
Fig. 3 : False negative rates, and their distribution relatively to

their abundances in the reference profiles and sequencing depth
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Context
In the rising research area microbiota-associated health outcomes, clinical researchers have to deal with the

critical choice of the analytic technique used to characterize patients’ microbiota. This choice is usually binary, with

metabarcoding, a low-cost and an efficient way to identify and quantify organisms present in an ecosystem

(taxonomic profiles) which has a limited resolution and suffers from well known biases (amplification biases,

variation in copy numbers, etc), and whole genome sequencing (WGS), which offers deep insights about both

taxonomic and functional profiles but is much more expensive (about 10 times the

cost of metabarcoding) and produces data massively more complex to analyze. Due to a huge inter-patient

variability, large cohorts are needed to extract reliable information. Thus, a large majority of studies are carried

out using metabarcoding techniques. Shallow WGS (WGS at very low sequencing depth, down to 500 K reads/sample)

is one of the techniques that could fit into this technological gap : a recently published paper [1] demonstrated the

huge potential of this approach but left many important questions unanswered. Our aims is then to evaluate

reliability and limitations of shallow shotgun metagenomic data.

1 - Taxonomic profiles at low sequencing depth: reads mapping and filters
3 - Downstream statistical analysis is robust

towards low sequencing depth
The analysis of complete and subsampled datasets

from clinical studies revealed that structures in the

distance matrix between samples (Bray-Curtis

distances, PERMANOVA’s p-values regarding clinical

outcomes, AGE, BMI, SEX) were not affected by

sequencing depth. We also reproduced a random

forest-based classification to discriminate patients

as performed in [6] and noticed no loss of

discriminative power between full depth (29 ± 19 M

reads/sample, AUC = 0.904 ) and shallow (500 K

reads/sample, AUC = 0.902) datasets.

Conclusions and perspectives
Strengths of shallow sequencing:

• Useful for routine analysis in well known

ecosystems

• Accurate down to 500K reads/sample

• Little loss of statistical power for diagnosis-like

classification

Limitations:

• Requires good reference databases for accurate

taxonomic profiling.

• Adapted only for model organisms

Shallow sequencing is very promising for clinical

use and diagnostic tools based on the human gut

microbiome.

Materials and Methods
Grinder [2] was used to produce synthetic metagenomic

dataset of 10 millions reads/sample with realistic

complexity, based on 19 gut microbiota samples [3]

(richness = 126 ± 27 species/sample). Taxonomic profiles

were collected from curatedMetagenomicData [4] and

converted to UHGG’s

taxonomy [5].

Representative genomes

for each species was

used, and no sequencing

errors were introduced

so far. We also used

publicly available raw

sequencing data from

clinical studies about

hepatic diseases [6] and

immunotherapy's

response in cancer [7].

We used BWA-MEM [8],

BWA-ALN [9] and Bowtie2

[10] with end-to-end and

local presets, to map

reads to UHGG (Fig. 1).

Unambiguous reads (only

1 hit in the catalog) were

used to perform filters

on the profiles. Other

reads were only used to

fine-tune the estimation

of genomes’ relative

abundance (GRA).

2 – Reallocating ambiguous reads allows a better estimation of GRAs

Finally, we built the taxonomic profiles by estimating GRAs: we divided the mean

coverage for each genome by its length, and normalized across all genomes

detected to sum to 1. We showed that reallocating ambiguous reads, according to

probabilities proportional to the amount of unambiguous reads mapped to each of

the tied hits, enhances correlation between expected and estimated GRA,

regardless of sequencing depth (Fig. 4).

BWA-MEM and BWA-ALN mapped more reads

than Bowtie2, without increasing FP* rates,

which incited us to focus on these 2

algorithms. BWA-MEM tended to produce more

ambiguous mapping than BWA-ALN but fewer

FPs. Based on AUCs under ROC curves (Fig. 2)

to discriminate TPs* and FP*s, we chose to use

BWA-MEM mapping and a threshold on

genomes’ coverage of 0.6%, giving a precision*

of 95%.

We further investigated the FNs* and their relative

abundances in the expected profiles, to characterize

the loss of information due to low sequencing depth.

Our simulations showed that 500 K reads/sample was

enough to identify all populations down to a

proportion of 10 -4 (Fig. 3).

Fig. 4 : Pearson’s correlation bet-

ween expected and estimated GRA

Fig. 2 : TPs* and FPs* distributions relatively to their fraction covered (A) 

and number of reads (B) at 500K reads/sample. ROC curves (C)  to 

discriminate both groups.
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*TP : True Positive (detected and expected)  ; FP : False Positive 

(detected but not exepected) ; FN : False Negeative (expected but not 

detected) ; precision = 
𝑇𝑃

𝑇𝑃+𝐹𝑃
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