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Abstract: Aging is characterized by a progressive increase in oxidative stress, which favors lipid
peroxidation and the formation of cholesterol oxide derivatives, including 7β-hydroxycholesterol
(7β-OHC). This oxysterol, which is known to trigger oxidative stress, inflammation, and cell death,
could contribute to the aging process and age-related diseases, such as sarcopenia. Identifying
molecules or mixtures of molecules preventing the toxicity of 7β-OHC is therefore an important
issue. This study consists of determining the chemical composition of Tunisian Pistacia lentiscus L.
seed oil (PLSO) used in the Tunisian diet and evaluating its ability to counteract the cytotoxic effects
induced by 7β-OHC in murine C2C12 myoblasts. The effects of 7β-OHC (50 µM; 24 h), associated or
not with PLSO, were studied on cell viability, oxidative stress, and on mitochondrial and peroxisomal
damages induction. α-Tocopherol (400 µM) was used as the positive control for cytoprotection. Our
data show that PLSO is rich in bioactive compounds; it contains polyunsaturated fatty acids, and
several nutrients with antioxidant properties: phytosterols, α-tocopherol, carotenoids, flavonoids,
and phenolic compounds. When associated with PLSO (100 µg/mL), the 7β-OHC-induced cytotoxic
effects were strongly attenuated. The cytoprotection was in the range of those observed with α-
tocopherol. This cytoprotective effect was characterized by prevention of cell death and organelle
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dysfunction (restoration of cell adhesion, cell viability, and plasma membrane integrity; prevention
of mitochondrial and peroxisomal damage) and attenuation of oxidative stress (reduction in reactive
oxygen species overproduction in whole cells and at the mitochondrial level; decrease in lipid
and protein oxidation products formation; and normalization of antioxidant enzyme activities:
glutathione peroxidase (GPx) and superoxide dismutase (SOD)). These results provide evidence that
PLSO has similar antioxidant properties than α-tocopherol used at high concentration and contains a
mixture of molecules capable to attenuate 7β-OHC-induced cytotoxic effects in C2C12 myoblasts.
These data reinforce the interest in edible oils associated with the Mediterranean diet, such as PLSO,
in the prevention of age-related diseases, such as sarcopenia.

Keywords: aging; 7β-hydroxycholesterol; mitochondria; C2C12 myoblasts; oxidative stress; peroxisome;
Pistacia lentiscus L. seed oil; sarcopenia

1. Introduction

Aging is characterized by a progressive loss of physiological functions, coupled with
a reduction in the ability to maintain homeostasis [1]. One of the hallmark effects of aging
is sarcopenia, which is widely defined as an age-related progressive decline in skeletal
muscle mass, strength, and function [2,3]. From the age of 30, humans lose approximately
3–8% of muscle mass per decade with an accelerated rate of decline after the age of 60 [4–6].
This decline leads to limited functional mobility in older adults [7], but it may also ag-
gravate their vulnerability [8]. Indeed, skeletal muscle is the largest organ in the human
body. It accounts for 30–40% of total body weight [9,10] and plays a primordial role in
locomotion [11], respiration [12], thermogenesis [13], and regulation of lipids (fatty acids,
cholesterol) [14,15] and glucose metabolism [16]. The aging skeletal muscle is marked by
the development of an alteration of energy substrates use. In fact, in response to insulin
stimulation, mitochondria of elderly subjects are unable to move from lipid oxidation to
carbohydrate oxidation as do mitochondria of young subjects, showing a loss of metabolic
flexibility during aging [17]. These data suggest an alteration in metabolic dynamism and
highlight the inability of muscle cells to adapt to environmental variations. It is therefore
important to better understand the underlying mechanisms leading to sarcopenia but
also to identify the chemical epigenetic factors that may promote it. In addition, during
aging, to allow the maintenance of muscle mass, strength and quality, and to act on these
parameters, it is important to identify natural or synthetic molecules, as well as mixtures of
molecules that can be provided in the form of food supplements, or functional foods [18].
An adapted diet, as well as foods acting on the muscle, must also be considered. Several
aging mechanisms have been identified, including telomere shortening, genomic instability,
epigenetic alterations, and organelle dysfunction (mainly mitochondrial changes), which
can trigger cellular senescence [18]. In addition, among the parameters that can affect the
aging of skeletal muscle, oxidative stress is one of the major contributors that can favor
skeletal muscle damage [19,20]. Skeletal muscle consumes large quantities of oxygen com-
pared to other tissues, resulting in higher amounts of reactive oxygen species (ROS) [21].
This increase in ROS levels could be due to two main factors: (i) altered functions of
the mitochondrial respiratory chain; and (ii) impairment in cellular antioxidant defense
mechanisms [22]. These ROS contribute to increased uptake of both glucose and cholesterol
into the cells [23]. Cholesterol is a major component of cellular membranes, including
the sarcolemma of skeletal muscle [24]. In the presence of oxidative stress, glucose and
cholesterol can undergo auto-oxidation by a free-radical mechanism. The cholesterol oxide
derivatives (oxysterols) formed by cholesterol auto-oxidation in oxidative stress conditions
mainly correspond to those that are oxidized at position C7 (7-ketocholesterol (7KC) and
7β-hydroxycholesterol (7β-OHC)) [25–28]. Interestingly, 7KC and 7β-OHC have similar
cytotoxic effects (although the induction of cell death is faster with 7β-OHC) and these
two oxysterols can be interconverted: the enzyme 11β-hydroxysteroid dehydrogenase-1
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(11β-HSD1) converts 7KC into 7β-OHC, whereas 11β-hydroxysteroid dehydrogenase-2
(11β-HSD2) converts 7β-OHC into 7KC [29,30]. In addition, these oxysterols have been
identified as key elements in the development of age-related diseases: cardiovascular
diseases, neurodegenerative diseases (Alzheimer’s and Parkinson’s), and ocular diseases
(cataract, age-related macular degeneration) [28,31–33]. On various cell lines from different
species, 7KC and 7β-OHC but also 24S-hydroxycholesterol trigger a mode of cell death by
oxiapoptophagy, which includes oxidative stress and mitochondrial, lysosomal, and perox-
isomal dysfunction, leading to an apoptotic mode of cell death associated with autophagic
criteria [30,34–36]. Oxysterols are also involved in many physiologic processes: regula-
tion of cholesterol metabolism [37] and RedOx homeostasis [38]; control of inflammation,
including cytokine production [39]; albumin synthesis [40]; and cell differentiation [41].
Despite the considerable interest in oxysterols in the aging process, the impact of these
molecules on skeletal muscle cells has not yet been studied. On human promonocytic U937
cells, 7KC, 7β-OHC and 5β,6β-epoxicholesterol showed high cytotoxicity, characterized by
a high percentage of dead cells, overproduction of ROS, and secretion of pro-inflammatory
cytokines [42]. It has been shown that the most toxic oxysterol on U937 cells, but also on
other cells, was 7β-OHC [30,42].

Therefore, to mimic an age-related pro-oxidant environment, C2C12 murine myoblasts
cultured in the presence of 7β-OHC were used as a cellular model. The effects of 7β-OHC
were characterized on C2C12 and cytoprotective agents were investigated. The effect of
α-tocopherol that protects many cells from the toxicity induced by 7β-OHC and 7KC was
also analyzed [28] as well as that of Pistacia lentiscus L. seed oil (PLSO), widely used in
the Tunisian diet. It is well known that vegetable oils are a valuable source of natural
antioxidants, playing a crucial role in the improvement of human health [43] and in
delaying muscle atrophy [44]. One of the most well-known powerful medicinal plants is
Pistacia lentiscus L. (PL). PL is one of the Mediterranean’s most valuable and important
aromatic bushes. Its application in traditional medicine has increased over time and it
is used as a therapeutic agent in the treatment of scabies, rheumatism, the manufacture
of anti-diarrheal medicine, and in minor burns [45–47]. Extracts of different parts of the
plant show various activities, such as antioxidant, anti-inflammatory, anti-proliferative,
and neuroprotective effects [48–51]. The fruits of PL give an edible oil with high nutritional
value due to its richness in unsaturated fatty acids, such as oleic acid (C18:1 n−9) and
linoleic acid (C18:2 n−6) [52]. PLSO also has a comparable carotenoid and total polyphenols
content than olive oil [53,54], and it has been demonstrated that it has antioxidant and
protective effects against various diseases associated with oxidative stress [55,56].

In the present study, the first objective was to determine the biochemical composition
of PLSO in polyphenols, flavonoids, β-carotene, fatty acids, phytosterols, and α-tocopherol,
and its antioxidant properties. Furthermore, among the sarcopenic patients studied, as the
level of 7β-OHC (mainly formed by cholesterol auto-oxidation, considered as a marker
of oxidative stress, and known for its important pro-oxidant properties) was significantly
higher than in non-sarcopenic subjects, the second objective of the study was to evaluate the
ability of PLSO, compared to α-tocopherol, to attenuate the cytotoxic effects induced by 7β-
OHC on murine C2C12 myoblasts; specifically, the effects on cell proliferation and viability,
plasma membrane integrity, oxidative stress, and mitochondrial and peroxisomal status.

2. Material and Methods
2.1. Chemical Profile of Pistacia lentiscus L. Seed Oil
2.1.1. Seed Material and Oil Extraction

The mature fruits of PL (lentisk-mastic tree) were collected in November 2019 from
plants growing in the region of Tabarka (extreme north-west of Tunisia). After the harvest,
fruits were ground using an ordinary grinder; the resulting paste was then manually
mixed and let to stand overnight in a refrigerator. The next day, the paste was macerated
in cold water. Subsequently, the mixture was placed in a water bath to prevent direct
exposure of the ground material to the heat and thus degradation of the oil quality. After
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filtration, the oil was separated from the water by a decantation process. The procedure of
Pistacia lentiscus L. seed oil is summarized in Supplementary Figure S1. The oils obtained
were stored and maintained at 4 ◦C for further analyses.

2.1.2. Colorimetric Determination of Total Phenolics, Flavonoids, and Carotenoids
Contents of Pistacia lentiscus L. Seed Oil

The quantification of total phenolics and flavonoids was preceded by an extraction
performed as follows: 4 g of PLSO was mixed thoroughly with 2 mL of n-hexane followed
by the addition of 4 mL of methanol/water (60:40, v/v). The mixture was vortexed vigor-
ously and centrifuged at 1490× g for 3 min to separate the two phases. The hydroalcoholic
phase was collected, and the hexanic phase was re-extracted two more times with 4 mL
of methanol/water (60:40, v/v) solution. Finally, the hydroalcoholic fraction obtained was
combined, washed with 4 mL of n-hexane, and stored at −20 ◦C until analysis.

Phenolic compounds: Total phenolic compounds content was assayed by the Folin–
Ciocalteau’s method [57]. Briefly, 200 µL of the combined hydroalcoholic fraction or
standard gallic acid solutions was mixed thoroughly with 1 mL of freshly prepared Folin–
Ciocalteau reagent and 0.8 mL of 7.5% sodium carbonate (Na2CO3). After incubation for
30 min in the dark at room temperature, the absorbance was measured at 765 nm and the
results were expressed as mg of gallic acid equivalent per g of sample.

Flavonoids: Quantification of total flavonoids was determined using an aluminum
chloride (AlCl3) colorimetric assay [58]. A volume of 100 µL of the combined hydroalcoholic
fraction or standard catechin solutions was combined with 400 µL of distilled water and
subsequently with 30 µL of 5% sodium nitrite (NaNO2) solution. After 5 min, 20 µL of a
10% AlCl3 solution and 200 µL of 1 M Na2CO3 solution were added. The final volume
was adjusted with distilled water and mixed thoroughly. The absorbance was recorded
at 510 nm, and the concentrations were expressed as mg of catechin equivalent per g of
the sample.

Carotenoids: Total carotenoids content was measured by a colorimetric assay accord-
ing to the method previously described by Dhibi et al. [59], and was expressed using the
following formula:

Carotenoids = Amax × (105/2.65)

where Amax is the maximum of absorption between 440 and 480 nm.

2.1.3. Polyphenols Analysis

In order to identify and quantify the polyphenolic compounds in PLSO, we analyzed
them by high-performance liquid chromatography (HPLC). To this end, 1 g of oil was
dissolved in 6 mL of petroleum ether and was then purified on a silica SPE cartridge (pre-
viously conditioned by 6 mL petroleum ether 40–60). The cartridge was then washed with
12 mL of petroleum ether and dried under nitrogen for 10 min. Polyphenolic compounds
were eluted with 8 mL of a mixture of methanol/distilled water 80/20 (v/v), and then with
8 mL of acetonitrile. The eluate was evaporated to dryness under reduced pressure at
50 ◦C. The residue was taken up in 400 µL of methanol. The resulting extract was filtered
through a 0.45 µm nylon membrane. Polyphenol analysis was performed by HPLC on
a Perkin Elmer series 200 apparatus equipped with an automatic injector, a quaternary
pump, a column oven to Peltier effect, and a DAD detector. HPLC analyses were carried
out using RPHPLC with a licrospher 100 RP-18 column (150 × 4.6 mm internal diameter
(i.d.), 5 µm particle size, Merck). A gradient elution was programmed using as a mobile
phase A, distilled water with an adjusted pH of 2.2 using trifluoroacetic acid (TFA), and
as a mobile phase B, acetonitrile. The samples were eluted according to the following
gradient: 0 to 5 min with solvent A 100%, and 5 to 50 min with solvent A 100 to 45%.
The flow rate was set at 1 mL/min throughout the gradient and the column temperature
was maintained at 25 ◦C. The injection volume was 20µL, and UV detection was carried
out at a wavelength of 280 nm. The calibration curve was constructed using quercetin
standard solution at different concentration levels (25 to 400 mg quercetin/L). Data were
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expressed in mg equivalents quercetin/100 g of oil. Polyphenols analysis was realized by
the Lara-Spiral laboratory (Couternon, France). The available polyphenol spectra present
in the database of the Lara-Spiral company are listed in Supplementary Table S1.

2.1.4. Fatty Acids Analysis

Total lipids were extracted from PLSO according to the method described by Moilanen
and Nikkari [60]. C19:0 was used as the internal standard in the experiments realized in
LR12ES05, Lab-NAFS ‘Nutrition—Functional Food & Vascular Health’, Monastir, Tunisia.
Lipids were trans-methylated with 14% boron trifluoride in methanol (BF3-MeOH) using
the method of Morrison and Smith [61]. Subsequently, fatty acid methyl esters were
analyzed by gas chromatography (GC) under the same conditions described by Zarrouk
et al. [62]. Fatty acids were identified by comparison with synthetic standards. This
experiment was performed in triplicate and the data expressed either as g/100 g of oil
(C19:0 used as internal standard) or as percentages of total fatty acids.

2.1.5. Phytosterols Analysis

The analysis of phytosterols was realized as described by Zarrouk et al. [62]. Briefly,
the quantification of phytosterols was based on an isolation of the unsaponifiable fraction
and a silylation of the unsaponifiable fraction before direct injection in gas chromatog-
raphy (GC). Then, GC separations were performed with a Hewlett-Packard (HP 5890D,
Palo Alto, CA, USA) using a capillary column (30 m length × 0.25 mm i.d. film thickness
0.25 µm). Working conditions were as follow: carrier gas, helium; flow through the column,
1 mL/min; injector temperature, 290 ◦C; detector temperature, 290 ◦C; oven temperature,
260 ◦C; injection volume 1 µL. The phytosterols were characterized and quantified by gas
chromatography–flame ionization detection (GC-FID). The spectra were compared with
those of the internal library INRAE (Dijon, France). Likewise, they were confirmed with
the NIST Mass Spectral Library and with the literature. The concentration of each PLSO
sterol was expressed in mg/100 g of oil and obtained by three independent analyses.

2.1.6. α-Tocopherol Analysis

PLSO was diluted 10 folds (w/w) with hexane. An amount of 5 mg diluted solution was
mixed for 1 min with 200 µL of saline solution, 200 µL of ethanol/butylated hydroxy toluene
(BHT) (Sigma-Aldrich; 50 mg/L) containing Tocol used as internal standard (1 ng/µL), and
500 µL of hexane. The extract was centrifuged at 10,000× g for 5 min at 4 ◦C. The upper layer
(100 µL) was collected into a new tube and evaporated to dryness with a nitrogen stream.
The dried extract was suspended with 50 µL of methanol/BHT (50 mg/L) and further
centrifuged at 10,000× g for 5 min at 4 ◦C. The supernatant (40 µL) was finally transferred
to an injection vial. Extract (2 µL) was injected with an 1100 autosampler into a Poroshell
120 EC-C18 (3 × 50 mm, 2.7 µm) maintained at 35 ◦C. Separation was achieved with a
1260 HPLC pump (Agilent Technologies, Santa Clara, CA, USA) using a linear gradient
of methanol (90% up to 100% in 5 min, and maintained at 100% for 3 min). Detection was
realized with a Fluorescence Light Detector (Agilent Technologies, Craven Arms, England)
at λ Exmax = 292 nm and λ Emmax = 325 nm. Authentic α-tocopherol standards (0, 50, 100,
200, 400, 600, and 800 ng) were extracted with the same protocol as the PLSO sample.
Area ratios of α-tocopherol (room temperature (RT) = 5.4 min) to tocol (RT = 4.0 min) were
calculated for PLSO and calibrations standards. A linear calibration curve was used for the
calculations. The α-tocopherol analysis was realized by the lipidomic analytical platform
(LAP, Dijon, France).

2.2. Antioxidant Activity of Pistacia lentiscus L. Seed Oil

The hydroalcoholic fraction of PLSO was also used for the quantification of antioxi-
dants activities with DPPH, FRAP, and FIC assays.
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2.2.1. Free Radical Scavenging Activity with DPPH Assay

The free radical scavenging activity was determined by the 1,1-diphenyl-2-picryl-
hydrazyl (DPPH) assay as described by Molyneux et al. [63], with some modifications. To
this end, 50 µL of a hydroalcoholic fraction of PLSO (from 0.016 mg/mL to 2 mg/mL) was
mixed with 950 µL of a methanolic DPPH solution (10−4 M). After incubation for 30 min
in the dark, the absorbance was measured at 517 nm. The antioxidant activity related to
the DPPH radical scavenging effect was expressed as a percent of inhibition (PI) using the
following equation:

PI = [(A0 − A1)/A0] × 100

where A0 is the absorbance of the DPPH solution and A1 is the absorbance of the DPPH
solution after the addition of the sample. The antioxidant activity was expressed as IC50.
A low IC50 value corresponds to a high antiradical activity. Ascorbic acid was used as the
positive control and all tests were carried in triplicate.

2.2.2. Ferric Reducing Antioxidant Power (FRAP) Assay

The ferric reducing antioxidant power (FRAP) was determined according to the
method of Bassene et al. [64]. Briefly, 400 µL of a hydroalcoholic fraction of PLSO (from
0.016 mg/mL to 2 mg/mL) was mixed with 1 mL of phosphate buffer (0.2 M; pH 6.6)
and 1 mL of 1% potassium hexacyanoferrate (K3Fe (CN)6). After incubation in a water
bath at 50 ◦C for 30 min in the dark, 1 mL of 10% trichloroacetic acid was added, and
the mixture was then centrifuged at 1750× g for 10 min. Then, 1 mL of the obtained
supernatant was incubated with 200 µL of 0.1% (w/v) ferric chloride (FeCl3) solution
and allowed to stand for 30 min in dark. The absorbance of the reaction mixture was
measured spectrophotometrically at 700 nm. Higher value absorbance of the reaction
mixture indicated greater reducing power. Ascorbic acid was used as a positive control.
The test was carried out in triplicate. The FRAP value of the hydroalcoholic fraction of
PLSO was calculated as follows:

FRAP [%] = [(Absorbancesample/Absorbanceblank) × 100/Absorbancesample ]

2.2.3. Ferrous-Ion Chelating (FIC) Assay

The ferrous ion chelating (FIC) activity of PLSO was determined according to the
method of Dinis et al. [65], with minor modifications. In total, 100 µL of a hydroalcoholic
fraction of PLSO (from 0.016 mg/mL to 2 mg/mL) was mixed with 50 µL of 2 mM
FeCl2, and 100 µL of 5 mM ferrozine. The mixture was allowed to stand for 10 min at
room temperature. The ferrous iron–ferrozine complex formation was then monitored
by measuring the absorbance at 562 nm against a blank. Ethylenediaminetetraacetic
acid (EDTA) was used as positive control. The assays were performed in triplicate. The
percentage of inhibition of ferrozine-Fe 2+ complex formation was calculated as below:

FIC (%) = [(Absorbancenegative control − Absorbancesample) × 100/Absorbancenegative control]

2.2.4. KRL Test

The overall antioxidant defense potential of the PLSO was measured with the KRL
test (Kit Radicaux Libres) [62,66]. This test consists of submitting whole blood to free
radical attack to mobilize the radical scavengers present in the blood and to neutralize the
oxidation processes [66]. Diluted control blood samples in the presence or absence of PLSO,
which was diluted in DMSO, were oxidized by molecular oxygen in an aqueous suspension
using a 2.2′–azobis (2-amidinopropane) dihydrochloride (AAPH) solution. Hemolysis was
recorded using a 96-well microplate reader (KRL Reader, Kirial International, Lara-Spiral,
Couternon, France) by measuring the turbidimetric optical density decay at 620 nm. The
antioxidant efficiency of the oil was expressed in Trolox equivalent. The same analysis was
conducted with α-tocopherol (Sigma-Aldrich, St-Quentin-Fallavier, France) used as control.
The KRL test was realized by the Lara-Spiral laboratory (Couternon, France).
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2.3. In Vitro Study
2.3.1. Cell Culture and Treatments

Murine C2C12 myoblasts were grown in Dulbecco’s modified Eagle’s medium (DMEM)
supplemented with 10% (v/v) of heat-inactivated fetal bovine serum (FBS) and 1% (v/v)
of penicillin (100 U/mL)/streptomycin (100 mg/mL). The cells were maintained in a
humidified atmosphere (5% CO2, 95% air) at 37 ◦C. For subcultures, cells were trypsinized
(0.05% trypsin − 0.02% EDTA solution) and passed twice a week. 7β-OHC was either
from Sigma-Aldrich or provided by Mohammad Samadi (University of Lorraine, Metz,
France); the purity was higher than 98%. The stock solutions of 7β-OHC was prepared at
800 µg/mL (2 mM), as previously described by Ragot et al. [67], and stored in the dark at
4 ◦C. A stock solution of PLSO was prepared at 80 mg/mL in dimethyl sulfoxide (DMSO;
Sigma-Aldrich) and stored in the dark at 4 ◦C. An α-tocopherol (the major component of
vitamin E; Sigma-Aldrich) solution was prepared to 80 mM in absolute ethanol, as previously
described [60], and stored in the dark at 4 ◦C. For the different experiments, C2C12 myoblasts
were used at 80% confluency; they were seeded either into Petri dishes of 10 cm in diameter
(1.2 × 106 cells per Petri dish), in six-well plates (2 × 105 cells per well), or in 96-well plates
(10 × 104 cells per well). After 12 h, the growth medium was removed and the C2C12
cells were incubated with 7β-OHC (20 µg/mL/50 µM) for 24 h with or without PLSO
(100 µg/mL), or α-tocopherol (400 µM) (used as a positive control for cytoprotection) [28].
PLSO and α-tocopherol were introduced in the culture medium 2 h before 7β-OHC. The
choice of the concentration of 7β-OHC (20 µg/mL/50 µM) and PLSO (100 µg/mL) was
based on the dose-effect of 7β-OHC (5–80 µg/mL/12.5–200 µM) and PLSO (5–3200 µg/mL),
which was realized with an MTT assay.

2.3.2. Evaluation of Cell Morphology by Phase-Contrast Microscopy

After 24 h of treatment with or without 7β-OHC (20 µg/mL/50 µM) in the presence
or absence of PLSO (100 µg/mL), or of α-tocopherol (400 µM), the cell morphology and
cell density of C2C12 myoblasts cells were observed and photographed using a phase-
contrast microscope (Axiovert 40 CFL, Zeiss, Jena, Germany) equipped with a digital
camera (Axiocam lCm1, Zeiss).

2.3.3. Evaluation of Cell Viability with the MTT Assay

Cell viability was measured using an MTT (3-(4, 5-dimethylthiazol-2-yl)-2, 5-
diphenyltetrazolium bromide) assay. MTT salt is reduced to formazan in metabolically
active cells by the mitochondrial enzyme succinate dehydrogenase [35]. C2C12 cells were
seeded into 96-well flat-bottom culture plates. After 24 h of treatment as described above,
an MTT solution (0.05 mg/mL, dissolved in culture medium) was added to each well and
incubated for 3 h at 37 ◦C. The medium was removed and 100 µL of dimethyl sulfoxide
(DMSO) was added to dissolve the formed formazan crystals. The percentage of viable
cells was calculated based on a reduction of the MTT dye into formazan crystals at 570 nm
using a microplate reader (Tecan Sunrise, Tecan, Lyon, France).

2.3.4. Measurement of Cell Viability with the Fluorescein Diacetate Assay

The fluorescein diacetate (FDA) assay evaluates the ability of living cells to trans-
form the FDA to fluorescein after cleavage by plasma membrane esterases [68]. After
24 h of treatment with or without 7β-OHC (50 µM) in the presence or absence of PLSO
(100 µg/mL), α-tocopherol (400 µM), or MitoQ (1 µM) [69,70], C2C12 cells were incubated
for 5 min at 37 ◦C with 50 µM FDA (Sigma-Aldrich) and then lysed with 10 mM of a
Tris-HCl solution containing 1% sodium dodecyl sulfate (SDS, Sigma-Aldrich). The fluores-
cence intensity of the fluorescein (λEx max = 485 nm, λEm max = 528 nm) was measured with
a Tecan fluorescence microplate reader (Tecan Infinite M200 Pro, Lyon, France) in order
to quantify the living cells. The results were expressed as the % of control: (Fluorescence
(assay)/Fluorescence (control)) × 100.
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2.3.5. Measurement of Plasma Membrane Permeability with Propidium Iodide

Propidium iodide (PI) was used to evaluate the plasma membrane permeability and
cell death. This dye penetrates cells with damaged plasma membranes considered as
dead cells [71]. After 24 h of treatment with or without 7β-OHC (50 µM) in the presence
or absence of PLSO (100 µg/mL) or α-tocopherol (400 µM), C2C12 cells (adherent and
non-adherent cells) were stained with a PI solution (1 µg/mL of PBS) for 5 min at 37 ◦C,
and then immediately analyzed on a BD Accuri™ C6 flow cytometer (BD Biosciences,
San Jose, CA, USA). The red fluorescence was selected on a 630 nm band-pass filter and
10,000 cells were acquired for each sample. Data analyses were performed using FlowJo
software (Carrboro, NC, USA).

2.3.6. Measurement of Oxidative Stress
Evaluation of Reactive Oxygen Species Production with Dihydroethidium

Dihydroethidium (DHE) was used to detect ROS, mainly superoxide anion (O2
•−)

production. DHE, a dye that can freely diffuse across cell membranes, is rapidly oxidized
under the action of ROS to fluorescent ethidium. This latter exhibits an orange/red
fluorescence (λEx max = 488 nm; λEm max = 575 nm) [72]. After 24 h of treatment, C2C12
cells (adherent and non-adherent cells) were stained with a 2 µM DHE solution for 15 min
at 37 ◦C and then analyzed on a BD Accuri™ C6 flow cytometer (BD Biosciences). The
fluorescent signals of the DHE-stained cells were collected through a 580 nm band-pass
filter and 10,000 cells were acquired for each sample. Data analyses were performed using
FlowJo software.

Quantification of Antioxidant Enzymes Activities: Glutathione Peroxidase (GPx) and
Superoxide Dismutase (SOD)

Glutathione peroxidase (GPx) activity was evaluated according to the method de-
scribed by Flohe and Günzler [73]. After 24 h of treatment, C2C12 cells were trypsinized,
lysed by sonication, and centrifuged at 20,000× g (30 min; 4 ◦C). The supernatant was incu-
bated for 5 min at 25 ◦C with 0.1 mM of reduced glutathione (GSH) and phosphate buffer
saline (50 mM, pH 7.8). The reaction was initiated by the addition of H2O2 and stopped by
cell incubation with trichloroacetic acid, for 30 min on ice. After centrifugation at 1000× g
for 10 min, the supernatant was transferred into a new tube and 0.32 M of Na2HPO4·12H2O
and 1 mM of DTNB were added to the supernatant and the color developed was measured
at 412 nm. GPx activity was expressed as the percentage of control cells.

Superoxide dismutase (SOD) activity was measured following the method of Beauchamp
and Fridovich [74]. Cell lysates were incubated in the presence of 50 mM phosphate buffer,
0.1 mM EDTA, 13 mM L-methionine, 2 µM riboflavin, and 75 mM nitro bleu tetrazolium
(NBT). The mixture was exposed to white light for 20 min. The developed blue color is
proportional to SOD activity and was measured at 560 nm. Units of SOD activity are expressed
as the amount of enzyme required to inhibit by 50% the reduction in NBT. SOD activity was
expressed as a percentage of the controls. Antioxidant enzyme activity was expressed relative
to the protein content, determined with a Bradford assay.

Measurement of Lipid Peroxidation Products: Malondialdehyde (MDA) and Conjugated
Dienes (CDs)

Oxidation of polyunsaturated fatty acid was estimated by the measurement of the final
lipid peroxidation products, such as malondialdehyde (MDA) and conjugated dienes (CDs).

Measurement of MDA level: The MDA level was measured using the method de-
scribed by Yoshioka et al. [75]. Briefly, C2C12 cell lysates were mixed with 1.5 mL of a
reactive mixture containing 20% trichloroacetic acid and 0.67% thiobarbituric acid. The
samples were incubated for 30 min in a water bath at a temperature of 95 ◦C. After cooling,
4 mL of n-butanol was added, and the mixture was centrifuged (1600× g for 10 min)
to remove undissolved materials. Then, the absorbance was measured at 532 nm. The
concentration of MDA was expressed as nmol/mg of protein.
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Measurement of CDs level: The CDs level was quantified as previously described by
Esterbauer et al. [76]. Lipids were extracted from C2C12 cell lysates using a chloroform and
methanol mixture (2:1; v/v). After vigorous agitation for 2 min, the material was subjected
to centrifugation (1200× g; 3 min), and the lower layer was aspirated, transferred into a
new test tube, and evaporated under a nitrogen atmosphere. The residue was reconstituted
with 1 mL of hexane and measured spectrophotometrically at 243 nm. The results were
expressed as nmoles hydroperoxide/mg of protein.

Measurement of Protein Oxidation Products: Carbonylated Proteins (CPs)
Carbonylated proteins (CPs) concentration was measured as described by Oliver

et al. [77]. This assay is based on the reaction between 2,4-dinitrophenylhydrazine (DNPH)
and CPs to form protein hydrazones. Briefly, C2C12 cell lysates were incubated with DNPH
(10 mM in 2.5 N HCl) in the dark for 1 h at room temperature. Then, 20% trichloroacetic
acid was added for a 10 min incubation time on ice and the tubes were centrifuged at
1600× g for 5 min. The protein pellets were washed with 10% trichloroacetic acid and
ethanol-ethyl acetate (1:1; v/v) mixture to remove free DNPH. The final pellet was dissolved
in a 6 M guanidine hydrochloride solution, and the absorbance was read at 370 nm. The
concentration of CPs was expressed in nmol/mg of protein.

2.3.7. Evaluation of Mitochondrial Function
Measurement of Transmembrane Mitochondrial Potential with DiOC6(3)

The variation in the mitochondrial transmembrane potential (∆Ψm) was detected
using 3,3′-dihexyloxacarbocyanine iodide (DiOC6(3)) [67]. After 24 h of treatment, adherent
and non-adherent C2C12 cells were pooled, stained with a solution of DiOC6(3) (Invitro-
gen/Thermo Fisher Scientific, Montigny le Bretonneux, France) at 40 nM (15 min; 37 ◦C),
and then analyzed on a BD Accuri™ C6 flow cytometer (BD Biosciences). The loss of
∆Ψm is indicated by a decrease in the green fluorescence intensity collected through
a 520 ± 10 nm band-pass filter. For each sample, 10,000 cells were acquired, and data
analyses were performed with FlowJo software.

Measurement of ATP Levels

The adenosine triphosphate (ATP) assay was performed using the ATP Biolumi-
nescence Assay Kit CLS II (ref # 11699709001, Roche, Meylan, France), according to the
manufacturer’s procedure. At the end of the treatments, cells were collected by trypsiniza-
tion, adherent and non-adherent cells were mixed, and the ATP level was determined after
cell lysis. To this end, 100 µL of cell lysis reagent was added on the cell pellets. After 10 min
of incubation at RT, a centrifugation was realized at 1000× g for 5 min. Then, 50 µL of
luciferase was added to 50 µL of each cell lysate to measure the bioluminescence of the
samples using a microplate reader (Tecan Infinite M200 Pro). A standard calibration curve
was prepared from an ATP stock solution (10.5 mg/mL) using lyophilized ATP provided
by the kit to determine the cellular ATP concentration.

Measurement of Mitochondrial Reactive Oxygen Species with MitoSOX-Red

Mitochondrial ROS production, including superoxide anion (O2
•−), was measured

by flow cytometry after staining with MitoSOX-Red (Thermo Fisher Scientific, Asheville,
NC, USA). Once in the mitochondria, this probe is oxidized and exhibits an orange/red
fluorescence (λEx max = 510 nm; λEm max = 580 nm) [78]. After 24 h of treatment, adherent
and non-adherent C2C12 cells were polled and stained with a 5 mM MitoSOX-Red solution
for 15 min at 37 ◦C and then analyzed on a BD Accuri™ C6 flow cytometer. The fluorescent
signals were collected through a 580 ± 20 nm band pass filter. For each sample, 10,000 cells
were acquired, and data analyses were performed using FlowJo software.
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2.3.8. Determination of the Peroxisomal Status
Evaluation of the Level and Topography of Abcd3 Peroxisomal Transporter by Structured
Illumination Microscopy (Apotome)

ATP binding cassette subfamily D member (Abcd3) peroxisomal transporter was
detected by indirect immunofluorescence [79,80]. Cells were cultured on glass slides
in six-well plates. At the end of the treatment, adherent and non-adherent C2C12 cells
were collected, fixed with 2% (w/v) paraformaldehyde for 15 min at RT, and then rinsed
twice with PBS. Cells were permeabilized for 30 min at RT with a PFS buffer (PBS/0.05%
saponin/10% FCS). After washing in PBS, cells were incubated (1 h, RT) with an appropri-
ate rabbit polyclonal antibody raised against Abcd3 (# 11523651, Pierce/Thermo Fisher
Scientific, Asheville, NC, USA) diluted (1/500) in PFS buffer. Cells were washed and
incubated in the dark (30 min, RT) with a goat anti-rabbit 488-Alexa antibody (Santa-Cruz
Biotechnology, Santa Cruz, CA, USA) diluted at 1/500 in PFS buffer. After washing in PBS,
cells were stained with Hoechst 33342 (1 µg/mL) and then mounted in Dako fluorescent
mounting medium (Dako, Copenhagen, Denmark). The slides were stored in the dark at
4 ◦C and examined with structured illumination microscopy (Apotome). The images were
realized with ZEN imaging software (Zeiss).

Flow Cytometric Quantification of Abcd3 Peroxisomal Transporter

For flow cytometric analyses, adherent and non-adherent C2C12 cells were collected,
fixed with 2% (w/v) paraformaldehyde diluted in PBS for 15 min at RT and then rinsed
twice with PBS. Cells were permeabilized for 30 min at RT with PFS buffer. After washing
in PBS, cells were incubated (1 h, RT) with an appropriate rabbit polyclonal antibody raised
against Abcd3 (# 11523651, Pierce/Thermo Fisher Scientific) diluted (1/500) in PFS buffer.
Cells were washed and incubated in the dark (30 min, RT) with a goat anti-rabbit 488-Alexa
antibody (Santa-Cruz Biotechnology, Santa Cruz, CA, USA) diluted at 1/500 in a PFS buffer.
After washing in PBS, cells were resuspended in PBS and immediately analyzed on a BD
Accuri™ C6 flow cytometer (BD Biosciences). The green fluorescence of 488-Alexa was
collected with a 520 ± 20 nm band-pass filter. For each sample, 10,000 cells were acquired,
and data analyses were performed using FlowJo software.

Gas Chromatography—Mass Spectrometry Analysis of Fatty Acids

Fatty acids, including very-long-chain fatty acids (VLCFA; C≥ 22) [81], were analyzed
using gas chromatography coupled to mass spectrometry (GC-MS), as previously described
by Blondelle et al. [82]. Total cellular lipids were extracted, according to the method of
Folch et al. [83]. Fatty acids were quantitated by calculating the relative response ratios to
their closest internal standard. Calibration curves were obtained with fatty acid authentic
standards processed as cell pellets.

Transmission Electron Microscopy Analysis

At the ultrastructural level, transmission electron microscopy (TEM) is the most
powerful tools to observe morphological changes caused by various physical or chemical
agents [84]. TEM was used to visualize mitochondrial and peroxisomal changes [80] in
C2C12 cells cultured for 24 h in the presence or absence of 7β-OHC (50 µM) without or
with PLSO (100 µg/mL) or α-tocopherol (400 µM) [85]. The samples were fixed for 1 h at
4 ◦C in 2.5% (w/v) glutaraldehyde diluted in a cacodylate buffer (0.1 M, pH 7.4), washed
twice in cacodylate buffer, incubated in the dark for 1 h at 21 ◦C in Tris–HCl (0.05 M, pH 9.0)
containing diaminobenzidine (DAB: 2.5 mg/mL) and H2O2 (10 µL/mL of a 3% solution);
washed in cacodylate buffer (0.1 M, pH 7.4) for 5 min at 21 ◦C; post-fixed in 1% (w/v)
osmium tetroxide diluted in cacodylate sodium (0.1 M, pH 7.4) for 1 h at 21 ◦C in the dark;
and rinsed in cacodylate buffer (0.1 M, pH 7.4). The preparations were dehydrated in
graded ethanol solutions and then embedded in Epon. Ultrathin sections were cut with
an ultramicrotome, contrasted with uranyl acetate and lead citrate, and examined using
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an HT7800 electron microscope (Hitachi, Tokyo, Japan) operating at 100 kV and equipped
with two advanced microscopy technique (AMT) cameras (Woburn, MA, USA).

Analysis of Abcd3 Peroxisomal Transporter mRNA by Real-Time Quantitative Polymerase
Chain Reaction

Total mRNA from C2C12 cells were extracted and purified using the RNeasy Mini Kit
(Qiagen, Courtaboeuf, France). Total mRNA concentration was measured with TrayCell
(Hellma, Paris, France) and the purity of the nucleic acids was controlled by the ratio of
absorbance at 260 nm and 280 nm (ratios between 1.8 and 2.2 were considered satisfactory).
One microgram of total mRNA from each sample was converted into single-stranded
cDNA using the iScript cDNA Synthesis kit (BioRad, Marne la Coquette, France) according
to the following procedure: 5 min at 25 ◦C, 20 min at 46 ◦C, and 5 min at 95 ◦C. cDNA was
then amplified using the Takyon TM Rox SYBR Master Mix dTTP Blue (Eurogentec, Liège,
Belgium) and 300 nM of forward and reverse mouse Abcd3 primer. The forward and re-
verse Abcd3 primer sequences were the following: Forward: 5′-ctgggcgtgaaatgactagattg-3′;
Reverse 5′-cttctcctgttgtgacaccattg-3′.

Thermal cycling conditions were as follows: activation of DNA polymerase (95 ◦C,
10 min), followed by 40 cycles of amplification at 95 ◦C for 15 s, 60 ◦C for 30 s, and
72 ◦C for 30 s, followed by a melting curve analysis to control for the absence of non-
specific products. Gene expression was quantified using cycle to threshold (Ct) val-
ues and normalized by the 36B4 reference gene (Forward: 5′-gcgacctggaagtccaacta-3′;
Reverse: 5′-atctgcttggagcccacat-3′). Abcd3 level was determined as fold induction of
the control.

2.4. Gas Chromatography—Mass Spectrometry Analysis of Cholesterol and Oxysterols Oxidized at
C7 (7-Ketocholesterol, 7β-Hydroxycholesterol) in the Plasma of Sarcopenic Patients

Cholesterol and oxysterols levels (7KC, 7β-OHC) were determined by GC-MS on plasma
samples from Tunisian subjects. All subjects gave their written consent before being enrolled
in this preliminary study. In total, 45 adults of 65 years and older (23 men, 22 women) were
recruited over a period of 1 month from January to February 2019. All participants were
recruited from a nursing home (Sousse, Tunisia). The Timed Up and Go (TUG) test was
used to classify patients as sarcopenic (22 subjects; age = 80 ± 4.16; female/male = 15/7)
and non-sarcopenic (23 subjects; age = 70.84 ± 4.38; female/male = 7/16). Blood samples
were collected in EDTA tubes after overnight fasting. The blood samples were centrifuged at
800× g (10 min; 4 ◦C), and the plasma was divided into several aliquots that were immediately
frozen at −80 ◦C and stored for one year until GC-MS analysis. Oxysterols were quantified
as follows: in a glass tube, 300 µL of plasma was suspended in absolute ethanol containing
BHT (50 µg/mL). 7KC (d7) and 7β-OHC (d7) (Avanti Polar Lipids, 700 Industrial Park Drive
Alabaster, AL, USA) were used as internal standards. Samples were subjected to alkaline
hydrolysis with 10 M KOH (1 h; 37 ◦C). The reaction mixture was washed with water in
order to adjust to pH 7 and sterols were extracted with hexane. After solvent evaporation,
100 µL of a mixture of pyridine/hexamethyldisilazane (HMDS)/trimethylchlorosilane (TMCS)
(3:2:1; v/v/v) (Acros Organics, Fisher Scientific, Asheville, NC, USA) was added, and samples
were incubated at 60 ◦C for 30 min to form trimethylsilyl ethers. After evaporation, the residue
was dissolved in 100 µL hexane for GC-MS analysis. GC-MS was performed using an Agilent
Technology 6890 GC equipped with an HP7683 injector and a 5973-mass selective detector
(Agilent Technologies, Santa Clara, CA, USA). Chromatography was performed using an
HP-5MS-fused silica capillary column (length: 25 m; i.d.: 0.25 mm; film thickness: 0.25 µm;
Agilent Technologies, Santa Clara, CA, USA). GC-MS conditions were as follows: carrier gas,
helium at a flow rate of 1.1 mL/min; injector temperature, 250 ◦C; oven temperature180 ◦C,
which increased at 10 ◦C/min to 260 ◦C, then at 1 ◦C/min to 280 ◦C and held for 5 min.
The mass spectrometer was operated in the electron impact mode with electron energy of
70 eV. The ion source temperature and the quadrupole temperature were 230 ◦C and 150 ◦C,
respectively. The ions used for analysis were 7β-OHC 456 m/z, 7β-OHC (d7) 463 m/z, and
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7KC 472 m/z, 7KC (d7) 479 m/z. Calibration curves were obtained using authentic standards
extracted with the method used for the samples.

2.5. Statistical Analysis

The experimental results were statistically analyzed with GraphPad Prism 8.0 soft-
ware (GraphPad Software, San Diego, CA, USA). In vitro data were expressed as the
mean ± standard deviation (SD) and compared with an ANOVA test followed by a Tukey’s
test, which allows multiple comparisons and permits to assess any interaction. Clinical data
were compared with a Student’s t-test. A p-value less than 0.05 was considered statistically
significant. The heatmap representation was realized with GraphPad Prism 8.0 software.

3. Results
3.1. Biochemical Composition of Pistacia lentiscus L. Seed Oil

The profiles of polyphenols, flavonoids, and carotenoids contents in Pistacia lentiscus L.
seed oil (PLSO) were measured using colorimetric methods and the results are shown in
Table 1. The amounts of total phenols, flavonoids, and carotenoids in PLSO are 28.50 ± 0.77
gallic acid equivalents (mg GAE/g of extract), 51.36 ± 2.30 catechin equivalent (mg CE/g
of extract), and 2083.59 ± 55.00 (mg/kg of extract), respectively.

Table 1. Total phenols, flavonoids, and carotenoids contents of Pistacia lentiscus seed oil (PLSO).

Total Phenols (mg GAE/g
of Extract)

Flavonoids (mg CE/g
of Extract) Carotenoids (mg/kg)

Pistacia lentiscus seed oil 28.50 ± 0.77 51.36 ± 2.30 2083.59 ± 55.00

GAE: gallic acid equivalent; CE: catechin equivalent. Each value represents the mean of three determinations ± standard deviation.

In PLSO, the polyphenols identified and characterized by HPLC coupled with UV
analysis were protocatechuic acid, which is a dihydroxybenzoic acid and a type of phenolic
acid, and coumarin, which belongs to a polyphenol subclass (hydroxycoumarins) (Table 2).

Table 2. Pistacia lentiscus seed oil polyphenol content (mg equivalents quercetin/100 g of oil).

Polyphenols (mg Equivalents Quercetin/100 g of Oil)

Protocatechuic acid 0.140 ± 0.001

Coumarin 0.650 ± 0.003
Polyphenols chromatogram obtained by HPLC (Supplementary Figure S2). Each value represents the mean of
three determinations ± standard deviation.

The fatty acid profile of PLSO, expressed as percentage of total fatty acids, was
determined using GC and the results are presented in Table 3. The main fatty acids
detected in PLSO were oleic acid (49.77 ± 0.12%), palmitic acid (27.20 ± 0.22%), and
linoleic acid (17.19 ± 0.10%), followed by palmitoleic acid (2.25 ± 0.01%), vaccenic acid
(1.51 ± 0.03%), and stearic acid (1.26 ± 0.01%). Likewise, PLSO also contains α-linolenic
acid, gadoleic acid, and arachidic acid but in much smaller quantities (0.12–0.39%). Minor
monounsaturated fatty acids, such as myristic acid, margaric acid, lignoceric acid, and
behenic acid, were also detected, but in trace amounts (≤0.05%).

The sterol composition of PLSO was determined using GC and spectral analysis and
the results are shown in Table 4. The most abundant detected phytosterols in PLSO were
β-sitosterol (67.25 ± 3.24 mg/100 g oil), α-epoxysitostanol (33.36 ± 1.65 mg/100 g oil),
and 24-methylene cycloartenol (16.10 ± 2.72 mg/100 g oil) followed by cycloartenol
(9.35 ± 1.49 mg/100 g oil) and campestanol (4.48 ± 0.85 mg/100 g oil). All other phy-
tosterols were present in small amounts.
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Table 3. Pistacia lentiscus seed oil fatty acids profile (g/100 g of oil; % of total fatty acids).

Fatty Acids g/100 g of Oil (*) % (**)

∑SFA 32.333 ± 0.566 28.77 ± 0.24

Myristic acid (C14:0) 0.015 ± 0.000 0.05 ± 0.01
Palmitic acid (C16:0) 30.457 ± 0.355 27.20 ± 0.22
Margaric acid (C17:0) 0.022 ± 0.003 0.05 ± 0.00

Stearic acid (C18:0) 1.527 ± 0.124 1.26 ± 0.01
Arachidic acid (C20:0) 0.041 ± 0.012 0.12 ± 0.00
Behenic acid (C22:0) 0.271 ± 0.072 0.04 ± 0.00

Lignoceric acid (C24:0) ND 0.05 ± 0.00

∑UFA 94.706 ± 2.910 71.25 ± 0.28

∑MUFA 64.736 ± 1.827 53.67 ± 0.17

Palmitoleic acid (C16:1 n−7) 2.623 ± 0.084 2.25 ± 0.01
Heptadecenoic acid (C17:1) 0.179 ± 0.058 ND

Oleic acid (C18:1 n−9) 60.183 ± 1.556 49.77 ± 0.12
Vaccenic acid (C18:1 n−7) 1.670 ± 0.073 1.51 ± 0.03
Gadoleic acid (C20:1 n−9) 0.081 ± 0.056 0.14 ± 0.01

∑PUFA 29.970 ± 1.083 17.58 ± 0.11

Linoleic acid (C18:2 n−6) 29.665 ± 0.990 17.19 ± 0.10
α-linolenic acid (C18:3 n−3) 0.305 ± 0.093 0.39 ± 0.01

∑SFA/∑UFA 0.34 ± 0.19 0.41 ± 0.86
SFA: saturated fatty acids; MUFA: monounsaturated fatty acids; PUFA: polyunsaturated fatty acids; ND: not
detected. Each value represents the mean of three determinations ± standard deviation. (*): data obtained
at the University of Monastir (Monastir, Tunisia) with (C19:0) used as internal standard; (**) data obtained at
INRAE (Dijon, France) without an internal standard. Data were obtained with the same sample of PLSO. The
corresponding chromatograms are shown in Supplementary Figure S3A,B.

Table 4. Pistacia lentiscus seed oil phytosterol profile (mg/100 g of oil).

Phytosterol (mg/100 g of Oil)

Campesterol 4.48 ± 0.85
Stigmasterol 2.69 ± 0.23
β-Sitosterol 67.25 ± 3.24

∆5-Avenasterol 3.10 ± 0.90
β-Amyrine 1.81 ± 0.19

Cycloartenol 9.35 ± 1.49
24-Methylene cycloartenol 16.10 ± 2.72

α-Epoxysitostanol 33.36 ± 1.65
Other phytosterols 16.76 ± 2.83

Total 154.89 ± 5.40
The phytosterol chromatogram obtained by GC-FID is shown in Supplementary Figure S4. Each value represents
the mean of three determinations ± standard deviation.

The α-tocopherol content of PLSO is given in Table 5. The results show that α-
tocopherol represented 68.1 ± 3.41 mg/kg of oil.

Table 5. α-Tocopherol content (mg/kg) of Pistacia lentiscus seed oil (PLSO).

α-Tocopherol (mg/kg)

Pistacia lentiscusseed oil 68.10 ± 3.41
Values are the mean ± SD of three determinations.

3.2. Evaluation of the Antioxidant Properties of Pistacia lentiscus L. Seed Oil

The antioxidant activities of PLSO were measured with different assays: DPPH, FRAP,
FIC, and KRL. The results are shown in Table 6. PLSO exhibits free radical scavenging
activity, as shown by the IC50 value (5.01 ± 0.095 mg/mL). The half-maximal inhibitory
concentration (IC50) (volume of oil required to lower the initial DPPH concentration by
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50%) was determined from the dose–response curve. This activity was less than those of
ascorbic acid (AA) used as the standard.

Table 6. Antioxidant activity of Pistacia lentiscus seed oil (PLSO).

IC50 Values (mg/mL) (Trolox Equivalent)

Samples DPPH FRAP Iron Chelating (FIC) KRL

PLSO 5.010 ± 0.095 1.15 ± 0.23 5.61 ± 0.14 4440.00 ± 493.60

AO − − − 360.80 ± 153.60

EDTA
(standard) − − 0.60 ± 0.09 −

AA (standard) 0.810 ± 0.270 0.41 ± 0.16 − −
α-tocopherol − − − 0.94 ± 0.01

Each value represents the mean of three determinations ± standard deviation. IC50: half-maximal inhibitory
concentration; PLSO: Pistacia lentiscus L. seed oil; AO: argan oil, EDTA: ethylenediaminetetraacetic acid; AA:
ascorbic acid; DPPH: 2,2-diphenyl-1-picrylhydrazyl; FIC: Ferrous Iron Chelating FRAP: Ferric Reducing Antioxi-
dant Power; KRL: Kit Radicaux Libres. For the KRL test, data are presented in Trolox equivalent: 1 mL of PLSO is
equivalent to X moles of Trolox (value shown in the table).

The reducing power of PLSO measured by FRAP assay was investigated along with
AA used as the standard reference. The IC50 value was 1.15 ± 0.23 mg/mL (Table 6). In
addition, an iron-chelating activity evaluated with the FIC assay was observed in PLSO
with an IC50 of 5.61 ± 0.14 mg/mL (Table 6).

The antioxidant properties of α-tocopherol, PLSO, and Argan Oil Roasted Agadir
(AO) were evaluated with the KRL test. For the PLSO and AO, the antioxidant activities
were expressed in Trolox equivalent (mole Trolox/mL of oil). For the KRL test, we used
α-tocopherol as the positive control and AO stored for 5 years at 4 ◦C in the dark as the
negative control (the corresponding AO freshly prepared has been previously characterized
and described and was strongly antioxidant [86]). PLSO showed a higher KRL antioxidant
status than the 5 years stored AO. KRL values were 4440.00 ± 493.60 and 360.8 ± 153.6
(Trolox equivalent) in PLSO and AO, respectively (Table 6), illustrating that after 5 years of
storage, AO shows a notable decrease in antioxidant activity.

3.3. Evaluation of 7-Ketocholesterol and 7β-Hydroxycholesterol Plasma Levels in Sarcopenic and
Non-Sarcopenic Subjects

As several studies support that 7KC and 7β-OHC, mainly resulting from cholesterol
auto-oxidation, are involved in the development of major age-related diseases [31,87], these
oxysterols as well as cholesterol were measured by GC-MS in the plasma of non-sarcopenic
and sarcopenic subjects. In sarcopenic patients, the 7β-OHC level was significantly higher
than in non-sarcopenic subjects whereas no significant difference in 7KC and cholesterol
level was observed (Supplementary Figure S5). This plasma increase in 7β-OHC could
favor the accumulation of this oxysterol in skeletal muscle. Indeed, in male Wistar rats in
response to chronic alcohol feeding, there were significant increases in the soleus (type I
fiber, glycolytic, aerobic activity) of 7α-OHC, 7β-OHC, and 7KC, whereas in the plantaris
(type II fiber, anaerobic activity) only 7β-OHC was increased [88]. Furthermore, in zebra
fish, 25-hydroxycholesterol alters muscle morphology and reduces mobility; a similar effect
can be envisaged with 7β-OHC [89]. Based on this previous works, and knowing that
lipotoxicity (defined as an abnormal accumulation of lipids in tissues such as skeletal
muscles) leads to metabolic and functional dysfunctions [90], it is important to clarify
whether 7β-OHC can have cytotoxic effects on skeletal muscle cells, and if so, to find
treatments to counteract this toxicity. To evaluate this hypothesis, the C2C12 murine
myoblast model cultured in the presence of 7β-OHC in the presence or absence of PLSO
was used.
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3.4. Evaluation of the Effects of Pistacia lentiscus L. Seed Oil on 7β-Hydroxycholesterol-Induced
Morphological Changes and Cell Death

At first, initial experiments were performed on C2C12 cells to evaluate whether PLSO
and 7β-OHC alone induce cell death on murine C2C12 myoblast cells. To this end, C2C12
were incubated with various concentrations of PLSO (5 to 3200 µg/mL) for 24 h and cell
viability was determined using an MTT assay. As shown in Supplementary Figure S6A,
no cytotoxic effects of PLSO (5–800 µg/mL) were observed compared to untreated cells;
however, in the presence of PLSO used at 1600 µg/mL and 3200 µg/mL, the percentage of
viable cells decreased from 50 to 70%, respectively.

To define whether 7β-OHC was able to influence C2C12cell viability, C2C12 cells
were exposed to various concentrations of 7β-OHC (12.5 to 200 µM) for 24 h. In the
presence of 7β-OHC (50 µM), cell viability significantly decreased to 48.4% compared to
untreated cells (Supplementary Figure S6B). Based on these results, PLSO (100 µg/mL)
and 7β-OHC (50 µM) were selected to perform further experiments.

Thus, C2C12 cells were incubated for 24 h with or without 7β-OHC (50 µM) in the
presence or absence of PLSO (100 µg/mL) or α-tocopherol (400 µM) used as positive
control for cytoprotection. PLSO and α-tocopherol were added 2 h prior 7β-OHC. Based
on the observations performed by phase-contrast microscopy, morphological changes in
C2C12 cells were observed under treatment with 7β-OHC. In 7β-OHC-treated C2C12 cells,
compared to untreated cells, an increased number of round cells floating in the culture
medium were observed, reflecting a loss of cell adhesion and an induction of cell death; a
reduced number of adherent cells was also observed This effect was remarkably corrected
when the cells were simultaneously incubated with PLSO (100 µg/mL) or α-tocopherol
(400 µM), indicating that PLSO and α-tocopherol provided protection against 7β-OHC-
induced loss of cell adhesion and cell death (Supplementary Figure S7A). By phase-contrast
microscopy, no effects on cell adhesion and cell growth of the different vehicles used were
observed (Supplementary Figure S7B).

The cytoprotective effect of PLSO (100 µg/mL) was confirmed with the MTT assay. As
shown in Figure 1A, the percentage of MTT-positive cells, reflecting metabolically active
cells, was significantly decreased in the 7β-OHC (50 µM)-treated cells compared to the
control. Noteworthy, when PLSO (100 µg/mL) was associated with 7β-OHC (50 µM), the
percentage of MTT-positive cells was significantly increased: this demonstrates that PLSO
attenuates 7β-OHC-induced cell death. Similar results were obtained with α-tocopherol.

To further investigate the effect of PLSO on plasma membrane permeability and/or
cell death, staining with propidium iodide (PI) was used. As illustrated in Figure 1B,
the percentage of PI-positive cells was significantly increased after exposure to 7β-OHC
(50 µM), indicating that this oxysterol caused altered plasma membrane and/or cell death
in C2C12 cells. In the presence of PLSO (100 µg/mL) or α-tocopherol (400 µM) associated
with 7β-OHC (50 µM), the percentage of PI-positive cells was significantly decreased
compared to 7β-OHC-treated cells. Comparatively to untreated cells, no effect of PLSO
(100 µg/mL) or α-tocopherol (400 µM) alone was observed on plasma membrane perme-
ability. Altogether, these data show that PLSO as well as α-tocopherol strongly attenuate
7β-OHC-induced C2C12 cell death.

3.5. Evaluation of the Effects of Pistacia lentiscus L. Seed Oil on 7β-Hydroxycholesterol-Induced
Oxidative Stress

To study the effect of PLSO (100 µg/mL) against 7β-OHC (50 µM)-induced oxidative
stress, we measured the production of reactive oxygen species (ROS), lipid peroxidation
products (MDA, CDs), carbonylated proteins (CPs), and antioxidant enzyme activities
(SOD, GPx) (Figure 2).
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Figure 1. Effect of Pistacia lentiscus L. seed oil (PLSO) and 7β-hydroxycholesterolin C2C12 cell viability. C2C12
cells were incubated for 24 h with or without 7β-OHC (50 µM) in the presence or absence of PLSO (100 µg/mL) or
α-tocopherol (400 µM). The protective effect of PLSO and α-tocopherol against 7β-OHC-induced cell death was evaluated
with the MTT assay (A) and by flow cytometry after staining with propidium iodide (PI) (B). Data are the mean ± SD
of two independent experiments performed in triplicate. A multiple comparative analysis between the groups, tak-
ing into account the interactions, was carried out using an ANOVA test followed by a Tukey’s test. A p-value less
than 0.05 was considered statistically significant. The statistically significant differences between the groups, which
are indicated by different letters, take into account the vehicle used. a: comparison versus control; b: comparison
versus ETOH (0.5%); c: comparison versus DMSO (0.125%); d: comparison versus ETOH (0.1%); e: comparison versus
(ETOH (0.1%) + DMSO (0.125%)); f: comparison versus α-toco (400 µM); g: comparison versus PLSO (100 µg/mL); h: com-
parison versus 7β-OHC (50 µM); i: comparison versus 7β-OHC (50 µM) + α-toco (400 µM). No significant differences
were observed between the untreated (control) and vehicle-treated cells: EtOH (0.5%), DMSO (0.125%), EtOH (0.1%), and
EtOH (0.1%) +DMSO (0.125%).

ROS overproduction was quantified by flow cytometry with DHE. As shown in
Figure 2A, treatment with 7β-OHC induced a significant increase in the percentage of
DHE-positive cells compared to the untreated (control) and vehicle-treated (EtOH 0.1%)
cells; this increase in ROS production was significantly attenuated when 7β-OHC was
associated with PLSO or α-tocopherol.

In addition, the levels of MDA, CDs, and CPs, which are the main products of lipid
and protein oxidation, respectively, were significantly higher in 7β-OHC-treated cells
compared to untreated (control) or vehicle-treated (EtOH 0.1%) cells; these increases were
significantly reduced when the cells were incubated with 7β-OHC in the presence of PLSO
or α-tocopherol, comparatively to 7β-OHC (Figure 2B–D).

In another hand, superoxide dismutase (SOD) and glutathione peroxidase (GPx) ac-
tivities were significantly decreased in 7β-OHC-treated C2C12 cells when compared with
untreated (control) and vehicle-treated (EtOH 0.1%) cells; these decreases were also signifi-
cantly attenuated when 7β-OHC was associated with PLSO or α–tocopherol (Figure 3).
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Figure 2. Effect of Pistacia lentiscus L. seed oil (PLSO) on 7β-hydroxycholesterol-induced overproduction of reactive
oxygen species (ROS) and lipid and protein oxidation products in C2C12 cells. C2C12 cells were incubated for 24 h
with or without 7β-OHC (50 µM) in the presence or absence of PLSO (100 µg/mL) or α-tocopherol (400 µM). ROS
overproduction was measured by flow cytometry after staining with dihydroethidium (DHE) (A). Lipid and protein
oxidation products were determined with malondialdehyde (MDA) (B), conjugated dienes (CDs) (C) and carbonylated
proteins (CPs) levels (D). Data are presented as the mean ± SD of two independent experiments performed in tripli-
cate. A multiple comparative analysis between the groups, taking into account the interactions, was carried out using
an ANOVA test followed by a Tukey’s test. A p-value less than 0.05 was considered statistically significant. The sta-
tistically significant differences between the groups, which are indicated by different letters, take into account the ve-
hicle used. a: comparison versus control; b: comparison versus ETOH (0.5%); c: comparison versus DMSO (0.125%);
d: comparison versus ETOH (0.1%); e: comparison versus (ETOH (0.1%) + DMSO (0.125%)); f: comparison versus
α-toco (400 µM); g: comparison versus PLSO (100 µg/mL); h: comparison versus 7β-OHC (50 µM); i: comparison versus
7β-OHC (50 µM) + α-toco (400 µM). No significant differences were observed between the untreated (control) and vehicle-
treated cells.
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Figure 3. Effect of Pistacia lentiscus L. seed oil (PLSO) and 7β-hydroxycholesterol on antioxidant enzyme activities
(SOD, GPx) in C2C12 cells. C2C12 cells were incubated for 24 h with or without 7β-OHC (50 µM) in the presence or
absence of PLSO (100 µg/mL) or α-tocopherol (400 µM). The measurement of superoxide dismutase (SOD) activity (A)
and glutathione peroxidase (GPx) activity (B) were realized. Data are presented as the mean ± SD of two independent
experiments performed in triplicate. A multiple comparative analysis between the groups, taking into account the
interactions, was carried out using an ANOVA test followed by a Tukey’s test. A p-value less than 0.05 was considered
statistically significant. The statistically significant differences between the groups, which are indicated by different letters,
take into account the vehicle used. a: comparison versus control; b: comparison versus ETOH (0.5%); c: comparison versus
DMSO (0.125%); d: comparison versus ETOH (0.1%); e: comparison versus (ETOH (0.1%) + DMSO (0.125%)); f: comparison
versus α-toco (400 µM); g: comparison versus PLSO (100 µg/mL); h: comparison versus 7β-OHC (50 µM); i: comparison
versus 7β-OHC (50 µM) + α-toco (400 µM). No significant differences were observed between the untreated (control) and
vehicle-treated cells.

3.6. Evaluation of the Effects of Pistacia lentiscus L. Seed Oil on 7β-Hydroxycholesterol-Induced
Mitochondrial Damages

To evaluate the effect of PLSO (100 µg/mL) against 7β-OHC (50 µM)-induced mito-
chondrial dysfunction, we measured the mitochondrial transmembrane potential (∆Ψm)
after staining with DiOC6(3), the overproduction of ROS at the mitochondrial level after
staining with MitoSOX-Red, as well as the ATP level by bioluminescence (Figure 4).

Under treatment with 7β-OHC, and comparatively to the untreated (control) and
vehicle-treated (EtOH 0.1%) cells, a marked decrease in ∆Ψm, revealed by an increase
in the percentage of cells with depolarized mitochondria (DiOC6(3)-negative cells), was
observed (Figure 4A). In addition, a reduction in ATP production was observed under
treatment with 7β-OHC (Figure 4B). With MitoSOX-Red, a marked increase in MitoSOX-
Red-positive cells was revealed, confirming a disturbed oxidative phosphorylation and
the induction of mitochondrial damage under treatment with 7β-OHC (Figure 4C). Inter-
estingly, in the presence of PLSO or α-tocopherol, the loss of ∆Ψm, decrease in ATP, as
well as overproduction of mitochondrial ROS was strongly attenuated (Figure 4A–C). In
the presence of MitoQ (1 µM), which blocks ROS overproduction at the mitochondrial
level, a slight but not significant cytoprotective effect was observed with the FDA test
whereas a significant and marked cytoprotection was found with PLSO and α-tocopherol
(Supplementary Figure S8), supporting (i) that mitochondrial targeting with an antioxidant
is not sufficient to prevent 7β-OHC-induced cell death; and (ii) that PLSO and α-tocopherol,
which act at the mitochondrial levels, also have other cellular targets.
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Figure 4. Effect of Pistacia lentiscus L. seed oil (PLSO) on 7β-hydroxycholesterol-induced mitochondrial damage in
C2C12 cells. C2C12 cells were incubated for 24 h with or without 7β-OHC (50 µM) in the presence or absence of PLSO
(100 µg/mL) or α-tocopherol (400 µM). Mitochondrial transmembrane potential (∆Ψm) (A), mitochondrial ATP produc-
tion (B), and mitochondrial production of superoxide anion(O2

•−) (C) were measured. The data are presented as the
mean ± SD of two independent experiments performed in triplicate. A multiple comparative analysis between the groups,
taking into account the interactions, was carried out using an ANOVA test followed by a Tukey’s test. A p-value less than 0.05
was considered statistically significant. The statistically significant differences between the groups, which are indicated by
different letters, take into account the vehicle used. a: comparison versus control; b: comparison versus ETOH (0.5%); c: com-
parison versus DMSO (0.125%); d: comparison versus ETOH (0.1%); e: comparison versus (ETOH (0.1%) + DMSO (0.125%));
f: comparison versus α-toco (400 µM); g: comparison versus PLSO (100 µg/mL); h: comparison versus 7β-OHC (50 µM);
i: comparison versus 7β-OHC (50 µM) + α-toco (400 µM). No significant differences were observed between the untreated
(control) and vehicle-treated cells.

3.7. Evaluation of the Effects of Pistacia lentiscus L. Seed Oil on 7β-Hydroxycholesterol-Induced
Peroxisomal Damages

Abcd3 (ATP binding cassette subfamily D member) is a major component of the per-
oxisomal membrane and a common constituent of peroxisomes in different tissues [91,92]
(Supplementary Figure S9). This peroxisomal transporter is frequently used to evalu-
ate the peroxisomal mass, thus providing information on peroxisome biogenesis [79].
The effect of 7β-OHC (50 µM) with and without PLSO (100 µg/mL) and α-tocopherol
(400 µM) was determined on the topography and expression of Abcd3 revealed by indi-
rect immunofluorescence using structured illumination microscopy (Apotome) and flow
cytometry (Figure 5).
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Figure 5. Effect of Pistacia lentiscus L. seed oil (PLSO) and 7β-hydroxycholesterol on the expres-
sion of the major peroxisomal membrane transporter (Abcd3) used to evaluate the peroxisomal
topography and mass. C2C12 cells were incubated for 24 h with or without 7β-OHC (50 µM) in the
presence or absence of PLSO (100 µg/mL) or α-tocopherol (400 µM). The protective effect of PLSO
and α-tocopherol (400 µM) against 7β-OHC were analyzed by structured illumination microscopy
(apotome) (A) and flow cytometry (B). The white arrows point towards cells with an accumulation of
peroxisomes in a particular area of the cytoplasm. The data are presented as the mean ± SD of two in-
dependent experiments performed in triplicate. A multiple comparative analysis between the groups,
taking into account the interactions, was carried out using an ANOVA test followed by a Tukey’s
test. A p-value less than 0.05 was considered statistically significant. The statistically significant
differences between the groups, which are indicated by different letters, take into account the vehicle
used. a: comparison versus control; b: comparison versus ETOH (0.5%); c: comparison versus DMSO
(0.125%); d: comparison versus ETOH (0.1%); e: comparison versus (ETOH (0.1%) + DMSO (0.125%));
f: comparison versus α-toco (400 µM); g: comparison versus PLSO (100 µg/mL); h: comparison versus
7β-OHC (50 µM); i: comparison versus 7β-OHC (50 µM) + α-toco (400 µM). In addition, no significant
differences were observed between the untreated (control) and vehicle-treated cells.
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Using structure illumination microscopy (Figure 5A), a high density of peroxisomes
was observed in the cytoplasm of untreated (control) cells, PLSO-, and α-tocopherol-treated
cells. An important decrease in peroxisomal density was revealed under treatment with
7β-OHC. In addition, the peroxisomes were homogeneously distributed in the cytoplasm
of the control and vehicle-treated cells as well as of PLSO- and α-tocopherol-treated cells,
whereas they were preferentially amassed in a particular area of the cytoplasm in 7β-OHC-
treated cells. When the cells were cultured in the presence of 7β-OHC associated with PLSO
or α-tocopherol, the aspect of the peroxisome in the cytoplasm evocate those of untreated
(control) and vehicle-treated cells, although the peroxisomal density remains lower.

Under treatment with 7β-OHC, the decrease in peroxisomal density observed by
microscopy suggests a decrease in peroxisomal biogenesis. To confirm this hypothesis,
flow cytometric analyses were performed (Figure 5B). The analysis of Abcd3 levels in
C2C12 cells did not reveal any difference between untreated (control) and α-tocopherol-
treated cells; a slight increase was observed in the presence of PLSO. Under treatment with
7β-OHC, a significant increase in the percentage of cells with a reduced Abcd3 level was
observed. Interestingly, this decreased expression of Abcd3 was significantly inhibited
when 7β-OHC was combined with PLSO or α-tocopherol.

With regard to peroxisome function, peroxisomal damages (alteration of peroxisomal
β-oxidation) (Supplementary Figure S9) can favor the accumulation of very-long-chain
fatty acids (VLCFA; C ≥ 22) [81], which can contribute to amplify cell dysfunctions [93].
Therefore, we determined the effect of 7β-OHC (50 µM) associated or not with PLSO
(100 µg/mL) or α-tocopherol (400 µM) on VLCFA levels in C2C12 cells. In untreated cells
(control) and the vehicle, no significant differences were found; similar levels of VLCFA
(C22:0, C24:0, C24:1 n−9, C26:0, and C26:1 n−9) were observed (Figure 6). When C2C12cells
were exposed to 7β-OHC, a significant increase in VLCFA was detected, and the latter was
significantly reduced when 7β-OHC was associated with PLSO or α-tocopherol (Figure 6).

However, enhanced ELOVL1 activity could also be involved in the increased level
of VLCFA. At the moment, seven enzymes termed ELOVL 1–7 (Elongation of Very-Long-
Chain Fatty Acid), which are localized in the endoplasmic reticulum, have been identified.
ELOVL1 is suggested to control VLCA synthesis up to C26:0. This is the most potent elon-
gase for C24:0 and C26:0, whereas, depending on the cell type considered, similar elongase
activity have been reported with ELOVL3 and ELOVL6 [94,95]. Our results also support
an increase in the elongase activity index (which could correspond to ELOVL1, 3, and 6
activity; ratio (C24:0/C22:0), and ratio (C26:0/C22:0)) under treatment with 7β-OHC;
these different elongase activity indexes were also strongly attenuated when 7β-OHC was
associated with PLSO or α-tocopherol (Figure 7).

In addition, as shown by qRT-PCR, the important decreases in the Abcd3 mRNA
levels, observed under treatment with 7β-OHC (50 µM), were prevented by treatment with
PLSO (100 µg/mL), as well as α-tocopherol (400 µM) (Figure 8).

3.8. Evaluation by Transmission Electron Microscopy of the Effects of Pistacia lentiscus L. Seed Oil
on 7β-Hydroxycholesterol-Induced Cellular, Mitochondrial, and Peroxisomal Changes

Transmission electron microscopy analysis was realized to study the morphological
changes in C2C12 myoblasts (Figures 9 and 10).
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Figure 6. Effect of 7β-hydroxycholesterol with and without Pistacia lentiscus L. seed oil (PLSO) on very-long-chain fatty
acid (VLCFA) levels. C2C12 cells were incubated for 24 h with or without 7β-OHC (50 µM) in the presence or absence
of PLSO (100 µg/mL) or α-tocopherol (400 µM). The level of VLCFA (C ≥ 22) was determined by GC-MS: C22:0 (A),
C22:1 n−9 (B), C24:0 (C), C24:1 n−9 (D), C26:0 (E) and C26:1 n−9 (F). Data are the mean ± SD of two independent
experiments. A multiple comparative analysis between the groups, taking into account the interactions, was carried out
using an ANOVA test followed by a Tukey’s test. A p-value less than 0.05 was considered statistically significant. The
statistically significant differences between the groups, which are indicated by different letters, take into account the
vehicle used. a: comparison versus control; b: comparison versus ETOH (0.5%); c: comparison versus DMSO (0.125%);
d: comparison versus ETOH (0.1%); e: comparison versus (ETOH (0.1%) + DMSO (0.125%)); f: comparison versus α-toco
(400 µM); g: comparison versus PLSO (100 µg/mL) ; h: comparison versus 7β-OHC (50 µM); i: comparison versus 7β-OHC
(50 µM) + α-toco (400 µM). No significant differences were observed between the untreated (control) and vehicle-treated cells.
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Figure 7. Effect of Pistacia lentiscus L. seed oil (PLSO) and 7β-hydroxycholesterol on elongase activities.
C2C12 cells were incubated for 24 h with or without 7β-OHC (50 µM) in the presence or absence of PLSO
(100 µg/mL) or α-tocopherol (400 µM). The levels of C22:0, C24:0, and C26:0 were determined by GC-MS,
and the corresponding elongase activity index, which could correspond to ELOVL1, 3, and 6 activity (ratio
(C24:0/C22:0) (A) and ratio (C26:0/C22:0) (B)) were calculated. Data are the mean± SD of two independent
experiments. A multiple comparative analysis between the groups, taking into account the interactions,
was carried out using an ANOVA test followed by a Tukey’s test. A p-value less than 0.05 was considered
statistically significant. The statistically significant differences between the groups, which are indicated by
different letters, take into account the vehicle used. a: comparison versus control; b: comparison versus
ETOH (0.5%); c: comparison versus DMSO (0.125%); d: comparison versus ETOH (0.1%); e: comparison
versus (ETOH (0.1%) + DMSO (0.125%)); f: comparison versus α-toco (400 µM); g: comparison versus PLSO
(100 µg/mL); h: comparison versus 7β-OHC (50 µM); i: comparison versus 7β-OHC (50 µM) + α-toco
(400 µM). No significant differences were observed between the untreated (control) and vehicle-treated cells.

Figure 8. Effects of 7β-hydroxycholesterol with and without Pistacia lentiscus L. on Abcd3 gene ex-
pression. C2C12 cells were incubated for 24 h with or without 7β-OHC (50 µM) in the presence or absence
of PLSO (100 µg/mL) or α-tocopherol (400 µM). The mRNA expression of Abcd3 was evaluated by
qRT-PCR. Data shown are representative of three independent experiments. A multiple comparative
analysis between the groups, taking into account the interactions, was carried out using an ANOVA test
followed by a Tukey’s test. A p-value less than 0.05 was considered statistically significant. The statistically
significant differences between the groups, which are indicated by different letters, take into account the ve-
hicle used. a: comparison versus control; b: comparison versus ETOH (0.5%); c: comparison versus DMSO
(0.125%); d: comparison versus ETOH (0.1%); e: comparison versus (ETOH (0.1%) + DMSO (0.125%));
f: comparison versus α-toco (400 µM); g: comparison versus PLSO (100 µg/mL); h: comparison versus
7β-OHC (50 µM); i: comparison versus 7β-OHC (50 µM) + α-toco (400 µM). No significant differences
were observed between the untreated (control) and vehicle-treated cells.
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Figure 9. Analysis of morphological changes in C2C12 myoblasts using transmission electron
microscopy. C2C12 cells were incubated for 24 h with or without 7β-OHC (50 µM) in the presence or
absence of PLSO (100 µg/mL) or α-tocopherol (400 µM). In untreated cells (control) (A), α-tocopherol
(400 µM)-treated cells (C), and PLSO (100 µg/mL)-treated cells (E), cells have a fusiform shape, with
large round central nuclei containing several nucleoli; they have several small empty vacuoles and
morphologically normal mitochondria and peroxisomes. In the 7β-OHC (50 µM)-treated cells (B),
cells have an abnormal morphology: they have a round shape, irregular nuclei, and a lot of cytoplas-
mic vacuoles containing cell debris, as well as altered mitochondria and peroxisomes. In (7β-OHC +
α-tocopherol and 7β-OHC+ PLSO)-treated cells, mainly morphologically normal cells were observed;
they contain empty vacuoles and have mainly mitochondria and peroxisomes resembling those
present in the control cells (D–F). No differences were observed between the control (A), α-tocopherol-
treated (C), and PLSO-treated cells (E). Representative TEM images of the C2C12 myoblasts cultured
in the presence of the vehicles are shown in Supplementary Figure S10.
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Figure 10. Visualization of the mitochondria and peroxisomes in C2C12 myoblasts by transmis-
sion electron microscopy. C2C12 cells were incubated for 24 h with or without 7β-OHC (50 µM) in
the presence or absence of PLSO (100 µg/mL) or α-tocopherol (400 µM). In untreated cells (control)
(A,B), α-tocopherol (400 mM)-treated cells (C,D), and PLSO (100 µg/mL)-treated cells (E,F), numer-
ous mitochondria with clear cristae as well as round and regular peroxisomes were detected. In
7β-OHC (50 µM)-treated cells (G,H), irregular mitochondria with an increased size, reduced matrix
density, and disrupted cristae, as well as peroxisomes with abnormal sizes and shapes were visualized.
In (7β-OHC + α-tocopherol)-treated (I,J) and (7β-OHC+ PLSO) (K,L)-treated cells, mainly mitochon-
dria and peroxisomes morphologically similar than those present in the control cells were observed.
The white arrows point towards mitochondria and the yellow arrows point towards peroxisomes.
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Control cells (Figure 9A), α-tocopherol (400 mM)-treated cells (Figure 9C), and PLSO
(100 µg/mL)-treated cells (Figure 9E) have a well-preserved cell morphology with a
fusiform shape and a large central round nucleus containing some nucleoli; in the cy-
toplasm, they have small empty vacuoles and morphologically normal mitochondria and
peroxisomes. Compared to C2C12 control cells, 7β-OHC (50 µM)-treated cells showed
significant alterations in cell morphology: most often round cells with irregular nuclei were
observed, they contained several cytoplasmic vacuoles associated with a lot of cell debris
as well as altered mitochondria and peroxisomes (Figure 9B). This disturbed morphology
was attenuated by α-tocopherol (400 mM) and PLSO (100 µg/mL) treatment (Figure 9D,F).
α-Tocopherol- and PLSO-treated cells (Figure 9C,E) have a similar morphology than con-
trol cells (Figure 9A). No morphological differences were observed between the control
(Supplementary Figure S10A) and vehicle-treated cells (Supplementary Figures S10B,D).

Moreover, TEM observation of the C2C12 cells allowed us to highlight the essential
cellular constituents, namely, mitochondria and peroxisomes. Control cells, α-tocopherol
(400 mM)-treated cells, and PLSO (100 µg/mL)-treated cells have morphologically normal
mitochondria with numerous cristae as well as round peroxisomes that are homogeneous
in size in the range of 0.4 ± 0.1 µm (Figure 10A,F). However, major changes in the size and
shape of these organelles were observed when C2C12 cells were treated with 7β-OHC; thus,
several mitochondria with abnormal sizes and shapes were observed: larger size, reduced
matrix density, and disrupted cristae (Figure 10G). In addition, several peroxisomes were
detected in numerous cytoplasmic vacuoles, evocating a pexophagy process (Figure 10G,H).
It is noteworthy that these changes in mitochondrial and peroxisomal topography and/or
morphology were attenuated when 7β-OHC was combined with α-tocopherol (400 µM) or
PLSO (100 µg/mL) (Figure 10I,L).

Indeed, we note that the mitochondria returned to their rounded shapes and the
peroxisomes present in the vacuoles were rarely detected. Altogether, our data by TEM
confirm that 7β-OHC induced several mitochondrial and peroxisomal changes, and that
α-tocopherol and PLSO have strong cytoprotective effects on these organelles.

4. Discussion

Aging is characterized by the variable decline in many biological functions, which can
seriously alter the life quality of elderly people. Among the major alterations occurring
during the aging process is sarcopenia, which corresponds to a loss of mass, quality, and
strength of skeletal muscles [2,3]. Sarcopenia is generally accompanied by an impairment in
muscle regeneration and a rupture of RedOx homeostasis, leading to ROS overproduction,
which may, in turn, lead to the loss of muscle function [96]. ROS overproduction can favor
lipid peroxidation, and increased levels of cholesterol auto-oxidation products, such as
7KC and 7β-OHC, are known to contribute to the development of several age-related
diseases [31,81]. Interestingly, low physiological levels of ROS help maintain and heal
skeletal muscle [97]; yet, tissue repair delay is caused by an excessive amount of ROS in the
muscles, resulting in worsening the injury and creating atrophy [98]. Among the factors
known to increase antioxidant defense and protect muscle from harmful effects of oxidative
stress is nutrition. In that regard, in the current study, PLSO has been shown to contain
a lot of compounds with antioxidant properties and this edible Mediterranean oil has a
protective and antioxidant activity against 7β-OHC-induced cytotoxicity in C2C12 skeletal
muscle cells. The data obtained are summarized in a heatmap (Figure 11).

Plants are an important source of bioactive molecules with therapeutic potential [99].
The genus Pistacia is a particular genus of the Anacardiaceae family due to its dioeciousness
and naked flowers [100]. The species Pistacia lentiscus L. is a medicinal plant that grow wild
in forests, low mountains, and in all types of soil [101]. Despite its limited distribution in
the world, Pistacia lentiscus L. is known worldwide for several therapeutic properties, such
as antioxidant, anti-inflammatory, anti-proliferative, and neuro-protective effects [48–51].
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Figure 11. Heatmap representation of the toxicity of 7β-hydroxycholesterol and of the cytoprotective
effects of PLSO and α-tocopherol on C2C12 cells. Heatmap graded from green (little or no effect: 0)
to red (maximum effect: 100).

Using C2C12 cells cultured in the presence of 7β-OHC associated with many age-
related diseases [31], our results show why there is interest in PLSO to prevent skeletal
muscle cell dysfunction in a pro-oxidant environment. The results obtained establish
that PLSO strongly attenuates the toxicity of 7β-OHC against which few cytoprotective
molecules or mixtures of molecules have been identified [28]. Noteworthy, PLSO, which
has a high nutritional value based on its biochemical profile established in this study, has a
cytoprotective effects against 7β-OHC, which is of the same order of magnitude as that
observed with α-tocopherol used at high concentration.

In the present study, we report that PLSO from Tunisia (area of Tabarka) has comparable
amounts of total phenolics than PLSO from Algeria and Morocco (28.50 ± 0.77 mg/GAE/g
vs. 25.15 ± 1.01 mg/GAE/g and 22.61 ± 1.42 mg/GAE/g, respectively) [102,103]. This
similarity may be due to the fact that these three regions are in the same bioclimatic area.
However, the flavonoids content of the PLSO used in this study was higher than the PLSO
from Morocco [103].

The PLSO from Tunisia also showed a notable quantity of carotenoids. Thus, we could
consider that PLSO is a great natural source for these pigments when compared to virgin
olive oil (1.58–2.84 mg/kg of oil) [53]. These pigments, mainly β-carotene, are precursors
of vitamin A. Dietary carotenoids are antioxidants thought to provide health benefits in
the prevention of cardiovascular diseases and cancer [104,105]. In addition, β-carotene
given to 8-week-old male mice by oral gavage for 7 or 14 days was able to maintain and
enhance skeletal muscle mass by increasing the expression level of insulin-like growth
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factor-1 (IGF-1) [106]. In addition, fatty acids are considered a genetic code of oils; they
are major components of most naturally occurring lipids in plants. The analysis of the
fatty acid profile of PLSO from Tunisia is in accordance with the finding of Brahmi et al.,
(fatty acid profile expressed in g/100 g of PLSO) [102] and Dhifi et al., (fatty acid profile
expressed in %) [107]. It has been reported that the most abundant unsaturated fatty acids
present in PLSO were oleic acid (OA; C18:1 n−9) and linoleic acid (LA; C18:2 n−6). OA
is reputed for its effect on oils oxidative stability and its nutritional value [108]. OA also
has strong antioxidant activities against 7-KC-induced cell death on murine microglial
BV-2 cells [55,109]. LA is also an essential fatty acid and a precursor of polyunsaturated
fatty acids with longer chains, which enhances the nutritional value of the vegetable
shortening [110]. Lee et al., (2009) indicated that unsaturated fatty acids, especially OA and
LA, enhanced the proliferation of C2C12 skeletal muscle cells [111]. In the current study,
palmitic acid (C16:0) was the predominant saturated fatty acid found in PLSO, which is
consistent with previous studies [107,112]. According to the literature, PLSO presents a
higher palmitic acid content than olive oil (9.85–20.30%) and other vegetable oils, such as
milk thistle seed oil (6.25–13.06%) and argan oil (12.11–13.05%) [62]. This saturated fatty
acid has been thought to increase the total cholesterol, and specifically the LDL cholesterol
levels, although a previous study demonstrated that high consumption of palmitic acid
in healthy volunteers does not increase the cholesterol if it is combined with LA, as is the
case in PLSO [113]. Noteworthy, the low saturated/unsaturated fatty acids ratio (0.404%)
indicates that PLSO contains a huge amount of unsaturated fatty acids, which gives it
valuable nutritional and dietetic value as well as curative properties [107].

The PLSO sterol profile also showed that β-sitosterol is the most abundant phytosterol
(67.25± 3.24 mg/100 g of oil) followed byα-epoxysitostanol and 24-methylene cycloartenol.
β-sitosterol was also the most representative sterol in the PLSO harvested from different
Tunisian locations but the amount of this sterol changed according to geographic origin
(99.61 mg/100 g of oil in Korbousand; 389.50 mg/100 g of oil in Rimel) [52]. A lower amount
of β-sitosterol was found in Algerian PLSO (58.79± 1.19 mg/100 g of oil) [102]. β-sitosterol
is one of the most abundant dietary phytosterols that have potential health benefits. Several
experimental studies demonstrated that β-sitosterol could regulate the glucose and lipid
metabolism [114] and inhibit inflammation and oxidative stress [115,116]. In addition, an
in vitro study showed that C2C12 skeletal muscle cells treatment by β-sitosterol improves
mitochondrial biogenesis and function via increasing mitochondrial electron transport and
energy demand and by activating protein kinase/PGC-1 [117]; these observations give the
PLSO a great nutritional and therapeutic value.

In addition, tocopherols are also major ingredients in the oils since they have high
antioxidant activity [118]. They could protect polyunsaturated fatty acids (PUFA) from
oxidation by scavenging lipid peroxyl radicals (ROO•) [119]. In PLSO, α-tocopherol is
present in the highest quantity and contributes to the natural conservation of PLSO. It is
important to highlight that PLSO is an excellent source of vitamin E, which is constituted
of four tocopherols and four tocotrienols [120].

In another hand, the antioxidant potential of PLSO, evaluated by DPPH, FRAP, and
FIC assays, demonstrated an important antioxidant potential of this oil, reinforcing our
interest to study the cytoprotective properties of this oil in vitro. Consequently, in the
context of sarcopenia, we evaluated the protective properties of PLSO against 7β-OHC-
induced cytotoxicity on a model of murine C2C12 myoblast cells.

Indeed, several oxysterols, including 7β-OHC, are present at increased levels and
high amounts in the plasma and tissues of patients with age-related diseases [31,121],
and our preliminary data obtained by GC-MS on the plasma from subjects with and
without sarcopenia have revealed significant higher plasma levels of 7β-OHC in sarcopenic
patients. It has been shown that 7β-OHC, which is a potent inducer of oxidative stress
by stimulating at least in part NAD(P)H activity [122], was among the most cytotoxic
oxysterol on different cell types from different species [42]. Oxidative damage is supposed
to be the main responsible factor for cellular aging. A potential oxidative alteration of
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satellite cells could induce problems in muscle regeneration, as is the case in aging [123].
Therefore, in age-related diseases, including sarcopenia, the identification of molecules
or mixture of molecules capable to attenuate 7β-OHC-induced cell death, defined as
oxiapoptophagy [124], has a crucial interest to prevent and/or treat these diseases.

In the present study, 7β-OHC (50 µM, 24 h) showed cytotoxic effects on C2C12
myoblasts cells, which are characterized by an induction of cell death associated with ROS
overproduction as well as mitochondrial and peroxisomal dysfunction. Some of these
effects were previously obtained on vascular cells, hematopoietic and immune cells, retinal
cells, and nerve cells exposed to 7β-OHC [30,109,125,126]. As previously reported on
numerous adherent cells, 7β-OHC induces a loss of cell adhesion on C2C12 cells, which
is characterized by an increase in round and floating cells, suggesting an alteration of
membrane constituents associated with cell death. These alterations could be triggered by
a RedOx imbalance and an induction of oxidative stress, which could modify the structure
and the physical properties of plasma membranes, favoring the degradation of adhesion
molecules and cell junctions by mechanisms involving the ROS-dependent activation
of matrix metalloproteinases [127]. In addition, 7β-OHC-induced plasma membrane
modifications, revealed in the present study by an increased permeability to PI, could
modify the ionic homeostasis (Ca2+, N+, K+) with important consequences on numerous
signaling pathways, especially those involved in the activation of apoptosis [30,128] or the
transmission of nerve influx [129]. In sarcopenic patients, the alteration in nerve influx
could also amplify muscle dysfunction at the neuro–muscular junction. In support of
the key role of oxidative stress in 7β-OHC-induced cell death [124], our results obtained
in C2C12 cells showed that 7β-OHC also induced an overproduction of mitochondrial
ROS, associated with an accumulation of lipid and protein oxidation products, such as
MDA, CDs, and CPs, as well as a decrease in the major antioxidant enzymes activities
(superoxide dismutase (SOD) and glutathione peroxidase (GPx)). These results evocate
the cytotoxic effects observed with 7KC on different types of neuronal cells (158 N murine
oligodendrocytes, BV-2 murine microglial cells, and N2a murine neuronal cells) on which
the activation of the oxidative stress is at the origin of the toxicity of this oxysterol [126,130].

On C2C12 cells as well as on other cell types, under treatment with 7β-OHC, it can
be considered that ROS overproduction results from the activation of different NADPH
oxidase isoforms [35] and from mitochondrial dysfunctions. As ROS overproduction and
mitochondrial dysfunction are considered as major phenomena involved in senescence
and aging [131], our data support the hypothesis that 7β-OHC could contribute to the
aging process in skeletal muscle cells. 7β-OHC induces ROS overproduction probably also
contributes to the alterations in mitochondrial structures and of mitochondrial proteins
present in the mitochondrial complexes contributing to oxidative phosphorylation. This
could favor not only a loss of transmembrane mitochondrial potential (∆ψm) but also a
disruption of the respiratory chain function and a limitation in energy production, leading
to the decreased ATP production observed in the present study. Consequently, in tissues
with a low cell turnover, such as the skeletal muscle, alteration of the mitochondria under
the action of 7β-OHC may have important detrimental effects on the muscular function.

Like mitochondria, the peroxisomes, which are metabolically tightly connected to the
mitochondria [132], represent another important source of intracellular ROS (mainly H2O2),
and it is now well established that peroxisomal dysfunctions increase ROS overproduction
and disturb mitochondrial activity [80,133]. It has been shown on 158 N murine oligoden-
drocytes that the inactivation of the peroxisomal transporters ABCD1 and 2 associated
with peroxisomal β-oxidation, as well as of ACOX1, which is the main limiting enzyme
of peroxisomal β-oxidation, favor oxidative stress and increase ROS production in whole
cells and at the mitochondrial level [134]. The peroxisome, in addition to its implication
in the regulation of RedOx homeostasis, is implicated in the control of lipid metabolism
and non-cytokinic inflammation [135]. It has also been suggested that the peroxisome
may also play a crucial role in cellular aging [136]. However, still little is known about the
contribution of the peroxisome in the aging process but an involvement of this organelle
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in the amplification of mitochondrial dysfunction is quite well documented [93]. The
present study realized on C2C12 cells clearly shows peroxisomal alterations in the presence
of 7β-OHC, which is characterized by a reduced peroxisomal density and a lower level
of Abcd3 peroxisomal transporter. As 7β-OHC could affect and reduce the peroxisomal
transport and degradation of VLCFA (C24:0, C24:1, C26:0, and C26:1), whose intracellular
accumulation can have toxic consequences [137], the levels of VLCFA have been measured
by GC-MS and the elongase activity index of the enzyme ELOVL1 associated with VLCFA
metabolism has been determined [138]. Measuring the level of some VLCFA in sarcopenia
could be of interest since some fatty acids behave as metabolic inhibitors, uncouplers
of oxidative phosphorylation, and membrane permeability transition (MPT) inducers; it
is thus hypothesized that these pathophysiological mechanisms could contribute to the
muscular symptoms in sarcopenia [139].

Based on the results obtained on C2C12, preventing the toxicity of 7β-OHC, which is
essentially formed by auto-oxidation of cholesterol and is increased in many age-related
diseases, remains a major challenge [28]. For this purpose, it is still necessary to identify the
molecules or mixtures of molecules allowing to prevent or reduce its toxicity. Indeed, at the
moment only few natural and synthetic molecules as well as mixtures of molecules capable
to inhibit 7β-OHC-induced cytotoxicity have been identified [28]. Noteworthy, we reported
that PLSO is an edible oil with high nutritional value containing several antioxidant nutri-
ents known for their protective effects against various diseases associated with oxidative
stress, and our data indicate that PLSO exhibits strong cytoprotective activities against
7β-OHC on C2C12 mouse skeletal muscle cells. The effects observed with PLSO were
in the range of order of those obtained with α-tocopherol known to strongly counteract
7β-OHC-induced oxidative stress and cell death induction on several cell types [30]. In
accordance with these findings, it has been reported that PLSO was able to inhibit H2O2-
induced oxidative stress in human skin culture [140]. Besides PLSO, other oils and natural
bioactive compounds, such as Schisandrae semen essential oil [141], isorhamnetin [142],
resveratrol [143], and phloretin [144], were described as antioxidant molecules in C2C12
murine skeletal muscle cells. Our data clearly show that PLSO attenuates both mito-
chondrial and peroxisomal dysfunctions induced by 7β-OHC through the restoration of
succinate dehydrogenase activity and ∆ψm, a reduction in mitochondrial ROS production,
normalization of Abcd3 expression, and VLCFA levels. Thus, PLSO acts on the major
targets involved in aging—those contributing to the development of major age-related
diseases—namely, oxidative stress, mitochondria, and peroxisome. The cytoprotective
results obtained with LPSO evocate those obtained with several other oils associated with
the Mediterranean diet (olive oil, milk thistle seed oil, and argan oil) [86,109]. Thus, the
value of the lipid mixtures is underscored by these different data to restrain cell death and
oxidative stress induced by oxysterols.

5. Conclusions

This study demonstrates that 7β-OHC triggers oxidative stress, mitochondrial and
peroxisomal dysfunction, and cell death on C2C12 myoblast cells. Noteworthy, in the
presence of PLSO as well as of α-tocopherol, these different cytotoxic effects were strongly
attenuated and PLSO was as efficient as α-tocopherol used at a high concentration. Note-
worthy, as MitoQ, which selectively accumulates in the mitochondria, did not attenuate
7β-OHC-induced cell death, our data suggest that attenuation of mitochondrial dysfunc-
tion is not sufficient to counteract 7β-OHC-induced cell death, and that PLSO, which
strongly reduces mitochondrial dysfunction, also act on other cellular targets. On the basis
of the biochemical composition of PLSO (fatty acids, tocopherols, and polyphenols), of its
antioxidant properties, and of its cytoprotective effects, it is suggested that a diet associated
with this oil could contribute to the prevention of skeletal muscle dysfunctions. In a thera-
peutic context, the bioavailability and the efficiency of the biological compounds present in
PLSO could be improved using a number of approaches. These later could include micro-
and nano-encapsulation strategies, chimeric tractable molecules, and targeted-specific cell
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compartments and organelles (mitochondria, peroxisomes), such as Targeted Organelle
Nano-therapy (TORN-therapy) [145,146] as well as functional foods.
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69. Patková, J.; Anděl, M.; Trnka, J. Palmitate-induced cell death and mitochondrial respiratory dysfunction in myoblasts are not
prevented by mitochondria-targeted antioxidants. Cell Physiol. Biochem. 2014, 33, 1439–1451. [CrossRef]

http://doi.org/10.1080/13880209.2016.1233569
http://doi.org/10.1080/13813455.2017.1302961
http://doi.org/10.3109/13880209.2015.1079222
http://doi.org/10.1016/j.brainresbull.2018.04.014
http://doi.org/10.1002/ejlt.201100146
http://doi.org/10.1016/S0308-8146(01)00399-5
http://doi.org/10.1016/j.foodchem.2006.04.026
http://doi.org/10.1016/j.chemphyslip.2017.04.002
http://doi.org/10.3390/molecules25102296
http://doi.org/10.1021/jf0343074
http://doi.org/10.1007/s13197-012-0664-5
http://doi.org/10.1016/0009-8981(81)90235-7
http://doi.org/10.1016/S0022-2275(20)40190-7
http://doi.org/10.2174/1381612825666190705192902
http://www.ncbi.nlm.nih.gov/pubmed/31298157
http://doi.org/10.1006/abbi.1994.1485
http://www.ncbi.nlm.nih.gov/pubmed/7979394
http://doi.org/10.1016/j.rvsc.2012.08.005
http://doi.org/10.1016/j.bcp.2013.02.028
http://doi.org/10.1177/33.1.2578146
http://doi.org/10.1159/000358709


Antioxidants 2021, 10, 1772 35 of 37

70. Cui, L.; Zhou, Q.; Zheng, X.; Sun, B.; Zhao, S. Mitoquinone attenuates vascular calcification by suppressing oxidative stress
and reducing apoptosis of vascular smooth muscle cells via the Keap1/Nrf2 pathway. Free Radic. Biol. Med. 2020, 161, 23–31.
[CrossRef]

71. Yeh, C.J.; His, B.L.; Faulk, W.P. Propidium iodide as a nuclear marker in immunofluorescence. II. Use with cellular identification
and viability studies. J. Immunol Methods 1981, 43, 269–275. [CrossRef]

72. Rothe, G.; Valet, G. Flow cytometric analysis of respiratory burst activity in phagocytes with hydroethidine and 2′, 7′-
dichlorofluorescin. J. Leukoc. Biol. 1990, 47, 440–448. [CrossRef]

73. Flohe, L.; Günzler, W.A. Assays of glutathione peroxidase. Methods Enzym. 1984, 105, 114–120.
74. Beauchamp, C.; Fridovich, I. Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. Anal. Biochem.

1971, 44, 276–287. [CrossRef]
75. Yoshioka, T.; Kawada, K.; Shimada, T.; Mori, M. Lipid peroxidation in maternal and cord blood and protective mechanism against

activated-oxygen toxicity in the blood. Am. J. Obstet. Gynecol. 1979, 135, 372–376. [CrossRef]
76. Esterbauer, H.; Striegl, G.; Puhl, H.; Rotheneder, M. Continuous monitoring of in vitro oxidation of human low density lipoprotein.

Free Radic. Res. Commun. 1989, 6, 67–75. [CrossRef]
77. Oliver, C.N.; Ahn, B.W.; Moerman, E.J.; Goldstein, S.; Stadtman, E.R. Age-related changes in oxidized proteins. J. Biol. Chem. 1987,

262, 5488–5491. [CrossRef]
78. Zarrouk, A.; Vejux, A.; Nury, T.; El Hajj, H.I.; Haddad, M.; Cherkaoui-Malki, M.; Rietdinger, J.-M.; Hammami, M.; Lizard, G.

Induction of mitochondrial changes associated with oxidative stress on very long chain fatty acids (C22: 0, C24: 0, or C26: 0)-
treated human neuronal cells (SK-NB-E). Oxidative Med. Cell Longev. 2012, 2012, 623257. [CrossRef]

79. Gray, E.; Rice, C.; Hares, K.; Redondo, J.; Kemp, K.; Williams, M.; etBrown, A.; Scolding, N.; Wilkins, A. Reductions in neuronal
peroxisomes in multiple sclerosis grey matter. Mult. Scler. J. 2014, 20, 651–659. [CrossRef]

80. Nury, T.; Sghaier, R.; Zarrouk, A.; Ménétrier, F.; Uzun, T.; Leoni, V.; Caccia, C.; Meddeb, W.; Namsi, A.; Sassi, K.; et al.
Induction of peroxisomal changes in oligodendrocytes treated with 7-ketocholesterol: Attenuation by α-tocopherol. Biochimie
2018, 153, 181–202. [CrossRef]

81. Savary, S.; Trompier, D.; Andréoletti, P.; Le Borgne, F.; Demarquoy, J.; Lizard, G. Fatty acids-induced lipotoxicity and inflammation.
Curr. Drug Metab. 2012, 13, 1358–1370. [CrossRef]

82. Blondelle, J.; de Barros, J.P.P.; Pilot-Storck, F.; Tiret, L. Targeted lipidomic analysis of myoblasts by GC-MS and LC-MS/MS. In
Skeletal Muscle Development; Humana Press: New York, NY, USA, 2017; pp. 39–60.

83. Folch, J.; Lees, M.; Stanley, G.S. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol.
Chem. 1957, 226, 497–509. [CrossRef]

84. Lizard, G.; Fournel, S.; Genestier, L.; Dhedin, N.; Chaput, C.; Flacher, M.; Mutin, M.; Panayet, G.; Revillalrd, J.-P. Kinetics of
plasma membrane and mitochondrial alterations in cells undergoing apoptosis. Cytom. J. Int. Soc. Anal. Cytol. 1995, 21, 275–283.
[CrossRef] [PubMed]

85. Baarine, M.; Ragot, K.; Genin, E.C.; El Hajj, H.; Trompier, D.; Andreoletti, P.; Ghandour, S.; Menetrier, F.; Cherkaoui-Malki, M.;
Savary, S.; et al. Peroxisomal and mitochondrial status of two murine oligodendrocytic cell lines (158N, 158JP): Potential models
for the study of peroxisomal disorders associated with dysmyelination processes. J. Neurochem. 2009, 111, 119–131. [CrossRef]
[PubMed]

86. Badreddine, A.; Zarrouk, A.; Karym, E.M.; Debbabi, M.; Nury, T.; Meddeb, W.; Sghaier, R.; Bezine, M.; Vejux, A.; Martine, L.; et al.
Argan oil-mediated attenuation of organelle dysfunction, oxidative stress and cell death induced by 7-ketocholesterol in murine
oligodendrocytes 158N. Int. J. Mol. Sci. 2017, 18, 2220. [CrossRef] [PubMed]

87. Sottero, B.; Rossin, D.; Staurenghi, E.; Gamba, P.; Poli, G.; Testa, G. Omics analysis of oxysterols to better understand their
pathophysiological role. Free Radic. Biol. Med. 2019, 144, 55–71. [CrossRef]

88. Fujita, T.; Adachi, J.; Ueno, Y.; Peters, T.J.; Preedy, V.R. Chronic ethanol feeding increases 7-hydroperoxycholesterol and oxysterols
in rat skeletal muscle. Metab. -Clin. Exp. 2002, 51, 737–742. [CrossRef]

89. Jamadagni, P.; Patten, S.A. 25-hydroxycholesterol impairs neuronal and muscular development in zebrafish. Neurotoxicology 2019,
75, 14–23. [CrossRef]

90. Nishi, H.; Higashihara, T.; Inagi, R. Lipotoxicity in kidney, heart, and skeletal muscle dysfunction. Nutrients 2019, 11, 1664.
[CrossRef]

91. Kemp, S.; Theodoulou, F.L.; Wanders, R.J. Mammalian peroxisomal ABC transporters: From endogenous substrates to pathology
and clinical significance. Br. J. Pharmacol. 2011, 164, 1753–1766. [CrossRef]

92. Tawbeh, A.; Gondcaille, C.; Trompier, D.; Savary, S. Peroxisomal ABC Transporters: An Update. Int. J. Mol. Sci. 2021, 22, 6093.
[CrossRef]

93. Trompier, D.; Vejux, A.; Zarrouk, A.; Gondcaille, C.; Geillon, F.; Nury, T.; etSavary, S.; Lizalrd, G. Brain peroxisomes. Biochimie
2014, 98, 102–110. [CrossRef]

94. Jakobsson, A.; Westerberg, R.; Jacobsson, A. Fatty acid elongases in mammals: Their regulation and roles in metabolism. Prog.
Lipid Res. 2006, 45, 237–249. [CrossRef]

95. Kihara, A. Very long-chain fatty acids: Elongation, physiology and related disorders. J. Biochem. 2021, 152, 387–395. [CrossRef]
96. Musaro, A.; Fulle, S.; Fano, G. Oxidative stress and muscle homeostasis. Curr. Opin. Clin. Nutr. Metab. Care 2010, 13, 236–242.

[CrossRef]

http://doi.org/10.1016/j.freeradbiomed.2020.09.028
http://doi.org/10.1016/0022-1759(81)90174-5
http://doi.org/10.1002/jlb.47.5.440
http://doi.org/10.1016/0003-2697(71)90370-8
http://doi.org/10.1016/0002-9378(79)90708-7
http://doi.org/10.3109/10715768909073429
http://doi.org/10.1016/S0021-9258(18)45598-6
http://doi.org/10.1155/2012/623257
http://doi.org/10.1177/1352458513505691
http://doi.org/10.1016/j.biochi.2018.07.009
http://doi.org/10.2174/138920012803762729
http://doi.org/10.1016/S0021-9258(18)64849-5
http://doi.org/10.1002/cyto.990210308
http://www.ncbi.nlm.nih.gov/pubmed/8582250
http://doi.org/10.1111/j.1471-4159.2009.06311.x
http://www.ncbi.nlm.nih.gov/pubmed/19659692
http://doi.org/10.3390/ijms18102220
http://www.ncbi.nlm.nih.gov/pubmed/29065513
http://doi.org/10.1016/j.freeradbiomed.2019.05.026
http://doi.org/10.1053/meta.2002.32803
http://doi.org/10.1016/j.neuro.2019.08.007
http://doi.org/10.3390/nu11071664
http://doi.org/10.1111/j.1476-5381.2011.01435.x
http://doi.org/10.3390/ijms22116093
http://doi.org/10.1016/j.biochi.2013.09.009
http://doi.org/10.1016/j.plipres.2006.01.004
http://doi.org/10.1093/jb/mvs105
http://doi.org/10.1097/MCO.0b013e3283368188


Antioxidants 2021, 10, 1772 36 of 37

97. Powers, S.K.; Talbert, E.E.; Adhihetty, P.J. Reactive oxygen and nitrogen species as intracellular signals in skeletal muscle.
J. Physiol. 2011, 589, 2129–2138. [CrossRef]

98. Valko, M.; Leibfritz, D.; Moncol, J.; Cronin, M.T.; Mazur, M.; Telser, J. Free radicals and antioxidants in normal physiological
functions and human disease. Int. J. Biochem. Cell Biol. 2007, 39, 44–84. [CrossRef]

99. Pistollato, F.; Giampieri, F.; Battino, M. The use of plant-derived bioactive compounds to target cancer stem cells and modulate
tumor microenvironment. Food Chem. Toxicol. 2015, 75, 58–70. [CrossRef]

100. Gaussen, H.; Leroy, J.F.; Ozenda, P. Précis de Botanique. 2- Végétaux Supérieurs, 2nd ed.; Editions Masson: Paris, France, 1982;
pp. 307–308.

101. Fazeli-nasab, B.; Fooladvand, Z. Classification and Evaluation of medicinal plant and medicinal properties of mastic. Int. J. Adv.
Biol. Biomed. Res. 2014, 2, 2155–2161.

102. Brahmi, F.; Haddad, S.; Bouamara, K.; Yalaoui-Guellal, D.; Prost-Camus, E.; De Barros, J.P.P.; Prost, M.; Atanasov, A.G.; Madani, K.;
Boulekbache-Makhlouf, L.; et al. Comparison of chemical composition and biological activities of Algerian seed oils of Pistacialen-
tiscus L., Opuntia ficusindica (L.) mill. and Argania spinosa L. Skeels. Ind. Crop. Products 2020, 151, 112456. [CrossRef]

103. Bouyahya, A.; Dakka, N.; Talbaoui, A.; El Moussaoui, N.; Abrini, J.; Bakri, Y. Phenolic contents and antiradical capacity of
vegetable oil from Pistacialentiscus (L). J. Mater. Environ. Sci. 2018, 9, 1518–1524.

104. Maria, A.G.; Graziano, R.; Nicolantonio, D.O. Carotenoids: Potential allies of cardiovascular health? Food Nutr. Res. 2015,
59, 26762. [CrossRef]

105. Smith, T.A. Carotenoids and cancer: Prevention and potential therapy. Br. J. Biomed. Sci. 1998, 55, 268.
106. Kitakaze, T.; Harada, N.; Imagita, H.; Yamaji, R. β-Carotene increases muscle mass and hypertrophy in the soleus muscle in mice.

J. Nutr. Sci. Vitaminol. 2015, 61, 481–487. [CrossRef]
107. Dhifi, W.; Jelali, N.; Chaabani, E.; Beji, M.; Fatnassi, S.; Omri, S.; Mnif, W. Chemical composition of Lentisk (Pistacialentiscus L.)

seed oil. Afr. J. Agric. Res. 2013, 8, 1395–1400.
108. Aguilera, C.M.; Ramírez-Tortosa, M.C.; Mesa, M.D.; Gil, A. Do MUFA and PUFA have beneficial effects on the development of

cardiovascular disease? Recent Res. Dev. Lipids 2000, 4, 369–390.
109. Debbabi, M.; Nury, T.; Zarrouk, A.; Mekahli, N.; Bezine, M.; Sghaier, R.; Grégoire, S.; Martine, L.; Durand, P.; Prost, E.; et al.

Protective effects of α-tocopherol, γ-tocopherol and oleic acid, three compounds of olive oils, and no effect of trolox, on 7-
ketocholesterol-induced mitochondrial and peroxisomal dysfunction in microglial BV-2 cells. Int. J. Mol. Sci. 2016, 17, 1973.
[CrossRef]

110. Jandacek, R.J. Linoleic Acid: A Nutritional Quandary. Healthcare 2017, 5, 25. [CrossRef]
111. Lee, J.H.; Tachibana, H.; Morinaga, Y.; Fujimura, Y.; Yamada, K. Modulation of proliferation and differentiation of C2C12 skeletal

muscle cells by fatty acids. Life Sci. 2009, 84, 415–420. [CrossRef] [PubMed]
112. Charef, M.; Yousfi, M.; Saidi, M.; Stocker, P. Determination of the fatty acid composition of acorn (Quercus), Pistacialentiscus

seeds growing in Algeria. J. Am. Oil Chem. Soc. 2008, 85, 921–924. [CrossRef]
113. French, M.A.; Sundram, K.; Clandinin, M.T. Cholesterolaemic effect of palmitic acid in relation to other dietary fatty acids. Asia

Pac. J. Clin. Nutr. 2002, 11, S401–S407. [CrossRef] [PubMed]
114. Hwang, S.-L.; Kim, H.-N.; Jung, H.-H.; Kim, J.-E.; Choi, D.-K.; Hur, J.-M.; Lee, J.-Y.; Song, H.; Song, K.-S.; Huh, T.-L. Beneficial

effects of β-sitosterol on glucose and lipid metabolism in L6 myotube cells are mediated by AMP-activated protein kinase.
Biochem. Biophys. Res. Commun. 2008, 377, 1253–1258. [CrossRef] [PubMed]

115. Liao, P.-C.; Lai, M.-H.; Hsu, K.-P.; Kuo, Y.-H.; Chen, J.; Tsai, M.-C.; Li, C.-X.; Yin, X.-J.; Jetyashoke, N.; Chao, L.K.-P. Identification
of β-sitosterol as in vitro anti-inflammatory constituent in Moringa oleifera. J. Agric. Food Chem. 2018, 66, 10748–10759. [CrossRef]

116. Gupta, R.; Sharma, A.K.; Dobhal, M.P.; Sharma, M.C.; Gupta, R.S. Antidiabetic and antioxidant potential of β-sitosterol in
streptozotocin-induced experimental hyperglycemia. J. Diabetes 2011, 3, 29–37. [CrossRef]

117. Wong, H.S.; Leong, P.K.; Chen, J.; Leung, H.Y.; Chan, W.M.; Ko, K.M. β-Sitosterol increases mitochondrial electron transport by
fluidizing mitochondrial membranes and enhances mitochondrial responsiveness to increasing energy demand by the induction
of uncoupling in C2C12 myotubes. J. Funct. Foods 2016, 23, 253–260. [CrossRef]

118. Chen, Y. Endogenous Phenolics from Expeller-Pressed Canola Oil Refining Byproducts: Evaluation of Antioxidant Activities in
Cell Culture and Deep-Fat Frying Models. Master’s Thesis, University of Manitoba, Winnipeg, MB, Canada, 2014.

119. Zingg, J.M.; Meydani, M. Interaction between vitamin E and polyunsaturated fatty acids. In Vitamin E in Human Health; Humana
Press: Cham, Switzerland, 2019; pp. 141–159.

120. Rimbach, G.; Minihane, A.M.; Majewicz, J.; Fischer, A.; Pallauf, J.; Virgli, F.; Weinberg, P.D. Regulation of cell signalling by vitamin
E. Proc. Nutr. Soc. 2002, 61, 415–425. [CrossRef]

121. Testa, G.; Rossin, D.; Poli, G.; Biasi, F.; Leonarduzzi, G. Implication of oxysterols in chronic inflammatory human diseases.
Biochimie 2018, 153, 220–231. [CrossRef]

122. Pedruzzi, E.; Guichard, C.; Ollivier, V.; Driss, F.; Fay, M.; Prunet, C.; Marie, J.-C.; Pouzet, C.; Samadi, M.; Elbim, C.; et al. NAD
(P) H oxidase Nox-4 mediates 7-ketocholesterol-induced endoplasmic reticulum stress and apoptosis in human aortic smooth
muscle cells. Mol. Cell. Biol. 2004, 24, 10703–10717. [CrossRef]

123. Szentesi, P.; Csernoch, L.; Dux, L.; Keller-Pintér, A. Changes in redox signaling in the skeletal muscle with aging. Oxidative Med.
Cell Longev. 2019, 2019. [CrossRef]

http://doi.org/10.1113/jphysiol.2010.201327
http://doi.org/10.1016/j.biocel.2006.07.001
http://doi.org/10.1016/j.fct.2014.11.004
http://doi.org/10.1016/j.indcrop.2020.112456
http://doi.org/10.3402/fnr.v59.26762
http://doi.org/10.3177/jnsv.61.481
http://doi.org/10.3390/ijms17121973
http://doi.org/10.3390/healthcare5020025
http://doi.org/10.1016/j.lfs.2009.01.004
http://www.ncbi.nlm.nih.gov/pubmed/19302823
http://doi.org/10.1007/s11746-008-1283-1
http://doi.org/10.1046/j.1440-6047.11.s.7.3.x
http://www.ncbi.nlm.nih.gov/pubmed/12492626
http://doi.org/10.1016/j.bbrc.2008.10.136
http://www.ncbi.nlm.nih.gov/pubmed/18992226
http://doi.org/10.1021/acs.jafc.8b04555
http://doi.org/10.1111/j.1753-0407.2010.00107.x
http://doi.org/10.1016/j.jff.2016.02.045
http://doi.org/10.1079/PNS2002183
http://doi.org/10.1016/j.biochi.2018.06.006
http://doi.org/10.1128/MCB.24.24.10703-10717.2004
http://doi.org/10.1155/2019/4617801


Antioxidants 2021, 10, 1772 37 of 37

124. Nury, T.; Zarrouk, A.; Yammine, A.; Mackrill, J.J.; Vejux, A.; Lizard, G. Oxiapoptophagy: A type of cell death induced by some
oxysterols. Br. J. Pharmacol. 2021, 178, 3115–3123. [CrossRef]

125. Sghaier, R.; Nury, T.; Leoni, V.; Caccia, C.; De Barros, J.-P.P.; Cherif, A.; Vejux, A.; Moreau, T.; Limem, K.; Samadi, M.; et al.
Dimethyl fumarate and monomethyl fumarate attenuate oxidative stress and mitochondrial alterations leading to oxiapoptophagy
in 158N murine oligodendrocytes treated with 7β-hydroxycholesterol. J. Steroidbiochemistry Mol. 2019, 194, 105432. [CrossRef]

126. Yammine, A.; Zarrouk, A.; Nury, T.; Vejux, A.; Latruffe, N.; Vervandier-Fasseur, D.; Samadi, M.; Mackrill, J.J.; Greige-Gerges, H.;
Auezova, L.; et al. Prevention by dietary polyphenols (resveratrol, quercetin, apigenin) against 7-ketocholesterol-induced
oxiapoptophagy in neuronal N2a cells: Potential interest for the treatment of neurodegenerative and age-related diseases. Cells
2020, 9, 2346. [CrossRef]

127. Poli, G.; Biasi, F.; Leonarduzzi, G. Oxysterols in the pathogenesis of major chronic diseases. Redox Biol. 2013, 1, 125–130. [CrossRef]
128. Kunzelmann, K. Ion channels in regulated cell death. Cell Mol. Life Sci. 2016, 73, 2387–2403. [CrossRef]
129. Bezine, M.; Namsi, A.; Sghaier, R.; Ben Khalifa, R.B.; Hamdouni, H.; Brahmi, F.; Badreddine, I.; Mihoubi, W.; Nury, T.; Vejux, A.;

et al. The effect of oxysterols on nerve impulses. Biochimie 2018, 153, 46–51. [CrossRef]
130. Zarrouk, A.; Ben Salem, Y.B.; Hafsa, J.; Sghaier, R.; Charfeddine, B.; Limem, K.; etHammami, M.; Maljdoub, H. 7β-

hydroxycholesterol-induced cell death, oxidative stress, and fatty acid metabolism dysfunctions attenuated with sea urchin egg
oil. Biochimie 2018, 153, 210–219. [CrossRef]

131. Rufini, A.; Tucci, P.; Celardo, I.; Melino, G. Senescence and aging: The critical roles of p53. Oncogene 2013, 32, 5129–5143.
[CrossRef]

132. Lismont, C.; Nordgren, M.; Van Veldhoven, P.P.; Fransen, M. Redox interplay between mitochondria and peroxisomes. Front. Cell
Dev. Biol. 2015, 3, 35. [CrossRef]

133. Pascual-Ahuir, A.; Manzanares-Estreder, S.; Proft, M. Pro-and antioxidant functions of the peroxisome-mitochondria connection
and its impact on aging and disease. Oxidative Med. Cell Longev. 2017, 2017, 9860841. [CrossRef]

134. Baarine, M.; Andreoletti, P.; Athias, A.; Nury, T.; Zarrouk, A.; Ragot, K. Evidence of oxidative stress in very long chain fatty
acid–treated oligodendrocytes and potentialization of ROS production using RNA interference-directed knockdown of ABCD1
and ACOX1 peroxisomal proteins. Neuroscience 2012, 213, 1–18. [CrossRef] [PubMed]

135. Wanders, R.J. Metabolic functions of peroxisomes in health and disease. Biochimie 2014, 98, 36–44. [CrossRef]
136. Titorenko, V.I.; Terlecky, S.R. Peroxisome metabolism and cellular aging. Traffic 2011, 12, 252–259. [CrossRef]
137. Unger, R.H.; Orci, L. Lipoapoptosis: Its mechanism and its diseases. Biochim. Et Biophys. Acta -Mol. Cell Biol. Lipids 2002,

1585, 202–212. [CrossRef]
138. Amery, L.; Fransen, M.; De Nys, K.; Mannaerts, G.P.; Van Veldhoven, P.P. Mitochondrial and peroxisomal targeting of 2-methylacyl-

CoA racemase in humans. J. Lipid Res. 2000, 41, 1752–1759. [CrossRef]
139. Cecatto, C.; Amaral, A.U.; Roginski, A.C.; Castilho, R.F.; Wajner, M. Impairment of mitochondrial bioenergetics and permeability

transition induction caused by major long-chain fatty acids accumulating in VLCAD deficiency in skeletal muscle as potential
pathomechanisms of myopathy. Toxicol. Vitr. 2020, 62, 104665. [CrossRef] [PubMed]

140. Ben Khedir, S.; Moalla, D.; Jardak, N.; Mzid, M.; Sahnoun, Z.; Rebai, T. Pistacia lentiscus fruit oil reduces oxidative stress in
human skin explants caused by hydrogen peroxide. Biotech. Histochem. 2016, 91, 480–491. [CrossRef]

141. Kang, J.S.; Han, M.H.; Kim, G.-Y.; Kim, C.M.; Chung, H.Y.; Hwang, H.J.; Kim, B.W.; Choi, Y.H. Schisandrae semen essential oil
attenuates oxidative stress-induced cell damage in C2C12 murine skeletal muscle cells through Nrf2-mediated upregulation of
HO-1. Int. J. Mol. 2015, 35, 453–459. [CrossRef]

142. Choi, Y.H. Protective effects of isorhamnetin against hydrogen peroxide-induced apoptosis in c2c12 murine myoblasts. J. Korean
Med. Obes. Res. 2015, 15, 93–103. [CrossRef]

143. Leporini, L.; Giampietro, L.; Amoroso, R.; Ammazzalorso, A.; Fantacuzzi, M.; Menghini, L.; Maccallini, C.; Ferrante, C.;
Brunetti, L.; Orlando, G.; et al. In vitro protective effects of resveratrol and stilbene alkanoic derivatives on induced oxidative
stress on C2C12 and MCF7 cells. J. Biol. Regul. Homeost. Agents 2017, 31, 589–601.

144. Li, J.; Yang, Q.; Han, L.; Pan, C.; Lei, C.; Chen, H.; Lan, X. C2C12 mouse myoblasts damage induced by oxidative stress is
alleviated by the antioxidant capacity of the active substance phloretin. Front. Cell Dev. Biol. 2020, 8, 953. [CrossRef]

145. Badreddine, A.; Zarrouk, A.; Meddeb, W.; Nury, T.; Rezig, L.; Debbabi, M.; Bessam, F.Z.; Brahmi, F.; Vejux, A.; Mejri, M.; et al.
Antioxidant and neuroprotective properties of Mediterranean Oils: Argan Oil, Olive Oil, and Milk Thistle Seed Oil. In Oxidative
Stress and Dietary Antioxidants in Neurological Diseases; Elsevier: Amsterdam, The Netherlands, 2020; pp. 143–154.

146. Brahmi, F.; Vejux, A.; Sghaier, R.; Zarrouk, A.; Nury, T.; Meddeb, W.; Rezig, L.; Namsi, A.; Sassi, K.; Yammine, A.; et al. Prevention
of 7-ketocholesterol-induced side effects by natural compounds. Crit. Rev. Food Sci. Nutr. 2019, 59, 3179–3198. [CrossRef]

http://doi.org/10.1111/bph.15173
http://doi.org/10.1016/j.jsbmb.2019.105432
http://doi.org/10.3390/cells9112346
http://doi.org/10.1016/j.redox.2012.12.001
http://doi.org/10.1007/s00018-016-2208-z
http://doi.org/10.1016/j.biochi.2018.04.013
http://doi.org/10.1016/j.biochi.2018.06.027
http://doi.org/10.1038/onc.2012.640
http://doi.org/10.3389/fcell.2015.00035
http://doi.org/10.1155/2017/9860841
http://doi.org/10.1016/j.neuroscience.2012.03.058
http://www.ncbi.nlm.nih.gov/pubmed/22521832
http://doi.org/10.1016/j.biochi.2013.08.022
http://doi.org/10.1111/j.1600-0854.2010.01144.x
http://doi.org/10.1016/S1388-1981(02)00342-6
http://doi.org/10.1016/S0022-2275(20)31968-4
http://doi.org/10.1016/j.tiv.2019.104665
http://www.ncbi.nlm.nih.gov/pubmed/31629068
http://doi.org/10.1080/10520295.2016.1232840
http://doi.org/10.3892/ijmm.2014.2028
http://doi.org/10.15429/jkomor.2015.15.2.93
http://doi.org/10.3389/fcell.2020.541260
http://doi.org/10.1080/10408398.2018.1491828

	Introduction 
	Material and Methods 
	Chemical Profile of Pistacia lentiscus L. Seed Oil 
	Seed Material and Oil Extraction 
	Colorimetric Determination of Total Phenolics, Flavonoids, and Carotenoids Contents of Pistacia lentiscus L. Seed Oil 
	Polyphenols Analysis 
	Fatty Acids Analysis 
	Phytosterols Analysis 
	-Tocopherol Analysis 

	Antioxidant Activity of Pistacia lentiscus L. Seed Oil 
	Free Radical Scavenging Activity with DPPH Assay 
	Ferric Reducing Antioxidant Power (FRAP) Assay 
	Ferrous-Ion Chelating (FIC) Assay 
	KRL Test 

	In Vitro Study 
	Cell Culture and Treatments 
	Evaluation of Cell Morphology by Phase-Contrast Microscopy 
	Evaluation of Cell Viability with the MTT Assay 
	Measurement of Cell Viability with the Fluorescein Diacetate Assay 
	Measurement of Plasma Membrane Permeability with Propidium Iodide 
	Measurement of Oxidative Stress 
	Evaluation of Mitochondrial Function 
	Determination of the Peroxisomal Status 

	Gas Chromatography—Mass Spectrometry Analysis of Cholesterol and Oxysterols Oxidized at C7 (7-Ketocholesterol, 7-Hydroxycholesterol) in the Plasma of Sarcopenic Patients 
	Statistical Analysis 

	Results 
	Biochemical Composition of Pistacia lentiscus L. Seed Oil 
	Evaluation of the Antioxidant Properties of Pistacia lentiscus L. Seed Oil 
	Evaluation of 7-Ketocholesterol and 7-Hydroxycholesterol Plasma Levels in Sarcopenic and Non-Sarcopenic Subjects 
	Evaluation of the Effects of Pistacia lentiscus L. Seed Oil on 7-Hydroxycholesterol-Induced Morphological Changes and Cell Death 
	Evaluation of the Effects of Pistacia lentiscus L. Seed Oil on 7-Hydroxycholesterol-Induced Oxidative Stress 
	Evaluation of the Effects of Pistacia lentiscus L. Seed Oil on 7-Hydroxycholesterol-Induced Mitochondrial Damages 
	Evaluation of the Effects of Pistacia lentiscus L. Seed Oil on 7-Hydroxycholesterol-Induced Peroxisomal Damages 
	Evaluation by Transmission Electron Microscopy of the Effects of Pistacia lentiscus L. Seed Oil on 7-Hydroxycholesterol-Induced Cellular, Mitochondrial, and Peroxisomal Changes 

	Discussion 
	Conclusions 
	References

