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Abstract: This paper presents a parameter free approach to identify the importance of reactions
(and involved species) in biochemical reaction networks for the purpose of model order reduction.
The new methodology is based on the structure of the network assuming that at steady state the
flux distribution is preserved. Our method employs Flux Balance Analysis (FBA) to calculate
these flux distributions. The ranking is based on the comparison of the FBA results of the
original and reduced networks. The main purpose of this identification step is to guide the
selection of species that could be deleted by model order reduction methods. Our ranking
method is illustrated in a model for Glycolysis, where model reduction is performed via the
Kron reduction method considering the elimination of the less sensitive species proposed by
the ranking method. The reduced model shows that the global dynamics could be accurately
reproduced with a smaller number of species.
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1. INTRODUCTION

Dynamic models of biochemical reaction networks typi-
cally consist of large sets of nonlinear ordinary differential
equations and many parameters, which complicates their
analysis. Model reduction techniques can alleviate this
complexity by decreasing the number of species, reactions
and parameters involved (Radulescu et al., 2012). Further-
more, these methods help to gain a better understanding
of the role of the constituting components of the network
and to analyze better their contribution to the response
of the system. There exist a wide variety of reduction
methods for biochemical systems (Snowden et al., 2017),
where no single method is superior to other since most
of them depend on the complexity of the system. The
main challenge in applying these methods is the selection
of the species and/or reactions to be removed in the
reduction. Such a selection, however, often requires the
kinetic rate constants and/or species concentrations to be
known, while in practice one often only knows the ranges
in which the parameters take values.

This paper introduces a ranking methodology that is solely
based on the structure of the network, and is independent
of the kinetics. In order to rank the reactions and species,
we assume that the system reaches a steady state with
a specific flux distribution. Under this assumption, we
can identify the contribution of the reactions towards the
desired steady state and assume that the low-contribution-
reactions and the species participating in them are con-
sumed by fast reactions. This is similar to the quasi-steady
state assumption (QSSA) used in different approaches of

model order reduction (e.g. time-scale separation, layered
decomposition, cf. (Snowden et al., 2017)). The main dif-
ference, however, is that our identification is performed
under different steady state conditions to mimic the be-
havior of the network. The ranking is computed as a
sensitivity index based on the comparison of the flux
distribution of the original and reduced networks, which is
computed via Flux Balance Analysis (FBA) (Varma and
Palsson, 1994). FBA is a well known tool in metabolic
engineering to reconstruct networks and to determine their
thermodynamically feasible, stationary flux distribution
based on maximization of objective functions (Kauffman
et al., 2003). Therefore, the proposed method present the
following advantages: 1. parameter-free, 2. preservation of
steady-states, 3. independent of species concentrations.

The less sensitive species from the ranking methodology
are considered as candidates to be removed in the model
order reduction procedure. In this paper, we use the
Kron reduction method presented by Rao et al. (2014)
to perform the reduction. This method simplifies a given
reaction network by deleting complexes from the complex
graph. To illustrate the idea, let us consider the following
set of reactions:

A+B⇀↽AB→P

in which A + B,AB,P are the complexes, formed by
the species A,B,AB,P . Kron reduction deletes complexes
(nodes) from this complex graph and replaces the reactions
(edges) by new ones. By removing AB, we get A+B���P .
These new reactions (the dashed arrow in the example)
in the reduced graph are computed by taking the Schur
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1. INTRODUCTION

Dynamic models of biochemical reaction networks typi-
cally consist of large sets of nonlinear ordinary differential
equations and many parameters, which complicates their
analysis. Model reduction techniques can alleviate this
complexity by decreasing the number of species, reactions
and parameters involved (Radulescu et al., 2012). Further-
more, these methods help to gain a better understanding
of the role of the constituting components of the network
and to analyze better their contribution to the response
of the system. There exist a wide variety of reduction
methods for biochemical systems (Snowden et al., 2017),
where no single method is superior to other since most
of them depend on the complexity of the system. The
main challenge in applying these methods is the selection
of the species and/or reactions to be removed in the
reduction. Such a selection, however, often requires the
kinetic rate constants and/or species concentrations to be
known, while in practice one often only knows the ranges
in which the parameters take values.

This paper introduces a ranking methodology that is solely
based on the structure of the network, and is independent
of the kinetics. In order to rank the reactions and species,
we assume that the system reaches a steady state with
a specific flux distribution. Under this assumption, we
can identify the contribution of the reactions towards the
desired steady state and assume that the low-contribution-
reactions and the species participating in them are con-
sumed by fast reactions. This is similar to the quasi-steady
state assumption (QSSA) used in different approaches of

model order reduction (e.g. time-scale separation, layered
decomposition, cf. (Snowden et al., 2017)). The main dif-
ference, however, is that our identification is performed
under different steady state conditions to mimic the be-
havior of the network. The ranking is computed as a
sensitivity index based on the comparison of the flux
distribution of the original and reduced networks, which is
computed via Flux Balance Analysis (FBA) (Varma and
Palsson, 1994). FBA is a well known tool in metabolic
engineering to reconstruct networks and to determine their
thermodynamically feasible, stationary flux distribution
based on maximization of objective functions (Kauffman
et al., 2003). Therefore, the proposed method present the
following advantages: 1. parameter-free, 2. preservation of
steady-states, 3. independent of species concentrations.

The less sensitive species from the ranking methodology
are considered as candidates to be removed in the model
order reduction procedure. In this paper, we use the
Kron reduction method presented by Rao et al. (2014)
to perform the reduction. This method simplifies a given
reaction network by deleting complexes from the complex
graph. To illustrate the idea, let us consider the following
set of reactions:

A+B⇀↽AB→P

in which A + B,AB,P are the complexes, formed by
the species A,B,AB,P . Kron reduction deletes complexes
(nodes) from this complex graph and replaces the reactions
(edges) by new ones. By removing AB, we get A+B���P .
These new reactions (the dashed arrow in the example)
in the reduced graph are computed by taking the Schur

complement of the (weighted) Laplacian matrix that en-
codes the interactions in the original complex graph. The
main attractiveness of this method is the simplicity of its
implementation and the possibility to deal with various re-
versible and irreversible enzyme kinetics, e.g. mass-action
and Michaelis-Menten kinetics.

In (Rao et al., 2014), the Kron model reduction is au-
tomated using an iterative scheme. In this scheme, the
effect on the dynamics for removing one complex from the
model via Kron reduction is measured using an integral
error. The best performing reduced model (i.e., the one
resulting in the lowest error) is then used as the (new)
model in the next iteration step. The procedure is re-
peated until a predefined criterion ”the maximal tolera-
ble error” is reached. Our proposed FBA-based ranking
method provides an alternative for this iterative scheme.
Our approach characterizes algebraically (and independent
of the kinetic parameters) the importance of species and
reactions in the generation of the output(s) of biochemical
reaction networks. Thus the reduced model can be ob-
tained without numerical integration of the dynamics and
evaluation of an error. The proposed FBA based rank-
ing method is applied, together with the Kron reduction
method, to a case study concerning yeast Glycolysis.

The remainder of the paper is as follows. Section 2 presents
the FBA ranking methodology. Section 3 described the
Kron reduction method. The case study and results are
reported in section 4. Finally section 5 concludes this work.

2. FBA-BASED RANKING METHOD

The dynamics of biochemical systems with m species are
usually described (Snowden et al., 2017; Radulescu et al.,
2012; Klamt et al., 2018) by equations of the form

ẋ = Sv(x), (1)

where x ∈ IRm
+ is the vector of non-negative species

concentrations, v : IRm
+ → IRr is the reaction rate flux

vector (kinetics) and S ∈ IRm×r the stoichiometric ma-
trix. Typically, the identification of the importance of
the species and reactions to be deleted requires detailed
knowledge about the kinetics of the system v(x). Our rank-
ing methodology is built on steady-state analysis, hence,
it only depends on the stoichiometry of the network S.
This is based on Flux Balance Analysis (FBA) (Varma
and Palsson, 1994), which helps to determine how much
a reaction contributes to reaching an specific objective.
We make use of this characteristic to rank the reactions
assuming that the flux distribution towards the objective is
preserved. In this sense, the low contribution reactions can
be assumed to be fast reactions and the species involved
are assumed to be at QSS.

The application of the FBA-based ranking method follow
several steps. Step 1 : All the reactions of the systems
must have a reactant and a product (input/output rep-
resentation) and be expressed as irreversible reactions.
Step 2 : Several objectives (the maximization of one or
several products) are introduced and evaluated via FBA
to determine the flux distribution of each objective. Step
3 : The flux distribution resulting from FBA is normalized
as yields relating the flux of the output over the flux of
an input, therewith providing a measure of input-output

sensitivity of single reactions. Step 4 : Reduced networks
are built by adding up one reaction to another reaction
with which it is connected to obtain reduced networks with
one reaction less. As the number of reactions is large, we
only consider the reactions which, combined to another,
eliminate at least one species. Step 5 : The fluxes for the
reduced network are computed and compared with the
complete one as yields. The errors on the yields provide
us a sensitivity measurement of the importance of each
reaction. Step 6 : After all the reduced networks have been
evaluated, a new normalization is performed to obtain
the ranking of the reactions. By using the stoichiometric
matrix, these results can be translated into the ranking of
the deleted species. In the next subsections, we describe in
more detail how the ranking is performed.

2.1 Flux Balance Analysis

Flux Balance Analysis (FBA) is used to analyze the flux
distribution through a metabolic network towards an spe-
cific objective in steady-state (Varma and Palsson, 1994).
The main assumption of FBA is that the networks evolve
to achieve an optimal metabolic objective. The heart of
FBA relies on the constraints imposed by the stoichiome-
try to the flow of species through the network (Kauffman
et al., 2003). This approach identifies particular flux dis-
tributions through a metabolic network by optimizing a
linear objective function (e.g. maximize growth) by means
of linear programming (Orth et al., 2010). The FBA prob-
lem is formulated as

max
v

J = wT v

s.t.

Sv = 0

vL ≤ v ≤ vu

(2)

where the solution v is at steady state (as Sv = 0) and
constrained between a lower and an upper bound, vL

and vu, respectively. The vector w specifies the weights
indicating how much each reaction contributes to the
objective function. In practice, when only one reaction is
desired for optimization, w is a vector of zeros with a one
in the position of the reaction of interest.

The main advantage of the FBA is that it does not
require any knowledge of the species concentrations, and
more importantly, the kinetics of the system (Orth et al.,
2010). Nonetheless, defining a single objective function
may not be sufficient, as metabolism seems to operate
at an optimal surface in multi-dimensional space with
competing objectives.

2.2 Selection of reactions and species reduction candidates

Let us consider the representation of the system as a
species-reaction graph (Feinberg, 2019) as,

s0 → Rk → s1 → R� → s2 → . . . (3)

in which Ri are reactions and sj are species. As species
can take part in several reactions, let us define interacting
reactions as the reactions that share at least one species.
For instance, in (3) Rk and R� are interacting reactions.
However, the interacting reactions are not always linearly
connected, as sometimes a species participates in several
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and Michaelis-Menten kinetics.
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method provides an alternative for this iterative scheme.
Our approach characterizes algebraically (and independent
of the kinetic parameters) the importance of species and
reactions in the generation of the output(s) of biochemical
reaction networks. Thus the reduced model can be ob-
tained without numerical integration of the dynamics and
evaluation of an error. The proposed FBA based rank-
ing method is applied, together with the Kron reduction
method, to a case study concerning yeast Glycolysis.

The remainder of the paper is as follows. Section 2 presents
the FBA ranking methodology. Section 3 described the
Kron reduction method. The case study and results are
reported in section 4. Finally section 5 concludes this work.
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knowledge about the kinetics of the system v(x). Our rank-
ing methodology is built on steady-state analysis, hence,
it only depends on the stoichiometry of the network S.
This is based on Flux Balance Analysis (FBA) (Varma
and Palsson, 1994), which helps to determine how much
a reaction contributes to reaching an specific objective.
We make use of this characteristic to rank the reactions
assuming that the flux distribution towards the objective is
preserved. In this sense, the low contribution reactions can
be assumed to be fast reactions and the species involved
are assumed to be at QSS.

The application of the FBA-based ranking method follow
several steps. Step 1 : All the reactions of the systems
must have a reactant and a product (input/output rep-
resentation) and be expressed as irreversible reactions.
Step 2 : Several objectives (the maximization of one or
several products) are introduced and evaluated via FBA
to determine the flux distribution of each objective. Step
3 : The flux distribution resulting from FBA is normalized
as yields relating the flux of the output over the flux of
an input, therewith providing a measure of input-output

sensitivity of single reactions. Step 4 : Reduced networks
are built by adding up one reaction to another reaction
with which it is connected to obtain reduced networks with
one reaction less. As the number of reactions is large, we
only consider the reactions which, combined to another,
eliminate at least one species. Step 5 : The fluxes for the
reduced network are computed and compared with the
complete one as yields. The errors on the yields provide
us a sensitivity measurement of the importance of each
reaction. Step 6 : After all the reduced networks have been
evaluated, a new normalization is performed to obtain
the ranking of the reactions. By using the stoichiometric
matrix, these results can be translated into the ranking of
the deleted species. In the next subsections, we describe in
more detail how the ranking is performed.

2.1 Flux Balance Analysis

Flux Balance Analysis (FBA) is used to analyze the flux
distribution through a metabolic network towards an spe-
cific objective in steady-state (Varma and Palsson, 1994).
The main assumption of FBA is that the networks evolve
to achieve an optimal metabolic objective. The heart of
FBA relies on the constraints imposed by the stoichiome-
try to the flow of species through the network (Kauffman
et al., 2003). This approach identifies particular flux dis-
tributions through a metabolic network by optimizing a
linear objective function (e.g. maximize growth) by means
of linear programming (Orth et al., 2010). The FBA prob-
lem is formulated as

max
v

J = wT v

s.t.

Sv = 0

vL ≤ v ≤ vu

(2)

where the solution v is at steady state (as Sv = 0) and
constrained between a lower and an upper bound, vL

and vu, respectively. The vector w specifies the weights
indicating how much each reaction contributes to the
objective function. In practice, when only one reaction is
desired for optimization, w is a vector of zeros with a one
in the position of the reaction of interest.

The main advantage of the FBA is that it does not
require any knowledge of the species concentrations, and
more importantly, the kinetics of the system (Orth et al.,
2010). Nonetheless, defining a single objective function
may not be sufficient, as metabolism seems to operate
at an optimal surface in multi-dimensional space with
competing objectives.

2.2 Selection of reactions and species reduction candidates

Let us consider the representation of the system as a
species-reaction graph (Feinberg, 2019) as,

s0 → Rk → s1 → R� → s2 → . . . (3)

in which Ri are reactions and sj are species. As species
can take part in several reactions, let us define interacting
reactions as the reactions that share at least one species.
For instance, in (3) Rk and R� are interacting reactions.
However, the interacting reactions are not always linearly
connected, as sometimes a species participates in several
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reactions (e.g., Isocitrate in Krebs cycle). Then, the re-
duction would be to delete the shared species (s1) and
produce the new path: s0 → Rk + R� → s2 → . . ..
Here the + indicate that the new reaction depends on
both Rk and R�. This procedure is performed with one
interacting reaction at a time considering the total number
of interacting reactions Qk for a given reaction Ri. This
sum-deletion approach implies the construction of a new
network that contains r − 1 reactions.

In this process, we must ensure that neither new species
nor pathways are created that can alter the description
of the network. Two important properties are defined and
included in the calculation of sensitivity in order to prevent
these concerns. The properties are:

• Feasibility (λ). The reduced system does not contain
new pathways and the species in the reactions that
are not inputs and outputs are either consumed or
produced. For example, let us consider the reaction
network of Fig. 1a. Species A and C are inputs
and outputs, respectively, and B and D are internal
species. Summing up R1 and R2, the reduced reaction
system is as in Fig. 1b, where the species B is never
produced, but it is consumed to form D. In this case,
the reduction is infeasible. On the contrary, adding
up R3 and R4 eliminates D and the network is still
connected showing a feasible reduction (Fig. 1c).

• Reduction capability (ω). Only the sum of reac-
tions that delete at least one species are considered.
However, if all species are eliminated (sum of re-
versible reaction), that combination is not accounted.

A B

D

C A

D

C
B

A CB

(a) (b)

(c)

R1 R2

R3 R4

R1 +R2

R3 R4

R1 R2

R3 +R4

Fig. 1. Example of Network (a) with infeasible reduction
(b) and feasible reduction (c).

These two properties are included in the sensitivity anal-
ysis as Boolean variables regarding reaction k and its
interacting reaction � as,

λk,� =

{
1, if feasible

0, otherwise
ωk,� =

{
1, if species deleted

0, otherwise

2.3 FBA-based sensitivity analysis

In order to assess the reduced networks, the method takes
advantage of FBA to measure the contribution of reac-
tions to attain a specific objective. A sensitivity index of
the reactions is calculated based on the contribution of
each reaction towards the specific objective by quantifying
the impact of its deletion on the objective. Maximizing
only one objective, however, is usually not sufficient to
represent the whole system, specially if the interest is
on the dynamic behavior (Hjersted and Henson, 2009).

To this end, it is necessary to set different objectives,
here denoted as Jj with j being the number of objective
functions. These objectives should represent the largest
possible amount of objectives that the reaction network
can attain. As the system is in an input/output represen-
tation, the maximization of different outputs (products)
and/or combinations of them are good targets.

Set the target objectives The first step is to calculate
the flux distribution of the complete reaction network
described by the stoichiometric matrix S with m species
and r reactions. This imply solving problem (2) for each
objective Jj .

Let F j be the optimal flux distribution for the objective
Jj . It is important to note that the values of Fj are fluxes
and not concentrations. Therefore, following literature ,
it is preferred to expressed those results as yields. In
order to express the results as yields and to respect an
input/output representation, the flux of the objective F j

O
is normalized with respect to the flux of an input to the
network F j

I . For the sake of simplicity, let us set the target
objective as the maximum yield Y j which is calculated as
follows:

Y j = F j
O/F

j
I . (5)

This maximum yield (target) is used to make a comparison
between the flux distribution (yield distribution) of the
complete system and the reduced system. The idea is
to rank the importance of each reaction k to attain the
desired objective Jj by the feasible elimination of one
reaction at a time.

Yields of networks with r−1 reactions FBA is performed
for each objective Jj considering each reaction k and
its addition to each � interacting reaction. This results
in computing FBA k × � times for an objective j. The

flux distribution is expressed as F
j

k,�. The results are

normalized taking the flux of the objective reaction F
j

O,k,�

over the flux of and input reaction F
j

I,k,� to get the yield
of the reduced system as,

Y
j

k,p = F
j

O,k,�/F
j

I,k,� (6)

These yields Y
j

k,� are then compared with the objective

yield Y j to build a sensitivity function.

2.4 Ranking with sensitivity

The sensitivity measurement of each reaction k is ex-
pressed as σj

rxn,k for each j objective. The ranking is
computed by means of the Root Mean Squared Error as,

σj
rxn,k =

√√√√
Qk∑
�=1

sjk,�
2
/max

(
1,

Qk∑
�=1

λk,�ωk,�

)
(7)

where

sjk,� =
Y j − Y

j

k,�

Y j
λk,�ωk,� (8)

This measurement takes into account the difference of the
reduced systems with respect to the complete one consid-
ering a feasible reduction. Furthermore, this measurement

can be extrapolated to the species via the stoichiometric
matrix S as,

σj
sp = Sσj

rxn (9)

From the results of sensitivity, the ranking method iden-
tifies which reactions and species are more sensitive to
the different objective functions. If the amount of species
to be deleted is high, a cut-off value for σj

sp could be
set according to the magnitude of the results in order to
classify the species to be deleted.

3. KRON REDUCTION METHOD

In this section we show how the ranking method presented
in Section 2 can be combined with Kron reduction to
generate reduced order models of biochemical reaction
networks. The Kron reduction method of (Rao et al.,
2014) follows the modeling approach of (van der Schaft
et al., 2015). For this approach, let c be complexes in
the biochemical reaction network associated to model (1).
These complexes relate to the m species by the complexes
stoichiometric matrix Z ∈ IRm×c, and the link between
the complexes and the reactions is defined by the incidence
matrix B ∈ IRc×r (van der Schaft et al., 2015) (One can
show that S = ZB).

With these conventions, model (1) can be written in the
form

ẋ = ZBF (x)KExp(ZTLn(x)) (10)
where the elements of the matrix K ∈ IRr×c are the mass-
action rate constants of the k reaction of the network,
and F : IRm

+ → IRr is a matrix of rational functions
comprising the denominators of the kinetics of reaction
k, which allows the utilization of different kinetics, such
as Michaelis-Menten and Hill (Rao et al., 2014). The
functions Exp(·) and Ln(·) are the component-wise natural
exponential and logarithmic functions, respectively. Define
L = L(x) := −BF (x)K. It can be easily verified that
L has non-negative diagonal elements and non-positive
off-diagonal elements. Moreover, the sum of the elements
in each column of L is equal to zero. Hence, hereafter
L ∈ IRc×c is considered as the weighted Laplacian matrix.
Substituting the definition of L in (10), the system is
expressed as,

ẋ = −Z L exp(ZT Ln(x)) (11)

The Kron reduction method performs a reduction by using
a partition of the system into the combination of the
remaining complexes R and the deleted ones D. Therefore,
the system (11) is rewritten as[

ẋR

ẋD

]
= −

[
ZR

ZD

] [
LR,R LR,D

LD,R LD,D

] [
exp(ZT

R Ln(x))
exp(ZT

D Ln(x))
.

]

(12)

In order to perform the reduction, the deleted species xD

are assumed to be at their steady state (i.e. ẋD = 0).
The reduced system is then obtained by taking the Schur
complement of the Laplacian matrix and takes the form:

ẋR = −ZR LR exp(ZT
R Ln(x)), (13)

where LR is defined as

LR = LR,R − LR,D L−1
D,D LD,R. (14)

As mentioned before, in (Rao et al., 2014), the reduction
is obtained by measuring the effect of the deletion of one

complex at a time using the integral error in an iterative
way. We use the ranking method to define the partition of
the vector of species concentrations x into xR and xD, and
then perform the reduction.

To ensure that the steady-state of the remaining species is
preserved in the reduction process, the use of the method
is restricted to complex balanced networks. Hence, its use
with intermediate complexes having more than two species
requires rewriting the system with either conservation laws
(Gasparyan et al., 2020) or clustering the species in a
complex (Rao et al., 2014).

4. CASE STUDY: YEAST GLYCOLYSIS

4.1 Description of Yeast Glycolysis Model

The implementation of the ranking method is illustrated
in a detailed kinetic model for yeast Glycolysis from liter-
ature (van Eunen et al., 2012). A schematic representation
of the metabolic network is displayed in Fig. 2. This model
considers that Glucose (Glci) is taken up by the cells
and can be metabolized via glycolysis to produce five
products: Ethanol (EtOH), Acetate, Succinate, Glycerol
and Trehalose. Ethanol and Acetate are produced from ac-
etaldehyde (AcAld), Succinate from pyruvate (PYR), and
Glycerol from TRIO which is a pool including dihydrox-
yacetone phosphate andglyceraldehyde 3-phosphate. Tre-
halose is produced from glucose 6-phosphate and it is, at
the same time, consumed to produce intracellular glucose.
The model comprises 12 ordinary differential equations to
represent the dynamics of the internal metabolites. The
detailed mathematical model can be found in van Eunen
et al. (2012).

Fig. 2. Metabolic network of yeast Glycolysis.



 Carlos Eduardo Robles-Rodriguez  et al. / IFAC PapersOnLine 54-15 (2021) 556–561 559

can be extrapolated to the species via the stoichiometric
matrix S as,

σj
sp = Sσj

rxn (9)

From the results of sensitivity, the ranking method iden-
tifies which reactions and species are more sensitive to
the different objective functions. If the amount of species
to be deleted is high, a cut-off value for σj

sp could be
set according to the magnitude of the results in order to
classify the species to be deleted.

3. KRON REDUCTION METHOD

In this section we show how the ranking method presented
in Section 2 can be combined with Kron reduction to
generate reduced order models of biochemical reaction
networks. The Kron reduction method of (Rao et al.,
2014) follows the modeling approach of (van der Schaft
et al., 2015). For this approach, let c be complexes in
the biochemical reaction network associated to model (1).
These complexes relate to the m species by the complexes
stoichiometric matrix Z ∈ IRm×c, and the link between
the complexes and the reactions is defined by the incidence
matrix B ∈ IRc×r (van der Schaft et al., 2015) (One can
show that S = ZB).

With these conventions, model (1) can be written in the
form
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complex at a time using the integral error in an iterative
way. We use the ranking method to define the partition of
the vector of species concentrations x into xR and xD, and
then perform the reduction.

To ensure that the steady-state of the remaining species is
preserved in the reduction process, the use of the method
is restricted to complex balanced networks. Hence, its use
with intermediate complexes having more than two species
requires rewriting the system with either conservation laws
(Gasparyan et al., 2020) or clustering the species in a
complex (Rao et al., 2014).

4. CASE STUDY: YEAST GLYCOLYSIS

4.1 Description of Yeast Glycolysis Model

The implementation of the ranking method is illustrated
in a detailed kinetic model for yeast Glycolysis from liter-
ature (van Eunen et al., 2012). A schematic representation
of the metabolic network is displayed in Fig. 2. This model
considers that Glucose (Glci) is taken up by the cells
and can be metabolized via glycolysis to produce five
products: Ethanol (EtOH), Acetate, Succinate, Glycerol
and Trehalose. Ethanol and Acetate are produced from ac-
etaldehyde (AcAld), Succinate from pyruvate (PYR), and
Glycerol from TRIO which is a pool including dihydrox-
yacetone phosphate andglyceraldehyde 3-phosphate. Tre-
halose is produced from glucose 6-phosphate and it is, at
the same time, consumed to produce intracellular glucose.
The model comprises 12 ordinary differential equations to
represent the dynamics of the internal metabolites. The
detailed mathematical model can be found in van Eunen
et al. (2012).

Fig. 2. Metabolic network of yeast Glycolysis.
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Fig. 3. Sensitivity of the reactions involved in yeast gly-
colysis

4.2 Ranking results

The first step in the sensitivity analysis is to write the
system with irreversible reactions as it is displayed in Fig.
2. Then, the objective functions that will be used for FBA
need to be defined. Based on an input/output representa-
tion, we consider that the metabolism will prioritize the
production of the products. Hence, the objective func-
tions were defined as the maximization of the production
of Ethanol (EtOH), Glycerol (GLY), Succinate (SUC),
Acetate (ACT) and Trehalose (TREA). Additionally, we
assumed that the cofactors NAD, NADH, ADP and ATP
cannot be eliminated in order to avoid energetic imbal-
ances in the network. The computation of the sensitivity
of reactions and species was performed with equations
(7) and (9). The ranking of the reactions is displayed in
Fig. 3 at a scale ranging from 0 not important, to 1 very
important/necessary. As it can be observed, there is a large
difference in the reactions that are important (values close
to 1) and the ones least important (values close to 0).
Reactions R5, R6, R12, R13, R14, R15, R16, R17, R19 and
R21 have values close to 0, which means that they do not
contribute to the maximization of the defined objectives.
Some of these reactions are the backwards reactions of the
production of a species specified as objective (i.e., R21).
Interestingly reactions R10 and R11, corresponding to
the transformation of TRIO into glucose 1,6-biphosphate
(BPG) are not important for maximizing Succinate.

The sensitivity of the species is presented in Fig. 4. It
is observed that the most important variables are the
cofactors NAD and NADH followed by TRIO which is
the branching point to produce Glycerol or the rest of
the products. A cut-off value was set to 0.4 to distinguish
the less important species (in this case also equivalent to
complexes). The species that were below that threshold
corresponded to P3G, P2G, F6P, PEP and G6P, which
were the strongest candidates for the reduction. It is worth
noting that although the initial glucose (Glco) and the
products have low sensitivity, they cannot be considered
for elimination to keep the input/output representation.
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Fig. 4. Sensitivity of the species involved in yeast Glycol-
ysis

Table 1. Initial Conditions (IC) and Steady
state (SS) values for Glycolysis model. Units

in mM.

Species IC SS Species IC SS

Glci 0.057 0.623 P2G 0.161 0.041
G6P 0.121 1.384 PEP 0.982 0.054
F6P 0.026 0.304 PYR 0.503 1.571
F16P 0.093 11.95 AcAld 13.0 12.99
TRIO 0.336 3.816 NADH 0.0003 0.0015
BPG 0.0009 0.003 NAD 1.589 1.588
P3G 0.946 0.611

4.3 Model order reduction results

The ODE model and the parameters described in (van
Eunen et al., 2012) were used for the complete model
which was written in the form of (11). The Kron reduction
method has been implemented to built reduced models
with combinations of candidate species in order to test the
impact in the dynamics when those species are eliminated.
From the ranking method, the candidate species to be
eliminated species were P3G, P2G, F6P, PEP and G6P.
Following (van Eunen et al., 2012), the reduction was
applied to a glucose up-shift in which the concentrations
of Glucose are 0.2 mM and 0.5 mM for t < 0 and t ≥ 0,
respectively. The concentrations of ATP corresponded to
5 mM and 2.5 mM for the same intervals. Furthermore, it
is assumed that the model is at steady state at t < 0.

The initial conditions and the steady state values of the
species are reported in Table 1. In order to assess the
reduction, two criteria have been considered: the Integral
error (Rao et al., 2014) and the Root Mean Squared
Relative Errors (RMSEr) (Apri et al., 2012), which are
calculated as in equations (15) and (16), respectively.

I =
∑

h∈M1

1

τn(M1)

∫ τ

0

∣∣∣∣1−
xh,R(t)

xh(t)

∣∣∣∣ dt (15)

RMSEr =

√√√√ 1

N

∑
h∈M1

(
xh(t)− xh,R(t)

xh(t)

)2

(16)

Table 2. Results of the reduction with different
combinations.

Number Deleted species RMSEr I

1 P3G, P2G, F6P 0.186 0.027
2 P3G, P2G, F6P, G6P 0.248 0.054
3 P3G, P2G, F6P, PEP 0.452 0.097
4 P3G, P2G, F6P, G6P, PEP 0.482 0.127

M1 correspond to the measured species or the species that
are significant for the reduction under the desired interval
[0,τ ]. The terms xh,R(t) and xh(t) are the concentrations
of the M1 species at time t in the reduced and complete
model, respectively.

Four different combinations have been tested based on the
ranking of the species, where the least sensitive species
(P3G, P2G, F6P) have been considered to have a negligible
impact in the reduction. As the model only represents the
dynamics of the internal metabolites, the set of significant
species M1 has been set to the metabolites closer to the
inputs/outputs and the most sensitive species: Glci, F16P,
TRIO, PYR, AcAld and NADH. The combinations and
the results of the reduction performance are presented
in Table 2. All the reductions present small values for
RMSEr and I. Therefore, the reduced model 4 which
deletes the largest amount of species or complexes is se-
lected as the best reduction. The results of reduced model
4 compared against the complete model are displayed in
Fig. 5. It is worth noting that the deleted species take a
constant value corresponding to their steady state value. A
good agreement is observed between the transient behavior
of most of the variables. The main difference is for AcAld
where the deletion of PEP induces a change in the dynam-
ics, but the steady state is well preserved. The same model
for Glycolysis has been reduced by Rao et al. (2014) using
the iterative Kron reduction method. Their final reduced
model is the same as the one obtained in this paper. In
their implementation they have chosen other complexes
like F16P, which after their iterative procedure they have
found that it was an important complex and they could
not deleted. Our ranking method, however, has identified
beforehand that F16P cannot be deleted. It is important
to note that when PEP is included, both error measures
(I and RMSEr) increase. This highlights that although
the steady state analysis provided by the ranking method
simplifies the selection of the candidates to be deleted, the
test of the dynamics is required.

5. CONCLUSIONS

We presented a method for ranking the reactions of a net-
work and selecting the candidate species to be deleted by
model reduction methods. Our selection method requires
only knowing the structure of the network (parameter
free). The selection is made based on the (relative) sen-
sitivity of the reactions in flux distribution at pre-defined
objectives. The implementation of the method is shown to
be efficient in the identification of the candidate species
and complexes to be deleted. Implemented together with
the Kron reduction method a reduction of 5 complexes out
of 12 was possible in the presented case study.
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Table 2. Results of the reduction with different
combinations.

Number Deleted species RMSEr I

1 P3G, P2G, F6P 0.186 0.027
2 P3G, P2G, F6P, G6P 0.248 0.054
3 P3G, P2G, F6P, PEP 0.452 0.097
4 P3G, P2G, F6P, G6P, PEP 0.482 0.127

M1 correspond to the measured species or the species that
are significant for the reduction under the desired interval
[0,τ ]. The terms xh,R(t) and xh(t) are the concentrations
of the M1 species at time t in the reduced and complete
model, respectively.

Four different combinations have been tested based on the
ranking of the species, where the least sensitive species
(P3G, P2G, F6P) have been considered to have a negligible
impact in the reduction. As the model only represents the
dynamics of the internal metabolites, the set of significant
species M1 has been set to the metabolites closer to the
inputs/outputs and the most sensitive species: Glci, F16P,
TRIO, PYR, AcAld and NADH. The combinations and
the results of the reduction performance are presented
in Table 2. All the reductions present small values for
RMSEr and I. Therefore, the reduced model 4 which
deletes the largest amount of species or complexes is se-
lected as the best reduction. The results of reduced model
4 compared against the complete model are displayed in
Fig. 5. It is worth noting that the deleted species take a
constant value corresponding to their steady state value. A
good agreement is observed between the transient behavior
of most of the variables. The main difference is for AcAld
where the deletion of PEP induces a change in the dynam-
ics, but the steady state is well preserved. The same model
for Glycolysis has been reduced by Rao et al. (2014) using
the iterative Kron reduction method. Their final reduced
model is the same as the one obtained in this paper. In
their implementation they have chosen other complexes
like F16P, which after their iterative procedure they have
found that it was an important complex and they could
not deleted. Our ranking method, however, has identified
beforehand that F16P cannot be deleted. It is important
to note that when PEP is included, both error measures
(I and RMSEr) increase. This highlights that although
the steady state analysis provided by the ranking method
simplifies the selection of the candidates to be deleted, the
test of the dynamics is required.

5. CONCLUSIONS

We presented a method for ranking the reactions of a net-
work and selecting the candidate species to be deleted by
model reduction methods. Our selection method requires
only knowing the structure of the network (parameter
free). The selection is made based on the (relative) sen-
sitivity of the reactions in flux distribution at pre-defined
objectives. The implementation of the method is shown to
be efficient in the identification of the candidate species
and complexes to be deleted. Implemented together with
the Kron reduction method a reduction of 5 complexes out
of 12 was possible in the presented case study.
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