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Dormancy release and bloom time of sweet cherry cultivars depend on the environment

and the genotype. The knowledge of these traits is essential for cultivar adaptation

to different growing areas, and to ensure fruit set in the current climate change

scenario. In this work, the major sweet cherry bloom time QTL qP-BT1.1m (327 Kbs;

Chromosome 1) was scanned for candidate genes in the Regina cv genome. Six MADS-

box genes (PavDAMs), orthologs to peach and Japanese apricot DAMs, were identified

as candidate genes for bloom time regulation. The complete curated genomic structure

annotation of these genes is reported. To characterize PavDAMs intra-specific variation,

genome sequences of cultivars with contrasting chilling requirements and bloom times (N

= 13), were then mapped to the ‘Regina’ genome. A high protein sequence conservation

(98.8–100%) was observed. A higher amino acid variability and several structural

mutations were identified in the low-chilling and extra-early blooming cv Cristobalina.

Specifically, a large deletion (694 bp) upstream of PavDAM1, and various INDELs and

SNPs in contiguous PavDAM4 and -5UTRs were identified. PavDAM1 upstream deletion

in ‘Cristobalina’ revealed the absence of several cis-acting motifs, potentially involved

in PavDAMs expression. Also, due to this deletion, a non-coding gene expressed in

late-blooming ‘Regina’ seems truncated in ‘Cristobalina’. Additionally, PavDAM4 and -5

UTRs mutations revealed different splicing variants between ‘Regina’ and ‘Cristobalina’

PavDAM5. The results indicate that the regulation of PavDAMs expression and

post-transcriptional regulation in ‘Cristobalina’ may be altered due to structural mutations

in regulatory regions. Previous transcriptomic studies show differential expression of

PavDAM genes during dormancy in this cultivar. The results indicate that ‘Cristobalina’

show significant amino acid differences, and structural mutations in PavDAMs, that

correlate with low-chilling and early blooming, but the direct implication of these

mutations remains to be determined. To complete the work, PCR markers designed for
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the detection of ‘Cristobalina’ structural mutations in PavDAMs, were validated in an F2
population and a set of cultivars. These PCR markers are useful for marker-assisted

selection of early blooming seedlings, and probably low-chilling, from ‘Cristobalina’,

which is a unique breeding source for these traits.

Keywords: Prunus avium L, chill requirement, blooming, DAMs, gene expression regulation, non-coding gene,

UTRs, breeding

INTRODUCTION

Adequate blooming and pollination are essential for fruit
set in sweet cherry (Prunus avium L.) and other fruit tree
species. Temperate climate fruit trees such as sweet cherry
go through a dormancy period in which meristem growth is
inactive (Lang et al., 1987; Rohde and Bhalerao, 2007). This
occurs before the blooming season to prevent winter damage
due to frost and low temperatures. Dormancy is divided into
three stages: paradormancy and endodormancy, in which bud
growth is inhibited during autumn and winter seasons, and
ecodormancy, in which bud growth is resumed under more
favorable climatic conditions in late winter and early spring
(Lang et al., 1987). The length of the dormant period depends
on the environmental temperatures since determined amounts
of chill and heat (Chilling and Heat requirements) are needed
to complete endodormancy and ecodormancy before bud burst
(Cooke et al., 2012). These requirements are specific to each
genotype and vary according to the environmental conditions
(Alburquerque et al., 2008). Both chilling and heat requirements
influence blooming, however, several studies in Prunus species
have reported that chilling requirement is the major determinant
of bloom time (Alburquerque et al., 2008; Fan et al., 2010;
Campoy et al., 2011; Castède et al., 2014).

Dormancy release, chilling requirement, and bloom time are
relevant traits for cultivar adaptation to the growing area and to
ensure an adequate fruit set. As many cherry cultivars are self-
incompatible, blooming has to be synchronized between cultivars
planted in the same vicinity. Late season blooming allows for
the avoidance of spring frosts in cold regions. Cultivars with
low chilling requirements are useful to adapt to temperature rise
in the actual context of climate change. Additionally, cultivars
with low chilling requirements can be used to extend cultivation
to warmer areas, thus extending cultivation further away from
traditional cultivation regions. Several works have investigated
the physiology and the genetics of these traits in sweet cherry
and other fruit tree species (reviewed in Abbott et al., 2015;
and Fadón and Rodrigo, 2018). In sweet cherry, genetic analyses
have revealed that bloom time is a quantitative trait with very

Abbreviations: AGL24, AGAMOUS-LIKE 24; BAM, Binary Alignment Map;

CBF, C-Repeat Binding Factors; cv, cultivar; DAM, Dormancy associated MADS-

box; DDBJ, DNA Data Bank of Japan; EVG, ever-growing peach mutant; GFF,

General File Format; IGV, Integrative Genomics Viewers; LG, linkage group;

MCL, MaximumComposite Likelihood; NCBI, National Center for Biotechnology

Information; PavD1UM, PavDAM1 Upstream Mutation; PavD4/5, PavDAM4 and

-5 mutation; PCR, polymerase chain reaction; QTL, quantitative trait locus; SVP,

SHORT VEGETATIVE PHASE; TBE, Tris-Borate-EDTA buffer.

high heritability (Dirlewanger et al., 2012; Castède et al., 2014;
Calle et al., 2020). In this species, major quantitative trait loci
(QTLs) associated with bloom time have been identified on
linkage groups (LGs) 1, 2, and 4 (Dirlewanger et al., 2012;
Castède et al., 2014; Calle et al., 2020). In other Prunus species,
like almond (Prunus amygdalus L.), peach [Prunus persica (L).
Batsch] and Japanese apricot (Prunus mume L.), main bloom
time QTLs have also been mapped on the orthologous regions
of LG1 (Fan et al., 2010; Zhebentyayeva et al., 2014; Bielenberg
et al., 2015) and LG4 (Dirlewanger et al., 2012; Sánchez-Pérez
et al., 2012; Kitamura et al., 2018). In the same region of LG1,
stable and significant QTLs associated with chilling requirements
in almond, peach, and sweet cherry have also been detected
(Fan et al., 2010; Sánchez-Pérez et al., 2012; Castède et al., 2014;
Bielenberg et al., 2015). This LG1 QTL region overlaps with a
deletion in the evergrowing (EVG) peach mutant, which does
not enter dormancy (Rodriguez et al., 1994). A tandem repeat
of six MADS-box genes, named dormancy-associated MADS-
box (DAM), was identified in this LG1 region, four of them
being deleted in the EVG mutant (Bielenberg et al., 2008),
reveling the potential involvement of these genes in dormancy
control of Prunus species. In sweet cherry, DAM5 and -6 have
also been mapped on LG1, overlapping with the main bloom
time and chilling requirement QTL of this LG (Castède et al.,
2015). In other Rosaceous species, like apple and pear, a variable
number of DAM gene have also been reported (Saito et al.,
2013; Mimida et al., 2015), some of them overlapping with
regions in which bloom time QTLs for these species were found
(Allard et al., 2016).

In different plant species, MADS-box transcription factors
have been reported as strong candidate genes for the genetic
control of blooming and temperature responses (Gramzow
and Theissen, 2010). MADS-box genes play fundamental roles
in pathways involved in the transition from vegetative to
reproductive phases, growth, floral organ determination, and
other processes related to root, leaf, fruit, and gametophyte
development (Becker and Theißen, 2003;Messenguy andDubois,
2003; Smaczniak et al., 2012). The DAM genes reported in sweet
cherry, peach, Japanese apricot, and European plum (Prunus
domestica L.) belong to MIKCc Type II of MADS-box genes and
are phylogenetically related toArabidopsis SHORTVEGETATIVE
PHASE (SVP) and AGAMOUS-LIKE 24 (AGL24) genes, which
have been reported as main floral regulators (Jiménez et al., 2009;
Sasaki et al., 2011; Quesada-Traver et al., 2020; Wang et al.,
2020). Analyses of DAM gene expression levels in Prunus species
have shown a similar pattern in different years and correlations
with photoperiod and temperature changes (Falavigna et al.,
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2019), suggesting that these genes are the main regulators of the
dormancy cycle in Prunus species (Yamane, 2014). Maximum
expression levels of DAM1 to -4 were observed during bud
set, suggesting a role in the regulation of growth cessation
and bud formation in peach and Japanese apricot (Li et al.,
2009; Sasaki et al., 2011; Zhang et al., 2018). On the other
side, DAM5 and -6 showed the highest expression level in the
winter season during induction and maintenance of dormancy
and minimal or absent expression during the budbreak and
bloom time (Jiménez et al., 2010; Yamane et al., 2011; Leida
et al., 2012; Prudencio et al., 2018). Therefore, down-regulation
of DAM5 and -6 during the winter season, with minimum
expression level when chilling requirements are fulfilled, is
compatible with the role of dormancy release repressor of DAM
genes in Prunus species (Sasaki et al., 2011). In sweet cherry,
expression patterns of these genes have been reported. DAM1,
-3, and -6 were highly expressed during paradormancy and at
the beginning of endodormancy, whereas DAM4 and -5 showed
an expression peak at the end of endodormancy and chilling
requirement fulfillment (Vimont et al., 2019, 2020; Villar et al.,
2020; Wang et al., 2020). In the low chilling requirement, sweet
cherry cultivar ‘Cristobalina’, a low expression level of PavDAM1,
PavDAM4, and PavDAM5 during the dormancy period was
observed compared with the expression pattern of high chill-
requirements cultivars for these genes (Vimont et al., 2019).
Similarly, in other low chilling sweet cherry cultivar, ‘Royal
Lee’, a low expression level of PavDAM1, especially during the
chilling accumulation, compared with the expression pattern
of high chill-requirement cultivar was reported (Wang et al.,
2020). Epigenetic modification and the evolution of transcript
levels during dormancy were evaluated for DAM3 and -5
in the sweet cherry cultivar ‘Bing’ (Rothkegel et al., 2017),
revealing the involvement of siRNAs and DNA methylations
in the silencing of DAM3 during chilling accumulation and
dormancy release.

In Calle et al. (2020), bloom time in sweet cherry was evaluated
during 4 years using a multi-family QTL approach. In this work
plant materials included populations that descend from cultivars
with very low to high chilling requirements. These populations
derive from self- and cross-pollination of ‘Cristobalina’, a cultivar
with very low chilling requirement (<500 h) and extra-early
flowering and maturity dates (Tabuenca, 1983; Alburquerque
et al., 2008; Calle and Wünsch, 2020; Calle et al., 2020).
This cultivar is of breeding interest due to these traits and
other relevant characters like self-compatibility (Wünsch and
Hormaza, 2004; Ono et al., 2018). Bloom time QTL analysis
for these plant materials revealed that the highest percentage
of phenotypic variation was explained by QTLs on LGs 1
(qP-BT1.1m) and 2 (qP-BT2.1m). The QTL detected on LG1
overlaps with a chilling requirement QTL previously reported
on Prunus LG1 (Fan et al., 2010; Sánchez-Pérez et al., 2012;
Castède et al., 2014; Bielenberg et al., 2015), and with DAM
genes mapped in this region in sweet cherry, Japanese apricot
and peach (Bielenberg et al., 2008; Sasaki et al., 2011; Castède
et al., 2015). Moreover, haplotype analyses of this QTL showed
that ‘Cristobalina’ was the only cultivar with alleles contributing
to early blooming (Calle et al., 2020). Since early blooming in this

plantmaterial is believed to be due to low chilling requirements in
‘Cristobalina’, candidate genes from these QTLs may be involved
in chilling requirement control.

The objective of this work is to confirm and characterize
DAM genes as candidate genes in sweet cherry major bloom time
QTL on LG1 using the sweet cherry genome sequence recently
available, to investigate the genomic structure of these genes in
the species, and to uncover variation of these candidate genes in
cultivars with contrasting chilling requirements and bloom times
(including ‘Cristobalina’). Intraspecific variation of PavDAM
genes has not been previously investigated in sweet cherry and
this study may allow us to identify polymorphisms associated
with the phenotypic variation in the plant material studied. This
knowledge may be further used to develop markers for assisted
selection of these traits from this plant material. Furthermore,
these results may help to broaden the understanding of dormancy
regulation in sweet cherry and other Prunus species by improving
our knowledge of these candidate genes.

MATERIALS AND METHODS

Plant Materials and Sequence Resources
Sequence Resources

Sweet cherry cultivar ‘Regina’ genome (Le Dantec et al., 2020)
was used for QTL candidate gene mining and annotation. This
genome was also employed in the rest of the experiments as
a sweet cherry reference genome. For phylogenetic analysis,
nucleotide sequences of peach DAM genes [PpeDAM1
(ABJ96361), PpeDAM2 (ABJ96363), PpeDAM3 (ABJ96364),
PpeDAM4 (ABJ96358), PpeDAM5 (ABJ96359), and PpeDAM6
(ABJ96360)] and Japanese apricot DAM genes [PmuDAM1
(BAK78921), PmuDAM2 (BAK78922), PmuDAM3 (BAK78923),
PmuDAM4 (BAK78924), PmuDAM5 (BAK78920), and
PmuDAM6 (BAH22477)] were compared. For the study of
intraspecific variation of PavDAMs, the genome sequences of 13
cultivars (Illumina HiSeq 2500 and 4000 systems; DDBJ; SRA
bioproject ID PRJDB6734), previously generated by Ono et al.
(2018), were downloaded and aligned to the reference genome.

Plant Materials

For PavDAM mutation characterization and marker validation,
two sets of plant materials were used. One is a collection
of sweet cherry cultivars (N = 72; Table 1), from “CITA de
Aragón” cultivar and germplasm collection (Zaragoza, Spain).
This sample includes landraces and bred cultivars from different
genetic backgrounds and variable chilling requirements and
bloom dates. Some of these cultivars were only utilized
for marker validation, while others were also analyzed for
PavDAM mutation characterization (see Table 1). The other
set of plant materials is an F2 population (B×C2; N =

61) from the self-pollination of selection ‘BC8’ (‘Brooks’
× ‘Cristobalina’; Calle et al., 2020). This population was
only used for marker validation. Genomic DNA from all
plant materials evaluated for genetic analyses was extracted
from young leaves using DNeasy Plant Mini kit (Qiagen,
MD, USA). DNA quantity and quality were assayed using
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TABLE 1 | PavD1UM and PavD4/5M (PavDAM1 and PavDAM4,-5 structural mutations, respectively) PCR marker genotypes of 72 sweet cherry cultivars and accessions.

Cultivar Pedigreea and origin Bloom

timeb

Chilling req.

(Chilling

hours)c

PavD1UM

(∼size bp)

PavD4/5M

(∼size bp)

Experimental section

(as sequence resources/

as plant materials)

Cristobalina Unknown (Spain) Extra-early 176 900 850 IV, CSM, VDM

Royal Lee 6HB488 o.p. (USA) Extra-early 400 900 850 VDM

Temprana de Sot Unknown (Spain) Extra-early 900 850 VDM

Son Perot Unknown (Spain) Early 900/1600 750/850 VDM

BC-8 Brooks × Cristobalina (Spain) Early 900/1600 750/850 VDM

De Mango Largo Unknown (Spain) Medium 900/1600 750/850 VDM

Brooks Rainier × Early Burlat (USA) Early 411 1600 750 IV, VDM

Burlat Unknown (France) Early 618 1600 750 VDM

Chinook Bing × Gilpeck (USA) Early 1600 750 VDM

Corum (USA) Early 1600 750 VDM

De Angelin Unknown (Spain) Early 1600 750 VDM

Earlise Starking Hardy Giant × Burlat (France) Early 981 1600 750 VDM

Early Bigi Early 1600 750 VDM

Fercer Stark Hardy Giant o.p. (France) Early 1600 750 VDM

Lapins Van × Stella (Canada) Early 450 1600 750 VDM

Larian Lambert × (Bing × Bush Tartarian) (USA) Early 450 1600 750 VDM

Newstar Van × Stella (Canada) Early 709 1600 750 VDM

Precoce Bernard Unknown (France) Early 1600 750 VDM

Prime Giant Early 1600 750 VDM

Primulat Fercer o.p. (France) Early 1600 750 VDM

Rainier Bing × Van (USA) Early 1600 750 IV, VDM

Ramón Oliva Unknown (France) Early 900 1600 750 VDM

Rubi Early 618 1600 750 VDM

Royalton NY1725 o.p. (USA) Early 1600 750 VDM

Samba 2E-84-10 × Stella 16A7 (Canada) Early 1600 750 VDM

Sommerset Van × Vic (USA) Early 1600 750 VDM

Talegal Ahim Unknown (Spain) Early 1600 750 VDM

Talegal Almedijar Unknown (Spain) Early 1600 750 VDM

Tieton Stella x Early Burlat (USA) Early 1600 750 VDM

Tigre Unknown (France) Early 900 1600 750 VDM

Ambrunés Unknown (Spain) Medium 1000 1600 750 IV, VDM

Bing Black Republican o.p. (USA) Medium 1000 1600 750 VDM

Compact Stella Irradiated Stella (Canada) Medium 1600 750 VDM

Cristalina Star × Van (Canada) Medium 1600 750 VDM

Early Van Compact Irradiated Van (Canada) Medium 1600 750 VDM

Garrafal de Monzón Unknown (Spain) Medium 1600 750 VDM

Garrafal del Jerte Unknown (Spain) Medium 1600 750 VDM

Gilpeck Napoleon × Giant (USA) Medium 1600 750 VDM

Hartland Windsor o.p. (USA) Medium 1600 750 VDM

Llucmayor Unknown (Spain) Medium 1600 750 VDM

Pico Colorado Unknown (Spain) Medium 1000 1600 750 VDM

Pico Negro Unknown (Spain) Medium 1600 750 VDM

Ripoll Unknown (Spain) Medium 1600 750 VDM

Santina Stella × Summit (Canada) Medium 1600 750 VDM

Satonishiki (Japan) Medium 1600 750 IV, VDM

Sonata Lapins × 2N-39-5 (Canada) Medium 1600 750 VDM

(Continued)
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TABLE 1 | Continued

Cultivar Pedigreea and origin Bloom

timeb

Chilling req.

(Chilling

hours)c

PavD1UM

(∼size bp)

PavD4/5M

(∼size bp)

Experimental section

(as sequence resources/

as plant materials)

Star “Deacon” o.p. Medium 1600 750 VDM

Sue Bing × Schmidt (Canada) Medium 1600 750 IV, VDM

Taleguera Brillante Unknown (Spain) Medium 1000 1600 750 VDM

Van Spur Medium 1600 750 VDM

Van “Empress Eugenie” o.p. (Canada) Medium 1000 1600 750 VDM

Vega Bing × Victor (Canada) Medium 1600 750 VDM

Belge Unknown (France) Late 1600 750 VDM

BlackGold Late 1600 750 VDM

Blanca de Provenza Unknown (Unknown) Late 1600 750 VDM

De la Rosa Unknown (Spain) Late 1600 750 VDM

Ferrovia (Italy) Late 1600 750 IV, VDM

Hedelfinger Unknown (Germany) Late >1100 1600 750 IV, VDM

Lambert Napoleon × Blackheart (USA) Late >1100 1600 750 IV, VDM

Garrafal de Lerida Unknown (Spain) Late 1600 750 VDM

Napoleon Unknown Late >1100 1600 750 IV, VDM

Sandon Rose (Canada) Late 1600 750 VDM

Sylvia Van × Sam (Canada) Late 1600 750 VDM

Vic Bing × Schmidt (Canada) Late 1600 750 IV, VDM

Villalengua Unknown (Spain) Late 1600 750 VDM

Blanca Italiana Unknown (Spain) Very late 1600 750 VDM

Colney Unknown (UK) Very late 1600 750 VDM

Manola Unknown (Spain) Very late 1600 750 VDM

Margit “Germersdorfer” o.p. (Hungary) Very late 1600 750 VDM

Regina Schneiders Späte Knorpel × Rube

(Germany)

Very late >1100 1600 750 MAS, IV, VDM, CSM

Sam (Windsor o.p.) o.p. (Canada) Very late 1600 750 IV, VDM

Summit Van × Sam (Canada) Very late 1600 750 IV, VDM

Available data of pedigree, origin, chilling requirements, and bloom time of each cultivar/accession is also included.
aData from Wünsch and Hormaza (2002) and Schuster (2012) except for ‘Royal Lee’ (data from US Patent No. 12417).
bData from Gella et al. (2001), Quero-García et al. (2017), and authors data.
cData from Fadón et al. (2020).

MAS, Mining, annotation, and structural analyses of candidate genes; IV, Intra-specific variation of PavDAMs; CSM, Characterization of PavDAMs structural mutations; VDM, Validation

of DNA-markers of PavDAMs structural mutations; o.p., Open pollination.

NanoDrop ND-1000 spectrophotometer (Thermo Scientific,
DE, USA).

Mining, Annotation, and Structural
Analyses of Candidate Genes in Major
Bloom Time QTL (qP-BT1.1m)
Coding DNA sequences of predicted genes in region
Chr01_49296241:49622837 (326,596 bp) were extracted from
‘Regina’ sweet cherry genome. This region spans a previous
main bloom time QTL in sweet cherry, qP-BT1.1m (Calle et al.,
2020). The protein sequences of the predicted genes annotated
in this region were blasted against the NCBI non-redundant
protein sequences (nr) database using the BLASTP algorithm
to obtain the corresponding gene ontologies. For each gene, we
searched for bibliographic evidence (annotation and predicted
function) that led to information associated with their potential
involvement in bloom time and chilling requirement. Curation

of the structural annotation was performed from the ‘Regina’
genome annotation using BLAST analysis, motif detection, and
public ‘Regina’ RNAseq data from Vimont et al. (2019). The
original gene nomenclature was conserved.

Sweet cherry DAM genes sequences and the GFF (General
Feature Format) annotation file containing the exon-intron
structure of these genes were retrieved from the ‘Regina’
genome database. These files were uploaded into the Integrative
Genomics Viewers (IGV) software (Thorvaldsdóttir et al., 2013)
to double-check structure with their ortholog genes in peach
genome v2.0.a1 (Verde et al., 2017). Manual sequence editing was
done to correct the automatic annotation if needed, conserving
an adequate intron splicing prediction.

Phylogenetic Analysis of PavDAMs
Phylogenetic analysis of dormancy-associated MADS-box genes
(DAM1 to 6) from peach (Bielenberg et al., 2008), Japanese
apricot (Sasaki et al., 2011), and sweet cherry (this work)
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was conducted using MEGA X (Kumar et al., 2018). Multiple
sequence alignment was carried out before tree construction
using the MUSCLE algorithm (Edgar, 2004). The evolutionary
history was inferred by using the Maximum Likelihood method
and Tamura-Nei model (Tamura and Nei, 1993). Phylogenetic
analysis was estimated using a bootstrap value of 1000, and the
tree with the highest log likelihood was selected. Heuristic search
for the initial tree was automatically obtained by using Neighbor
Joining (NJ) and BioNJ algorithms to a matrix of pairwise
distances estimated by the Maximum Composite Likelihood
(MCL) approach, then the topology with superior log likelihood
value was selected.

Intraspecific Variation of PavDAMs
Sequences in Cultivars With Large
Phenotypic Variation
Genome sequences of 13 sweet cherry cultivars (‘Ambrunés’,
‘Brooks’, ‘Cristobalina’, ‘Ferrovia’, ‘Hedelfingen’, ‘Lambert’,
‘Napoleon’, ‘Rainier’, ‘Sam’, ‘Satonishiki’, ‘Sue’, ‘Summit’, and ‘Vic’)
were used for genome sequence alignment. Genomic DNA-seq
libraries (Ono et al., 2018), were downloaded and aligned
using the Galaxy software framework (Afgan et al., 2018). Raw
sequence data were processed using the SLIDINGWINDOW
operation from Trimmomatic v0.36.6 (Bolger et al., 2014)
to remove adapter sequences and to obtain clean sequence
data. A FASTQ file for each cultivar containing clean reads
was then aligned to the ‘Regina’ genome. The whole-genome
sequence was targeted for alignment using the Bowtie 2 tool
(Langmead and Salzberg, 2012) with default parameters.
The consensus sequence of each cultivar was extracted from
Binary Alignment Map (BAM) file using Geneious 11.1.5
software (Biomatters Ltd, Auckland, NZ). A target region
of 69,179 bp in the ‘Regina’ genome, spanning the PavDAM
genes (1,500 bp upstream of PavDAM1 start codon to 1,500
bp downstream of PavDAM6 stop codon), was analyzed in
all the cultivars. Visual inspection was carried out to search
for putative structural mutations. The full-length amino acid
sequence of the six DAM genes from the 13 aligned sweet
cherry cultivars was deduced and compared. The comparison
was carried out by multiple amino acid sequence alignment
using the ClustalW algorithm implemented in Geneious 11.1.5
software (Biomatters Ltd, Auckland, NZ). The percentage of
identity between DAM genes of each cultivar was calculated
as the percentage of identical amino acids between each pair
of cultivars.

Characterization of PavDAMs Structural
Mutations in Low-Chilling and Early
Blooming Cultivars
To confirm the presence of the putative structural mutations
detected in ‘Cristobalina’ PavDAMs by in silico sequence
comparison, primers flanking these regions were designed
(PavD1UM: PavDAM1 Upstream Mutation; PavD4/5M:
PavDAM4 and -5 mutation). These PCR primers were
designed in conserved regions observed in multiple cultivar
alignments of these genes. PCR analyses using primer

combinations PavD1UMr-PavD1UMf and PavD4/5Mr-
PavD4/5Mf (Supplementary Table 1) were initially carried
out in 14 cultivars (Table 1). The cultivars analyzed were
those for which genome sequences were available (‘Ambrunés’,
‘Brooks’, ‘Cristobalina’, ‘Ferrovia’, ‘Hedelfingen’, ‘Lambert’,
‘Napoleon’, ‘Rainier’, ‘Regina’, ‘Sam’, ‘Satonishiki’, ‘Sue’, ‘Summit’,
and ‘Vic’). PCR analysis was carried out as described in
Cachi and Wünsch (2014) using the following program:
4min at 94◦C; 35 cycles of 45 s at 94◦C, 45 s 59◦C, and 2min
at 72◦C; and a final step of 7min at 72◦C. PCR products
were analyzed by agarose gel electrophoresis in 1.7% TBE
and stained with GelRed R© Nucleic Acid Stain (Biotium,
CA, USA).

To characterize the genomic mutations identified
in ‘Cristobalina’ PavDAMs, Sanger sequencing of PCR
products (D1Sf-D1Sr and PavD4/5Mr-PavD4/5Mf;
Supplementary Table 1) was carried out using ‘Cristobalina’
and ‘Regina’ DNA. PCR reactions were performed as described
above. PCR products were purified and sequenced by STAB
VIDA (Lisbon, Portugal). Sequencing of PCR products of each
cultivar was repeated at least twice with each forward and reverse
primer. All sequences were trimmed to eliminate low-quality
nucleotides, and sequences from each cultivar were aligned to
construct the consensus sequence of each cultivar (‘Cristobalina’
and ‘Regina’). These consensus sequences were then aligned for
comparison. All sequences visualizing, editing, and alignments,
as well as primers design, were carried out using Geneious 11.1.5
(Biomatters Ltd, Auckland, NZ).

Plant cis-acting regulatory DNA elements were searched
upstream of ‘Regina’ PavDAM1, in the region covering the large
deletion in ‘Cristobalina’. This search was performed using the
PLACE database (https://www.dna.affrc.go.jp/PLACE/?action=
newplace; Higo et al., 1999). ‘Regina’ published genome sequence
was used as the template. Additionally, to compare PavDAMs
expression in ‘Cristobalina’ and ‘Regina’, RNAseq data from both
cultivars (Vimont et al., 2019) were aligned to the ‘Regina’
genome sequence (upstream of PavDAM1, PavDAM4, and -5)
and on the Sanger sequencing for both cultivars. This analysis
was carried out using HISAT2 (Kim et al., 2012).

Validation of DNA-Markers of PavDAMs
Structural Mutations (PavD1UM and
PavD4/5M)
PavD1UM and PavD4/5M genotyping was carried out by
PCR using primers PavD1UMf-PavD1UMr and PavD4/5Mf-
PavD4/5Mr as described above (Supplementary Table 1).
PavD1UM and PavD4/5M markers were validated in F2
population B×C2, which is expected to segregate for these
markers because the parental genotype (‘BC8’) is heterozygous
for both markers (Table 1). Description and mean bloom
dates over 4 years (2015–2018) of B×C2 have been previously
published (Calle et al., 2020). QTL haplotypes for major bloom
time QTL on LG1 (qP-BT1.1m) of this population were also
published in the same work. QTL haplotypes obtained then
were compared with marker genotypes observed in this work.
Deviation of marker segregation from expected Mendelian
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FIGURE 1 | Characterization of sweet cherry PavDAM genes. (A) Schematic overview of the intron-exon structure of MADS-box genes and M, I, K, and C domains.

(B) Diagram of size and position of PavDAM genes in chromosome 1 of the sweet cherry genome (Le Dantec et al., 2020). (C) Distribution of exons (blue boxes) and

introns in the six PavDAM genes in ‘Regina’ sweet cherry genome.

segregation in this population was evaluated by Chi-square
goodness-of-fit (χ2). Statistical analysis was done using SPSS
statistics v21.0.0 software (IMB, IL, USA) and R v3.4.1 (R Core
Team, 2017). The two markers, PavD1UM and PavD4/5M,
were also assayed in a diverse set of sweet cherry cultivars and
accessions (Table 1).

RESULTS

Mining, Annotation, and Structural
Analyses of Candidate Genes in Major
Bloom Time QTL (qP-BT1.1m)
Functional analysis in sweet cherry Chromosome 1 region
(Chr1:49,296,241-49,622,837) of ‘Regina’ sweet cherry genome
was carried out to identify candidate genes for bloom time and
chilling requirement in sweet cherry. This genomic region spans
major bloom time QTL qP-BT1.1m. In total, 47 predicted genes
(Supplementary Table 2) were retrieved. Predicted amino acid
sequences of seven of these genes (14.9%) resulted in BLAST hits
in the NCBI gene database with uncharacterized proteins, while
another six (12.8%) had no significant similarity with any other
sequence (Supplementary Table 2). The rest of the predicted
genes (34 genes; 72.3%), revealed hits with proteins involved in

different pathways. Most relevant finding was eight contiguous
genes, localized close to the QTL cofactor marker, which are
sequentially annotated as PAV01_g0075081, PAV01_g0075091,
PAV01_g0075101, PAV01_g0075111, PAV01_g0075121,
PAV01_g0075131, PAV01_g0075141, and PAV01_g0075151
(Supplementary Table 2). Blastx, revealed these genes match
MADS-box proteins, with percentages of similarity ranging
from 86 to 100% (Supplementary Table 2). Due to their genetic
similarity with type II SVP subclass of MADS-box proteins
sequences, these eight sequences may correspond to DAM
genes in sweet cherry (PavDAM), and they are therefore strong
candidate genes for chilling requirement and bloom time
regulation in this QTL region.

Sequence inspection of these eight candidate genes revealed
flaws in the automatic annotation of the initial gene models
when compared to peach gene models. Besides, the expected
structure of MADS-box domains was not complete. Only two
predicted proteins (PAV1_g0075081 and PAV1_g0075151)
contained domains MADS (M), Intervening (I), Keratin-
like (K), and C-terminal (C), which are characteristics of
type II MADS-box genes (Figure 1A). In another predicted
gene (PAV01_g0075091), exon 3 was not annotated, and in
PAV01_g0075121, two additional exons before the M domain
were present. Similarly, PAV01_g0075101 and PAV01_g0075111
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FIGURE 2 | Maximum likelihood phylogenetic tree of nucleotide DAM sequences of sweet cherry (PavDAM1, PavDAM2, PavDAM3, PavDAM4, PavDAM5, and

PavDAM6; Bielenberg et al., 2008) and its orthologs in Japanese apricot (PmuDAM1, PmuDAM2, PmuDAM3, PmuDAM4, PmuDAM5, and PmuDAM6; Sasaki et al.,

2011) and peach (PpeDAM1, PpeDAM2, PpeDAM3, PpeDAM4, PpeDAM5, and PpeDAM6). The numbers at branch nodes indicate the percentage of bootstrap

support at 1,000 replicates.

were automatically annotated as two different MADS-box,
although domain structure revealed that both sequences
were two separated fragments of the same MADS-box
protein. The same was observed for PAV01_g0075131 and
PAV01_g0075141 sequences, which correspond to the same
MADS-box gene but had been automatically annotated as two
different gene sequences.

The corrected annotation of the retrieved sequences revealed
six MADS-box genes instead of the eight automatically predicted
in the ‘Regina’ genome. The alignment of transcriptome data
confirmed these coding structures and allowed an extensive
curation of the UTR regions. Curated data can be accessed
in Supplementary Table 3. Six DAM genes have also been
previously reported in peach, Japanese apricot, and European
plum in the syntenic genomic region. Thus, the six MADS-box
sequences were identified as PAV1_g0075081, PAV1_g0075091,
PAV1_g0075101, PAV1_g0075121, PAV1_g0075131, and
PAV1_g0075151 in the ‘Regina’ genome, were named PavDAM1
to -6, respectively (Figure 1). These genes are tandemly located
in the ‘Regina’ genome (Chr01_49457863:49524699 bp) with a
larger gap (11,433 bp) between PavDAM2 and -3 (Figure 1B).
Gene structure analysis of the six genes revealed an identical
structure of eight exons and seven introns in each gene, as
well as, the conserved M, I, K, and C domains (Figure 1C).
Genomic gene length ranged from 7,672 (PavDAM6) to 10,438
bp (PavDAM3), whereas the predicted genes coding regions
ranged from 667 (PavDAM4) to 730 (PavDAM5) bp. Variable
sizes were observed in the six introns of each gene, while exon
sizes were highly conserved (Figure 1C).

Phylogenetic Analysis of PavDAMs
A phylogenetic analysis of peach, Japanese apricot (Bielenberg
et al., 2008; Sasaki et al., 2011), and sweet cherry (this work)
DAM genes was carried out using the maximum likelihood of
the gene coding sequences (Figure 2). DAM genes orthologs
(DAM1 to DAM6) of the three species clustered together
with a high bootstrap value (99; Figure 2). Within these sub-
clades, in all cases, peach and Japanese apricot DAM genes
were phylogenetically closer to each other than to sweet cherry
DAM genes (Figure 2). Additionally, two major clades of DAM
orthologs were observed, one includes DAM1, -2, and -3; and the
other includes DAM4, -5, and -6, suggesting a common ancestor
for each of them (Figure 2). Within these clades, DAM1 and -
2 were closer to each other than to DAM3, and -4 and -6 were
closer to each other than to DAM5.

Intraspecific Variation of PavDAMs
Sequences in Cultivars With Large
Phenotypic Variation
The ‘Regina’ genome was used as a reference to map the
genome sequence reads of 13 sweet cherry cultivars with variable
chilling requirements and bloom times (Table 1). Of these
cultivars, ‘Cristobalina’ shows extra early blooming while the
rest show midseason to late flowering (Table 1). From this
sequence mapping, the PavDAM genes consensus sequences of
each cultivar were obtained. From these sequences, the complete
amino acid sequence of each of the six PavDAM genes of each
cultivar was predicted (Supplementary Figure 1). Comparison
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of PavDAM amino acid sequences amongst the different cultivars
revealed a high degree of conservation (Supplementary Figure 1;
Supplementary Tables 4, 5). The exon-intron structure was
conserved in the six genes in all the cultivars. Also, the similarity
between cultivars for the six PavDAM amino acid sequences
was very high (98.8 to 100% identity; Supplementary Table 4).
‘Cristobalina’ was the cultivar with lower similarity to the
rest (98.8–99.0%; Supplementary Table 4), while the remaining
cultivars had higher similarities (99.7–100%). Complete amino
acid identity (100% similarity) was observed for PavDAM
sequences of ‘Ambrunés’ and ‘Summit’; ‘Vic’ and ‘Brooks’; and
‘Regina’, ‘Sam’, and ‘Sue’ (Supplementary Table 4).

Alignment of the PavDAM amino acid sequences
of all the cultivars (Supplementary Figure 1) revealed
24 amino acid substitutions (Supplementary Figure 1;
Supplementary Table 5). Of these, 20 were unique to specific

cultivars, and the remaining four were common to various
cultivars. ‘Cristobalina’ was the cultivar with the largest number
of unique amino acid substitutions (14; Supplementary Figure 1;
Supplementary Table 5). ‘Ferrovia’, ‘Lambert’, ‘Hedelfingen’,
‘Satonishiki’, and ‘Rainier’ showed 1–2 unique amino acid
substitutions (Supplementary Table 5). PavDAM1 and
PavDAM4 presented the largest number of polymorphisms
(Supplementary Figure 1; Supplementary Table 5). Unique
amino acid substitutions were found on all domains, with a large
number found on domain C. Only ‘Cristobalina’ presented a
substitution in the M domain (PavDAM2 and -5).

Visual inspection of cultivars sequence reads mapping to
the ‘Regina’ genome revealed two genomic regions where no
sequence reads from ‘Cristobalina’ were mapped. These regions
are located upstream of PavDAM1, and between PavDAM4
and -5 coding regions, spanning ∼700 and 400 bp respectively

FIGURE 3 | PCR analysis of PavDAM1 and PavDAM4 and -5 structural mutations (PavD1UM and PavD4/5M, respectively) with primers PavD1UMf-PavD1UMr and

PavD4/5Mf-PavD4/5Mr in 14 sweet cherry cultivars. C-: Negative control.
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(Supplementary Figures 2, 3). These regions seemed to contain
putative structural mutations in the ‘Cristobalina’ genome.

Characterization of PavDAMs Structural
Mutations in Low-Chilling and Early
Blooming Cultivars
To investigate putative mutations in ‘Cristobalina’ PavDAMs
(Supplementary Figures 2, 3), PCR primers flanking these
regions (PavD1UM and PavD4/5M) were designed. These

markers were used to analyze 13 cultivars with sequences
available and ‘Regina’ (Table 1). For the PavD1UM marker, a
fragment of the same size as in ‘Regina’ (∼1,600 bp) was amplified
in all the sweet cherry cultivars, except in ‘Cristobalina’, in which
a shorter fragment (∼900 bp) was obtained (Figure 3). The
amplification of a smaller fragment in ‘Cristobalina’ supports
the presence of a putative deletion of ∼700 bp upstream of
‘Cristobalina’ PavDAM1. For the PavD4/5M marker, a fragment
of 850 bp was amplified only in ‘Cristobalina’, whereas the
remaining cultivars, including ‘Regina’, presented a 750 bp

FIGURE 4 | Schematic overview of PavDAM1 and PavDAM4 and -5 structural mutations (PavD1UM and PavD4/5M, respectively) in ‘Cristobalina’ and ‘Regina’. PCR

primers positions are shown (underlined text). The percentage of similarity between sequences is shown in different colors.
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fragment (Figure 3). This result supports the presence of a
putative insertion in the ‘Cristobalina’ genome, found between
PavDAM4 and -5 coding regions.

To confirm these mutations, these genomic regions were
Sanger sequenced from PCR fragments using ‘Cristobalina’ and
‘Regina’ genomic DNA. The obtained sequences were compared
(Supplementary Figures 4, 5), revealing a deletion of 694 bp in
the ‘Cristobalina’ genome, 736 bp upstream of PavDAM1 start
codon of ‘Regina’ genome (Figure 4; Supplementary Figure 4).
The rest of the sequence compared was highly similar
except for a few SNPs (Supplementary Figure 4). For the
PavDAM4 and -5 region, sequence comparison between
‘Cristobalina’ and ‘Regina’ revealed various polymorphisms
(Figure 4; Supplementary Figure 5). These included four short
insertions (21, 22, 30, and 46 bp) and one short deletion (18 bp)
in ‘Cristobalina’; and 41 SNPs between both cultivars (Figure 4;
Supplementary Figure 5).

Analysis of cis-acting regulatory sites in the ‘Regina’ sequence

upstream of PavDAM1, which is absent in ‘Cristobalina’, revealed

the presence of 60 unique sites (Supplementary Table 6).

These include motifs like ARFAT, MYC, CArG, site II, TATA

box, and WUSATAg that are associated with dormancy,
bloom, flower development, and hormone regulation, among
others (Supplementary Table 6; Supplementary Figure 4).
Additionally, RNAseq data (Vimont et al., 2019) analysis in
this genome region in both cultivars, ‘Regina’ and ‘Cristobalina’,

revealed the alignment of short reads in ‘Regina’, but not in

‘Cristobalina’. The level of expression and the number of these

reads were high enough to identify a putative non-coding
gene that is expressed in ‘Regina’, but not in ‘Cristobalina’. On

the other side, analysis of the highly variable region between

PavDAM4 and -5 in ‘Cristobalina’ and ‘Regina’, revealed this
region spans part of contiguous PavDAM4 3′UTR and PavDAM5
5′UTR (Figure 4; Supplementary Figure 5), with INDELs
located in both UTRs. Splice junction coverage of RNAseq data
in this region, in the two cultivars, revealed differences
in splicing variants between ‘Regina’ and ‘Cristobalina’
for PavDAM5.

Validation of DNA-Markers of PavDAMs
Structural Mutations (PavD1UM and
PavD4/5M)
PavD1UM and PavD4/5M analysis in F2 population B×C2
revealed three segregating classes for both markers. The same
individuals were in the same segregating classes for bothmarkers,
confirming both markers are linked. For both markers the
segregating classes were: homozygous like ‘Regina’ and ancestor
‘Brooks’ (genotype nn), heterozygous like the parental cultivar
‘BC8’ (pn), and homozygous like ‘Cristobalina’ (pp; Figure 5).
For marker PavD1UM, these genotypes correspond to PCR
fragments of ∼1600, 950/1600, and 900 bp, respectively. In the
case of PavD4/5M, the corresponding PCR genotypes are 750,
750/850, and 850 bps for nn, pn, and pp, respectively. The
estimated exact expected sizes of these PCR fragments are 1638
and 944 bp for PavD1UM, and 766 and 867 bp for PavD4/5M.
Segregation of the three classes occurred in the proportion
24:33:4 (pp:pn:nn), which significantly differs from the expected
1:2:1 ratio (χ2 = 1.87; Supplementary Table 7).

PavD1UM and PavD4/5M genotypes identified herein, and
QTL qP-BT1.1m genotypes previously reported for the same
population B×C2 were compared (Supplementary Table 7). The
comparison revealed that individuals with QTL haplotypes cc,
ac, and aa (Calle et al., 2020) were the same as those belonging
to PavD1UM and PavD4/5M segregating classes pp, pn, and
nn, respectively (Supplementary Table 7). This result confirms
that the mutations in PavDAMs in ‘Cristobalina’ show complete
correlation with the QTL haplotypes associated with bloom
date (Calle et al., 2020). Specifically, QTL haplotype cc is
associated with earlier blooming than ac, and both correspond to
extra-early and intermediate blooming phenotypes, respectively
(Supplementary Table 7; Calle et al., 2020). Therefore, results
herein confirm that PavD1UM and PavD4/5M markers are
valid for identifying different bloom time QTL haplotypes, and
therefore for identifying earlier and later blooming phenotypes
from these plant materials. Additionally, PavD1UM and
PavD4/5M markers genotyping allowed identifying the genotype
of 14 recombinant individuals for this QTL in B×C2. From the

FIGURE 5 | PCR analysis of PavDAM1 and PavDAM4 and -5 structural mutations (PavD1UM and PavD4/5M, respectively) in B×C2 population with primers

PavD1UMf-PavD1UMr and PavD4/5Mf-PavD4/5Mr, respectively. Four individuals from each segregating class are shown. Population B×C2 parental genotype

(‘BC8’), and ‘BC8’ parental genotypes (‘Brooks’ and ‘Cristobalina’) are also shown. C-: Negative control.

Frontiers in Plant Science | www.frontiersin.org 11 July 2021 | Volume 12 | Article 621491

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Calle et al. Early-Blooming Sweet Cherry DAMs Mutations

14 recombinants, three individuals corresponded to genotype
pp and 11 to pn (Supplementary Table 7). Estimation of mean
bloom date of each segregating class for both markers confirmed
a significant difference of 7 days in mean bloom time between
individuals of classes pp and pn (p < 0.001; Student’s T-test;
Supplementary Table 7). This is the same difference observed for
QTL qP-BT1.1m haplotypes in the same family. No phenotype
data for nn individuals are available to estimate the phenotypic
value of this segregating class (Supplementary Table 7).

Markers validation in a sweet cherry cultivar collection
(Table 1) showed that only the low chilling and extra-early
bloom time cultivars, ‘Temprana de Sot’ and ‘Royal Lee’
showed the same genotype as ‘Cristobalina’. These cultivars
were homozygous for the early bloom allele (pp) for both
markers (900 bp for PavD1UM, and 850 bp for PavD4/5M;
Table 1). Additionally, the two local Spanish cultivars ‘De Mango
Largo’ (midseason bloom) and ‘Son Perot’ (early bloom) were
heterozygous (pn) for both markers PavD1UM (950/1600) and
PavD4/5M (750/850) (Table 1). As described above, the selection
‘BC8’ (‘Brooks’× ‘Cristobalina’), which shows early bloom time is
also heterozygous for themarkers. The rest of the cultivars, which
show early to late bloom time, were homozygous (nn), and hence
they had the same genotype as Regina (Table 1).

DISCUSSION

Annotation, Structural, and Phylogenetic
Analysis of Candidate Genes (PavDAMs) in
Major Bloom Time QTL
In this study, six MADS-box genes, PavDAM, were identified in
sweet cherry major bloom time QTL, qP-BT1.1m. This bloom
time QTL was previously detected in populations derived from
the low chilling and extra-early blooming cultivar ‘Cristobalina’
(Calle et al., 2020). This chromosome 1 genome region is
determinant in the genetic control of chilling requirements and
bloom time in sweet cherry, as other QTLs for these traits were
also previously reported on the same location in sweet cherry
populations from different genetic backgrounds (Dirlewanger
et al., 2012; Castède et al., 2014). Six tandemly arranged MICKc-
type MADS-box, denoted DAM genes, have been previously
identified in the syntenic region of chromosome 1 in the almond,
peach, Japanese apricot, and European plum genomes (Xu et al.,
2014; Wells et al., 2015; Quesada-Traver et al., 2020). In sweet
cherry, PavDAM genes have been recently cloned and sequenced
from flower bud RNA, and their cDNA and predicted amino
acid sequences have been reported (Wang et al., 2020). In the
present work, the genomic sequence and structure of these genes
were characterized and annotated from the sweet cherry genome
sequence of Regina cv (Le Dantec et al., 2020).

The amino acid sequence of PavDAMs recently predicted in
‘Royal Lee’ and ‘Hongdeng’ cultivars (Wang et al., 2020) is highly
similar to that reported in this work for the ‘Regina’ genome (99.0
and 99.9%, respectively). The sequence of each PavDAM reported
in this work includes the four characteristic domains of MIKC
type II MADS-box, as reported earlier in peach, Japanese apricot,
or plum (Jiménez et al., 2009; Xu et al., 2014; Quesada-Traver

et al., 2020). Furthermore, we observed in this study, that each
PavDAM comprises eight exons making the genomic structure
of the six genes very similar to that of the DAM genes previously
reported in other Prunus species, namely peach, Japanese apricot,
European plum (Jiménez et al., 2009; Sasaki et al., 2011; Quesada-
Traver et al., 2020). Thus, the six MADS-box (PavDAM) genes
identified within the major bloom time QTL in this work, as
expected, are solid candidate genes for chilling requirement and
bloom time regulation in sweet cherry.

Like in earlier works (Rothkegel et al., 2017; Wang et al.,
2020), phylogenetic analysis in this work revealed that PavDAMs
are orthologs to the peach and Japanese apricot corresponding
DAM genes. Within each DAM gene clade, peach and Japanese
apricot genes appeared phylogenetically closer to each other
than to sweet cherry genes, reflecting the species phylogeny.
Peach and Japanese apricot, belong to Amygdalus and Prunus
subgenus, respectively, phylogenetically closer to each other than
to the sweet cherry subgenus (Cerasus) (Potter et al., 2007).
The detection of six clades of DAM ortholog groups indicates
that DAM diversification occurred before Prunus speciation.
Additionally, the six DAM genes may be paralogs (outparalogs),
as earlier duplication events may have led to the six tandemly
arranged genes (Koonin, 2005). As suggested before (Jiménez
et al., 2009; Li et al., 2009), posterior subfunctionalization and/or
neofunctionalization may have resulted in their actual function.
The clustering of the DAM orthologs in two major clades,
namely DAM1, -2, and -3; and DAM4, -5, and -6, as previously
observed (Prudencio et al., 2018; Balogh et al., 2019; Quesada-
Traver et al., 2020; Wang et al., 2020), agrees with previous
transcriptomic studies of DAM genes in peach and Japanese
apricot, in which two different expression patterns have been
observed for the two groups of genes. DAM1, -2, and -3 have
a maximum expression during bud set, while DAM4, -5, and
-6 show maximum expression when chilling requirement are
satisfied (Falavigna et al., 2019).

Intraspecific Variation of PavDAMs
Sequences in Cultivars With Large
Phenotypic Variation
PavDAMs predicted amino acid sequences of 13 sweet cherry
cultivars revealed a high degree of similarity despite their
different genetic backgrounds and contrasting phenotypes
(Table 1). Also, these sequences are highly similar to those
previously reported (‘Royal Lee’ and ‘Hongdeng’; Wang et al.,
2020). This high degree of conservation may indicate that
PavDAMs proteins’ phenotypic effect may be more dependent
on expression regulation than on protein structure. Most amino
acid differences among the cultivars studied were found in the
same positions, confirming also the presence of highly variable
amino acids. However, no correlation of these amino acid
polymorphisms could be associated with the chilling requirement
and/or bloom time of these cultivars. Nevertheless, it cannot be
discarded that these amino acid substitutions may be associated
with phenotypic differences. Single amino acid substitutions in
MADS-box genes in Arabidopsis have been associated with the
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loss of function leading to early flowering phenotypes (Hartmann
et al., 2000; Méndez-Vigo et al., 2013).

‘Cristobalina’ PavDAM genes showed the lowest similarity
with the rest of the cultivars and accumulated the largest number
of unique amino acid substitutions. ‘Cristobalina’ was the only
cultivar that has a unique amino substitution in the M domain
of PavDAM2 and -5, whereas more substitutions were observed
in the C domain in all DAMs. It has been reported that the M
domain is the most conserved of all MADS-box domains; and
that the C domain, which is related to protein complex formation
and transcriptomic activation, is the most variable (Honma and
Goto, 2001; Kaufmann et al., 2005). The differences observed
between the PavDAM genes coding sequences of ‘Cristobalina’
and the other cultivars analyzed may be associated with the
phenotypic differences in chilling requirements and/or bloom
time. ‘Cristobalina’ has lower chilling requirements and earlier
blooming than the other cultivars analyzed (Table 1; Tabuenca,
1983; Alburquerque et al., 2008; Calle et al., 2020). It has also
been observed that ‘Cristobalina’ enters endodormancy later and
fulfills its chilling requirements before medium to late bloom
time cultivars (Fadón et al., 2018). The genetic differences may be
due to a different genetic origin and adaptation to different eco-
geographic regions. ‘Cristobalina’ is a local Spanish cultivar from
the Mediterranean region and is genetically well-differentiated
from the rest of the cultivars analyzed (Wünsch and Hormaza,
2002; Martínez-Royo and Wünsch, 2014).

It was also observed that, despite the large variability exhibited
by ‘Cristobalina’ PavDAMs predicted amino acid sequences,
these are identical to those reported for ‘Royal Lee’ (Wang
et al., 2020). These two cultivars seemed unrelated, as there is
no proof of a relationship between them. ‘Royal Lee’ is also
a low-chill cultivar, which derives from a breeding program
in California (Zaiger’s Inc Genetics; US patent N◦ 12417),
while ‘Cristobalina’ is a local Spanish landrace. The chilling
requirements of ‘Royal Lee’ (Wang et al., 2020) are also similar
to those of ‘Cristobalina’ (approx. 400 chilling hours; Tabuenca,
1983). A possible explanation for this unexpected genetic and
phenotypic similarity is that ‘Cristobalina’ is an ancestor of
‘Royal Lee’. In fact, the contribution of a low-chilling cultivar
of unknown origin is described in the ‘Royal Lee’ pedigree
(US patent N◦ 12417). In any case, the similarities observed
reinforce the hypothesis that the genetic differences identified in
‘Cristobalina’ PavDAMsmay be the cause of low chilling and extra
early blooming.

PavDAMs Structural Mutations in
Low-Chilling and Early Blooming Cultivars
Greater variation upstream of ‘Cristobalina’ PavDAM1 and
between PavDAM4 and -5 was also identified in this work.
Specifically, a 694 bp deletion, 736 bp upstream of the PavDAM1
coding sequence, and a highly polymorphic region, which
includes various INDELs, in the UTRs of PavDAM4 and -5,
were detected. These mutations were detected in ‘Cristobalina’
by sequence reads mapping to the ‘Regina’ genome sequence (Le
Dantec et al., 2020), and confirmed by Sanger sequencing of PCR
fragments spanning the mutations. PCR markers (PavD1UM,

PavD4/5M) were designed to detect these mutations and to
validate their association with low chilling and early blooming
in an F2 segregating population and in a cultivar collection.

Analysis of PCR fragments from PavD1UM and PavD4/5M
markers in the only available segregating population for these
mutations (F2 population B×C2) revealed a complete correlation
with the linkage group 1 bloom time QTL qP-BT1.1m segregating
classes (Calle et al., 2020). These results indicate a correlation
between the presence of the mutation and earlier blooming (7
days) in homozygous genotypes (pp). Furthermore, analyses of
the markers in a sweet cherry cultivar collection with genotypes
with large phenotypic differences for chilling requirements and
bloom time also revealed an association of the mutations in
homozygosis (pp), with low chilling and extra-early blooming.
The other cultivars for which PavD1UM and PavD4/5M
mutations were identified were other local Spanish cultivars
(‘Temprana de Sot’, ‘Son Perot’, and ‘De Mango Largo’) and the
bred cultivar ‘Royal Lee’. The presence in other local Spanish
cultivars confirms that the putative origin of this PavDAM
haplotype is the southern European Mediterranean region. The
presence of these mutations also in ‘Royal Lee’ confirms that the
PavDAM genotype is the same in ‘Cristobalina’ and ‘Royal Lee’,
as discussed above for the PavDAMs protein sequences. It also
confirms the correlation of this genotype with low chilling and
extra-early blooming. The result also reinforces the hypothesis
that ‘Cristobalina’ may be part of the pedigree of ‘Royal Lee’.

In two other local Spanish cultivars (‘Son Perot’ and ‘De
Mango Largo’), the ‘Cristobalina’ PavDAMs mutations were
found in heterozygosity (pn genotypes). These cultivars have
early and medium bloom date phenotypes and their chilling
requirements are not known. Similarly, in other individuals
from ‘Cristobalina’-derived populations, which are heterozygous
for these mutations (data not shown), different bloom time
phenotypes have been observed (Calle et al., 2020), but none of
them show such early-blooming as those in which the mutations
are in homozygosity (pp, like in ‘Cristobalina’). In fact, in the
B×C2 population, the heterozygous individuals (np) are not as
early blooming as the homozygous ones (pp) (see Calle et al.,
2020). The phenotypic effect associated with these mutations is
more evident in those individuals homozygous for the mutations
probably due to the additive effect of each PavDAM haplotype.
The rest of the cultivars analyzed with the PavDAM markers,
PavD1UM and PavD4/5M, are homozygous for the absence of
the mutation (nn). Among these, there are cultivars of medium
to high chilling requirements from early to late blooming. This
result also indicates that not all early blooming cultivars in sweet
cherry have the same mutation as ‘Cristobalina’, and therefore,
that there are additional sources of early blooming in sweet
cherry. But only, the extra-early cultivars analyzed do have the
described PavDAM mutations and protein sequences. Therefore,
the markers developed in this work correlate with earlier bloom
time (and probably low chilling) and are useful for the selection
of this trait from ‘Cristobalina’ and likely from ‘Royal Lee’ too.

‘Cristobalina’ PavDAM genotype has revealed several unique
polymorphisms in its predicted protein sequences and large
structural mutations upstream of PavDAM1 and in contiguous
PavDAM4 and -5 UTR sequences. These structural mutations
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were shown to correlate with extra-early blooming. Although
further research is needed, it cannot be discarded that these
mutations may be the cause of low-chilling and extra-early
blooming in this cultivar. Protein variability in relevant
conserved regions of PavDAMs may be altering protein
function in this genotype due to variation in oligomerization
in conserved regions (Lai et al., 2019). Alternatively, the
structural mutations observed may result in differential gene
expression of PavDAMs in this cultivar. Differential expression
of PavDAMs in ‘Cristobalina’ (and ‘Royal Lee’) has been
observed in transcriptomic analyses during dormancy when
compared with high-chilling cultivars (Vimont et al., 2019;
Supplementary Figure 6; Wang et al., 2020). Most evident
differences have been observed for PavDAM1,−4, and -5
(Vimont et al., 2019; Supplementary Figure 6; Wang et al.,
2020). Specifically, the expression of PavDAM1 of ‘Royal Lee’ has
been shown to decrease much earlier than in the high chilling
cultivar ‘Hongdeng’ (Wang et al., 2020). A similar result has been
observed for ‘Cristobalina’ compared with ‘Regina’ (Vimont et al.,
2019). For PavDAM4 and -5, large differences have been observed
between ‘Cristobalina’ and ‘Regina’, especially for PavDAM4 in
which much lower expression was observed in ‘Cristobalina’
(Vimont et al., 2019).

The deletion upstream of PavDAM1 in ‘Cristobalina’ results in
the absence of potentially relevant cis-acting binding sites. DAM
genes have been observed to be regulated by proteins related
to the response of environmental signals and the cold response
pathway that can bind to DAM promoters (Zhao et al., 2015).
This is the case of C-Repeat Binding Factors (CBF), which have
been reported in some Rosaceae species binding DAM promoter
and to regulate these genes expression in apple, Japanese apricot,
and pear (Mimida et al., 2015; Saito et al., 2015; Wisniewski
et al., 2015; Zhao et al., 2018). Besides, CArG box motif is the
target region of MADS-box transcription factor, but also their
own regulation (Zhu and Perry, 2005; Gregis et al., 2013). More
recently, it was shown that the site II motif was recognized
by the PpeTCP20 transcription factor, down-regulating the
expression of DAM5 and -6 in peach (Wang et al., 2020). Motifs
CArG and site II, among others, are missing in the deleted
region upstream of PavDAM1 in ‘Cristobalina’. The putative
involvement of any missing cis-acting elements in PavDAMs
expression would be compatible with the differential expression
of ‘Cristobalina’ (and ‘Royal Lee’) PavDAMs (Vimont et al.,
2019; Supplementary Figure 6; Wang et al., 2020). Additionally,
in the same genomic region, the expression of a non-coding
gene in ‘Regina’ seems truncated in ‘Cristobalina’. Blast analysis
indicates the existence of this ncRNA in peach but it has not been
detected in other organisms, and therefore, could be Prunus-
specific. As no other relevant information could be obtained from
this non-coding gene, further analyses are required to confirm
the potential involvement of this gene in the ‘Cristobalina’
phenotype.

The variation observed in PavDAM4 and -5 UTRs between
‘Regina’ and ‘Cristobalina’ may also have implications in
PavDAMs expression, and/or in PavDAMs transcripts
variability. UTRs can influence gene expression in plants

(Srivastava et al., 2018). Noticeably, we observed a predominance
of specific splicing variants in each cultivar, ‘Cristobalina’
seems to have a shorter 5′UTR than ‘Regina’. UTR length
could influence expression levels as well as play a role in
various post-transcriptional processes (Mignone et al., 2002),
which can result in PavDAM5 differential transcription,
translation, and/or function. Additionally, these mutations
in PavDAM4 and -5 could also affect the expression of the
other PavDAMs, as previously observed in the EVG peach
mutant (with four deleted DAM genes), where the two intact
genes (DAM1 and -2) were not expressed (Bielenberg et al.,
2008). It is, therefore, necessary to further investigate these
mutations, to identify their potential effect in PavDAMs
differential transcription, and their correlation with the
contrasting phenotypes.

PavD1UM and PavD4/5M, Markers for
Breeding for Early Blooming and Low
Chilling Requirements
‘Cristobalina’ is a relevant cultivar for breeding, due to self-
compatibility, low chilling requirements, and extra-early bloom
time. The PavD1UM and PavD4/5M markers, developed here,
are a useful tool for sweet cherry breeding of low chilling
requirement and early bloom time from ‘Cristobalina’ using
marker-assisted selection. These markers revealed a complete
correlation with the haplotypes of bloom time QTL (qP-BT1.1m),
which accounts for up to 50.1% of the phenotypic variation in
‘Cristobalina’ derived populations (Calle et al., 2020). The large
correlation between QTL and marker genotypes, as well as the
large amount of phenotypic variation explained by this QTL,
makes these markers useful tools for discriminating individuals
with lower chilling requirement and earlier blooming, which will
be associated with the presence of the mutations in homozygosity
or heterozygosity. Earlier blooming is expected to be associated
with the presence of the deletion in homozygosity and later
blooming and higher chilling requirement will be associated
with the absence of the mutations. Besides, the identification of
these mutations also in the low chill cultivar ‘Royal Lee’, indicate
these markers may also useful for selection from cultivars from
different genetic backgrounds other than ‘Cristobalina’.

In the present study, the analysis of candidate genes in a
previously reported main bloom time QTL in sweet cherry has
allowed for the characterization and annotation of PavDAM
genes in the species. This work thus confirms PavDAMs as
candidate genes for bloom time regulation in sweet cherry.
Protein sequence polymorphisms and structural mutations
identified in PavDAMs of low-chilling and extra-early blooming
cv. Cristobalina were shown to correlate with earlier blooming
in a segregating population and with extra-early blooming
in a diverse set of cultivars. These results indicate that the
‘Cristobalina’ PavDAM genotype may be the genetic causal
variation of the phenotypic differences exhibited by ‘Cristobalina’,
low chilling requirement, and extra-early bloom time, although
further research is needed to confirm this hypothesis. PCR
DNA-markers based on these structural mutations (useful for
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the selection of early blooming from this plan material) were
designed and validated.
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