tumors is coupled with — or even
prompted by— a “stress resistance-cell growth axis” that tilts in favor
of cell growth. Because stress resistance is no longer the favored/
used phenotype in the newly formed tumor microenvironment
(more details below), its molecular basis becomes the preferential
target of inactivating mutations (Figure 1).

But what would prompt the putative tilt in the stress resistance-
cell growth axis? Although only targeted experiments can reveal the
precise causes, the use-it or lose-itmodel offers a simple explanation,
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which can guide future investigations. Under this model, sustained
repression of cell growth in the stressful pre-tumor
microenvironment favors the accumulation of cancer-associated
inactivating mutations in genes that encode cell-growth negative
regulators such as p53 (Figure 1B). The duration of exposure to the
pre-tumor microenvironment is crucial for inactivating mutations
to accrue. Thus, the use-it or lose-it model predicts that tumors
irreversibly emerge when the level of environmental stress remains
elevated for a sufficiently long time — a time span that might even
extend for years (137). The same rationale can be readily used to
explain adaptation at later phases of cancer development, i.e.,
developed tumors would be most likely to evolve genetically-
determined adaptations when their microenvironment remains
constant for a sufficiently extended time (165). This implies that
long-term exposure to constant drug therapies may be a
shortsighted anti-cancer approach, in line with current views
(166) and emerging therapies (167).

Why should stress resistance be dampened in the emerging
tumor microenvironment? Because there are no indications, to
our knowledge, that the pre-tumor environmental stress
disappears during tumorigenesis, the hypothesized tilt in the
stress resistance-cell growth axis can only indicate that newly
emerged tumor cells have evolved a considerable level of
insensitivity to stress (which would effectively dampen or turns
off stress response). This may reflect a dampened sensitivity to
extracellular and intracellular information and/or a partial loss of
contact with the microenvironment. Several observations are in
line with this inference. For example, dysregulated signaling is
widely recognized as an oncogenic mechanism (125), with
expected effects on the cell’s metabolic and epigenetic circuits
(168). Also, the loss of polyploidy can flag a reduced sensitivity to
stress (e.g., DNA damage). Polyploidy enhances a cell’s ability to
survive in stressful conditions (169) and is frequently observed in
pre-malignant lesions (170). However, polyploidy is frequently
lost during the early steps of tumorigenesis (171) via
chromosome missegregation (172), expecially in cells where
the function of p53 is down-regulated or absent (173).
Furthermore, the stress-inducing pre-tumor microenvironment
can activate the epithelial-to-mesenchymal transition program
[reversible when the inducing stress is removed (174)] which
mediates, inter alia, the loss of epithelial characteristics (e.g., cell-
cell adhesion) (35, 175). The hypothesized reduced sensitivity to
the microenvironment during oncogenic transformation is
further consistent with evidence supporting a model of cancer
driven by tissue disruption (176), as well as with the proposed
link between the age-related destabilization of the multicellular
organizational architecture and cancer (177, 178). It is also
consistent with the suggestion that the onset of cancer reflects
a transition to unicellularity (179–181). More specifically, it has
been suggested that a healthy somatic cell within a tissue is non-
evolving unless this cell breaks loose and thus acquires a self-
defined fitness (72). The hypothesized reduced cell sensitivity to
biological information may favor the acquisition of this self-
defined fitness alongside the activation of molecular programs
that date back to unicellular ancestors (182–184).

What mediates enhanced cell proliferation in the emerging
tumor microenvironment? As stated above, the inactivated or
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inhibited p53 no longer carries out its anti-proliferative
transcriptional program. This is expected to promote cell growth,
in addition to influencing a plethora of other cellular processes
(Box 2). Additionally, putative genetic switches such as HSP70,
which is typically highly expressed in tumors (133), may be re-
allocated from chiefly enhancing stress response in the pre-tumor
environment to primarily promoting mitotic division in the tumor
microenvironment. In line with this, HSP70 plays a key role in
cancer initiation and progression (185). Moreover, its loss prevents
malignant transformation (185). More in general, environmentally-
controlled reallocations along the stress resistance-cell growth axis
are consistent with two highly correlated phenotypes which are
detected in cancer and unicellular systems such as the ciliate
Paramecium (148): dormancy and elevated stress resistance vs.
rapid proliferation and reduced stress resistance.
IMPLICATIONS FOR TRANSLATIONAL
APPLICATION

Understanding whether and when cancers adapt via a neo-
Darwinian model, or a different model of adaptive evolution
can have serious practical consequences for patients. At present,
recurring mutations that inactivate specific genes in a patient’s
cancer cells are assumed to flag positive selection-driven
adaptations, say an evolved capacity to escape the immune
system. Based on this common assumption, inactivated genes
are labeled as tumor suppressors and oncologists may adjust or
change altogether the cancer treatment to which the patient is
subjected. For example, a patient may be treated with different
chemotherapeutical drugs or a cocktail thereof to circumvent the
hypothetical evolved capacity to evade immune response.

But what if the underlying assumption rooted in the neo-
Darwinian paradigm is contentious or, worst, inaccurate? The
following example illustrates this possibility. A recent study
found that inactivating mutations in metastatic/relapsed breast
cancer cells preferentially target the genes JAK2 and STAT3, and
more in general, the JAK-STAT signaling pathway (212).
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Following the current modus operandi, Yates et al. labeled
JAK2 and STAT3 as tumor suppressor genes in metastatic/
relapsed breast cancer. Further, as the loss of JAK2 was
previously shown to lead to a total loss of functional response
to interferon gamma (213), Yates et al. proposed — reasonably,
under an underlying neo-Darwinian paradigm — that the
recurring inactivating mutations in the JAK-STAT signaling
pathway contribute to disease progression by allowing cancer
cells to adaptively escape host immunity. The use-it or lose-it
model offers a different, yet equally viable interpretation for these
same findings. If cells with nonfunctional JAK2 are unable to
respond to interferon gamma as previously suggested (213), then
the preferential inactivation of JAK2 reported by Yates et al. can
reflect an interferon gamma-poor environment. In other words,
rather than being positively selected to escape the immune
system (neo-Darwinian model), the recurrent inactivation of
JAK-STAT signaling in metastatic/relapsed breast cancer may
flag a weakened immune system and favor survival in the
interferon-gamma-poor environment (use-it or lose-it model).

This alternative interpretation fits well with the negative impact
of cancer and chemotherapy on the immune system (214). It also
cautiously suggests an approach to counter this adaptive cancer
phenotype. Treating the patient with interferon gamma could
encourage metastatic breast cancer cells to re-activate a silenced or
dampened JAK-STAT signaling, while at the same time mitigating
the overexpression of the alternative (adaptive) phenotype (215,
216). It is worth noting that the antitumor effects of an increased
interferon gamma approach have been already verified. Treating
breast (and other) cancer patients with interferon gamma can help
sensitize cancer cells to apoptosis, facilitating their elimination
with additional drugs (217–221). Moreover, the molecular basis of
the alternative (adaptive) phenotype may encompass the PI3K/
AKT/mTOR signaling pathway. The latter inference is drawn
from some observations: the increased activity of the PI3K/AKT/
mTOR signaling pathway is frequently observed in breast cancer
patients (222), it increases tumor resistance to multiple drugs (223,
224), and PI3K/mTOR inhibitors activate the JAK/STAT signaling
pathway (225).
Box 2 | Bridging p53 inactivation, cancer and ontogenesis with the use-it or lose-it model.
Several observations indicate that the functional inactivation of p53 can rewire cells. For example, p53 inactivation/inhibition disfavors DNA repair and apoptosis (186), may
favor cell migration and invasion (187, 188), induces the de-repression of transposable elements (189–191), and facilitates the survival and accumulation of de-
polyploidized/aneuploid cells (172, 173, 192, 193) and immune evasion (194, 195). This massive cascade of events may reflect genome instability in somatic cells that,
because of the inoperative p53, are reprogrammed to generate induced pluripotent stem cells (196). In a seemingly alternative fashion, these events may also reflect the
activation of an evolutionary conserved program of unicellular survival against unfavorable changes (197).

Can the foregoing distinct views be linked under a unifying perspective? This is probably only possible when the hypothesized program of unicellular survival against
unfavorable changes matches the transcriptional program of embryonic stem cells. Indeed, the transcriptional program of tumor cells does overlap with that of embryonic
stem cells (198, 199). Similar to cancer cells, early embryo cells exhibit a reduced expression of p53 and a similar activation of LINE-1 elements (200). Moreover, placental
cells exhibit several cancer-like features, i.e., genome instability (201), invasiveness and suppression of immune responses (202, 203), methylome and vascular
remodeling (204, 205). Further, tumor cell reprogramming to pluripotency — an event that is observed in different phases of cancer biology — most likely enhances cell
resistance [e.g., to therapy-induced stress (206)]. In sum, it is plausible that the functional inactivation of p53 in somatic cells triggers some non-random dynamics that
reflect a throwback to the early stage of embryogenesis.

Leveraging these similarities between tumor cells and early embryo/placental cells, the use-it or lose-it model successfully predicts that early embryo cells are
habitually exposed to an environment that closely resembles a tumor microenvironment [e.g., hypoxia (207, 208)]. Despite the many similarities between tumor cells and
early embryo/placental cells, tumorigenesis typically does not take place during fetal/placental development. This suggests that the process of embryonic development
unfolds in the presence (absence) of factors that prevent (promote) tumor initiation (209, 210). Based on the rationale of the use-it or lose-it model, differences in the
properties of the microenvironmental stress during embryogenesis and tumorigenesis (e.g., intensity, persistence) may crucially contribute to either building a multicellular
system or promoting cancer (211). If so, then we anticipate that a better understanding of the mechanisms driving cancer evolution can help gain insights into the
mechanisms governing embryo development and vice versa.
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CONCLUSIONS

Cancer is an evolutionary adaptation of malignant cells to their
microenvironment. Thus, an adequate understanding of the
mechanisms that mediate adaptive biological responses is
indispensable to make effective progress against cancer. Inspired
by a wealth of empirical and theoretical cancer and evolutionary
studies, here we build on a non-Darwinian and non-Lamarckian
model of adaptive evolution (78) to gain insights into therapeutic
resistance and other steps of cancer biology.

In the neo-Darwinian model, ecology and evolution are
treated separately (226), chance plays a central role in the
emergence of mutations, and environmental adaptation is
achieved via positive selection of spontaneous mutations (37).
In the revived plasticity-relaxation-mutation model (78) — here
expanded and renamed with a more intuitive use-it or lose-it —
physiological and evolutionary changes are integrated, mutations
preferentially accrue in those genomic loci that upon
environmental change experience a change of selective regime
(i.e., relaxed purifying selection), and adaptation is achieved by
losing the phenotype that is unused in a habitual environment.

The use-it or lose-it model has a considerable explanatory
power. Its theoretical propositions align, inter alia, with the idea
that that enduring environmental conditions can affect
simultaneously health and evolutionary trajectories (227). They
can explain the parallel evolution of similar traits in response to
the same environment [e.g., recurrent losses in response to the
same anti-cancer therapy (228)], are compatible with the
observation that non-genetic heterogeneity can promote
transient and rapid adaptation to environmental changes (229,
230), and with evolution-based therapeutic strategies such as the
“ersatzdroge” strategy to counter drug-resistant phenotypes
(231). In this latter strategy, cells with an evolved adaptation to
a certain environment (e.g., resistance to a toxic drug) are
outcompeted by the sensitive cells when exposed to a non-
toxic version of the same drug (a new environment). The use-it
or lose-it model can help generate a conceivable and coherent
mechanistic account of tumorigenesis, and when compared to
the neo-Darwinian model it can produce different
interpretations of the same empirical observations, thereby
encouraging different clinical interventions. These differences
deserve special attention given the increasingly widespread use of
personalized oncology/medicine and its role in informing
clinical treatment.
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Finally, the use-it or lose-itmodel suggests that the conversion of
a healthy cell into a cancerous cell is neither abrupt nor accidental.
Rather, it is the result of an environmentally induced process that is
for one traceable and for another reversible. If this model is correct,
then tracing epimutations induced by a habitual exposure to
microenvironmental stress should represent a powerful strategy
to anticipate the emergence of cancer. Additionally, in a world
where obesity is the first cause of cancer (232, 233), changes of
inflammation-promoting lifestyle and dietary regimes would help
reverse and reduce the induction of cancer-related mutational and
adaptive events (234). Twenty-five years ago Lucien Israel wrote:
“Killing the last cancer cell without killing the host is an objective
that has not yet been reached” (197). In large part, this is still true
today (235). Considering the foregoing propositions, we urge a
profound reconceptualization of anti-cancer therapies. Instead of
aiming to kill cancer cells, we suggest that anti-cancer therapies
should aim to prevent or alter the (micro)environmental
conditions that spawn and/or help preserve cancer cells. In this
context, the characterization of genetic and non-genetic cancer
variation would no longer serve to design toxic drugs or debilitating
treatments tailored to specific molecular targets. Rather, it would
help infer the key properties and the vulnerabilities of the tumor-
supporting environment, which non-toxic means could
help modify.
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90. Bódi Z, Farkas Z, Nevozhay D, Kalapis D, Lázár V, Csörgő B, et al.
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