

Heat treatment of concentrated milk protein system affect enzymatic coagulation properties

François Martin¹², Luisa Azevedo-Scudeller³, Arnaud Paul⁴, Romain Jeantet¹, Gaëlle Tanguy¹, Serge Mejean¹, Cécile Le Floch-Fouéré¹

1 STLO, INRAE, Institut Agro, 35042 Rennes, France

2 CNIEL, Paris, France

3 UMET, INRAE, PIHM Team, 59651 Villeneuve d'Ascq

4 Nancy Université, LIBio-ENSAIA-INPL, 54505 Vandoeuvre les Nancy, France

3 Novembre 2021, Biarritz

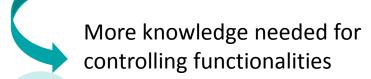
Email adress: francois.martin@inrae.fr

Context

Expanding market

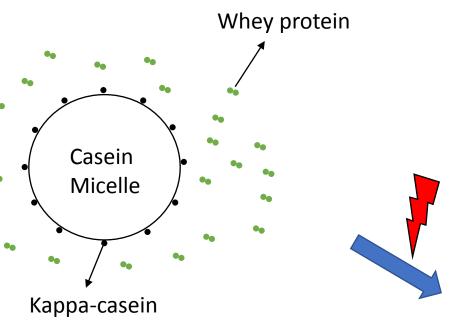
High added value products

- Many Properties
- Coagulation
- Setting agent
- Emulsifier...


- Many outlets
 - Infant formulas
- Cheese making
- Bakery...

Highly concentrated protein product with increasingly complex physico-chemistry

Process key stage:
Heat treatment



Impact of heat treatments on highly concentrated dairy protein systems?

Scientific Background

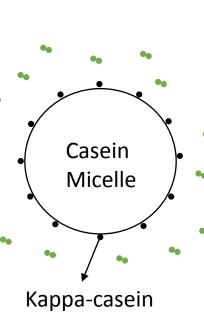
Heat treatment of protein solution: what happens in the case of milk?

Process : Temperature /
duration of heat
treatment

Physicochemical conditions: pH, ionic strength, whey protein/Caseins ratio...

(Smits and Van Brouwershaven .1980; Singh and Fox, 1985,1987; Anema and Klostermeyer, 1997; Oldfield et al. 2000; Anema and Li. 2003, Anema, 2009; O'Connell and Fox. 2003; Singh 2004)

UMET l'ins



Scientific Background

Whey protein

Heat treatment of protein solution: what happens in the case of milk?

Process: Temperature / duration of heat treatment

Physicochemical conditions: pH, ionic strength, whey protein/Caseins ratio...

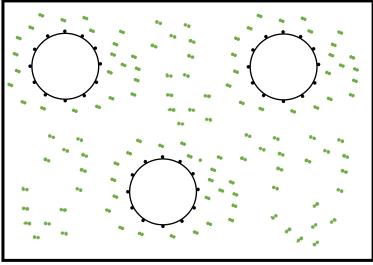
(Smits and Van Brouwershaven .1980; Singh and Fox, 1985,1987; Anema and Klostermeyer, 1997; Oldfield et al. 2000; Anema and Li. 2003, Anema, 2009; O'Connell and Fox. 2003; Singh 2004)

UMET l'institut Agro
agriculture · alimentation · environnement

Solubles Whey protein / K-casein aggregates

Micelles bound

Whey protein / K-


casein aggregates

Whey protein solubles aggregates

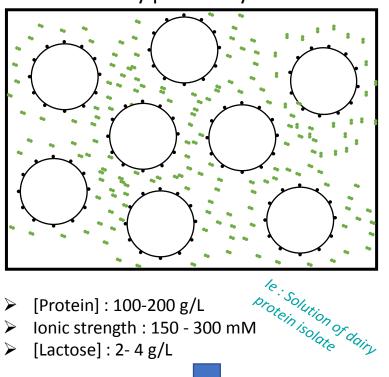
Scientific Background

Heat treatment of dairy solution with different protein concentration:

Heat treatment of milk

- [Protein]: 33 g/L
- Ionic strength: 80 mM
- [Lactose]: 50 g/L

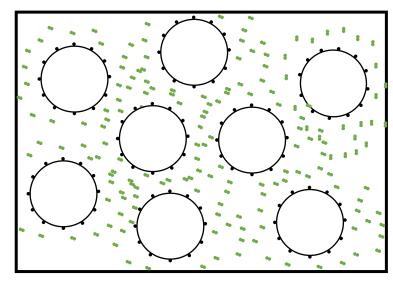
Many studies


(Smits and Van Brouwershaven .1980; Singh and Fox, 1985,1987; Anema and Klostermeyer, 1997; Oldfield et al. 2000; Anema and Li. 2003, Anema, 2009; O'Connell and Fox. 2003; Singh 2004)

Heat treatment of highly concentrated dairy protein systems

- [Protein]: 100-200 g/L
- Ionic strength: 150 300 mM
- [Lactose]: 2-4 g/L

Only parcellar understanding


Research questions

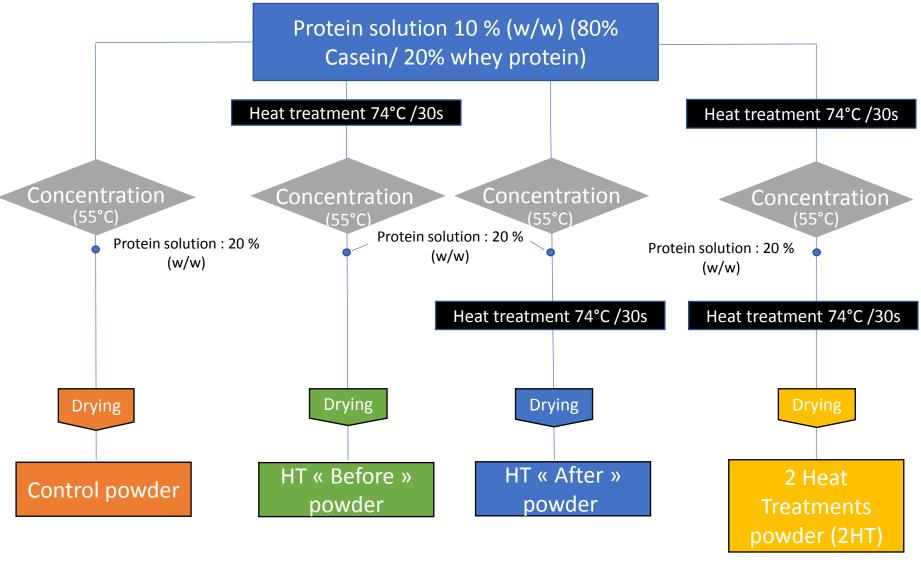
Heat treatment of highly concentrated dairy protein systems

1/ Impact on heat-induced WP/Casein aggregation mechanisms ?

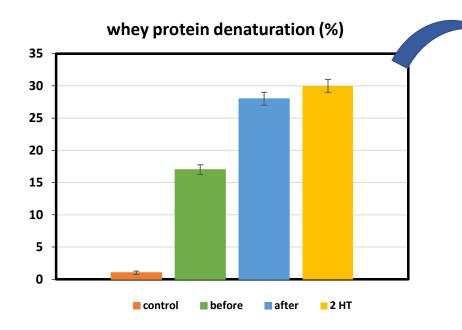
- Increase of collision probability
- Reaching of close packing of protein
 - Increasing formation of aggregates ?
 - Changes in whey protein/k-casein interaction?
 - Changes in spatial location of protein complexes formed

2/ What are the coagulation properties of the resulting heat-treated solution ?

Experimental strategy

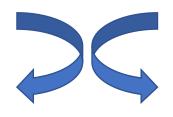


Experimental strategy



Results: Protein denaturation / aggregation

HT After / 2HT:

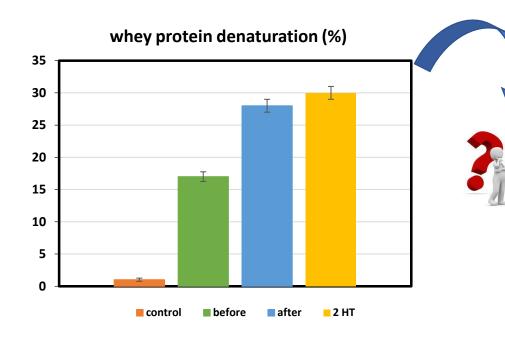

- Highest whey protein denaturation level
 - > 2 times more than **Before** (ie 16% -> 30 %)

HT After / 2HT:

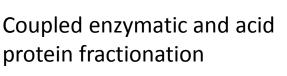
Very similar whey protein denaturation level (ie 27 and 30 %)

Literature data Denaturation level: 30/35 % -> Heat treatment 80°C / 6 min

(Giroux et al. 2020)


INRA© STLO / UMET

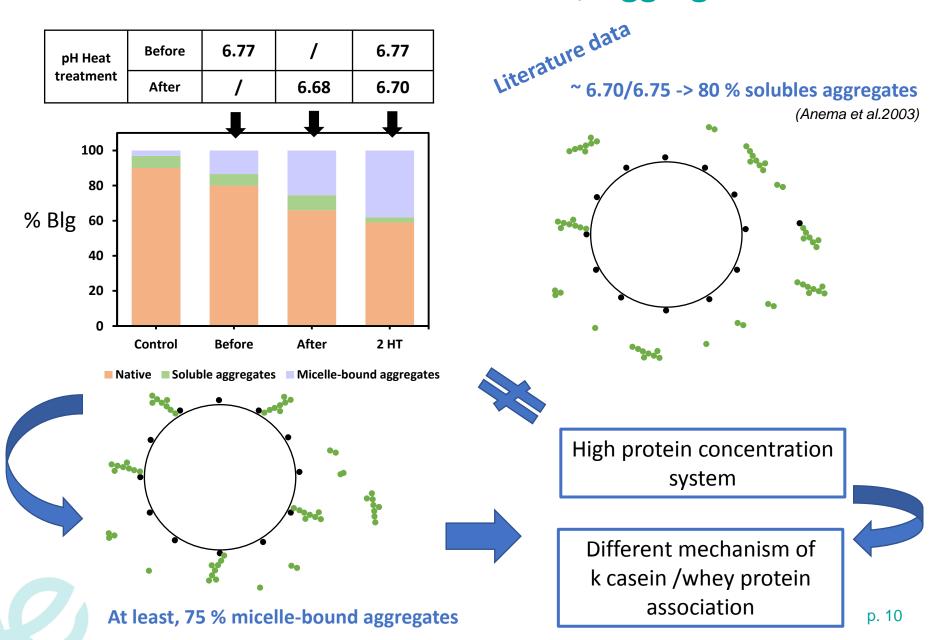
Protein concentration > parameter accelerating the whey protein denaturation / aggregation

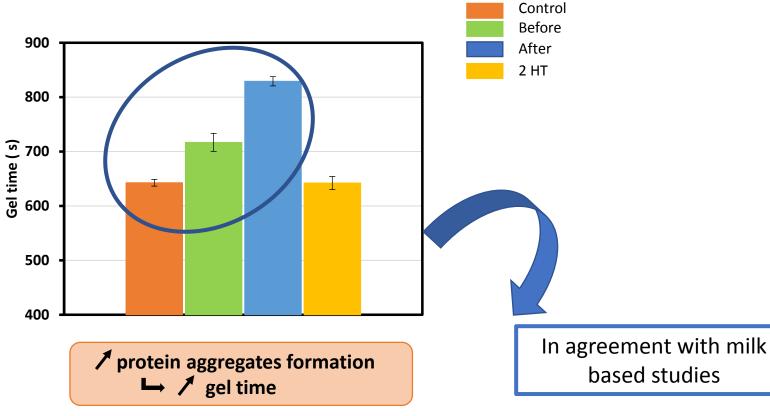

> Results: Protein denaturation / aggregation

Type of aggregates formed?

Quantitative analysis on the distribution of denatured whey proteins over WP aggregates and WP associated with the casein micelles

(Noh et al.1989; Vasbinder et al. 2003)



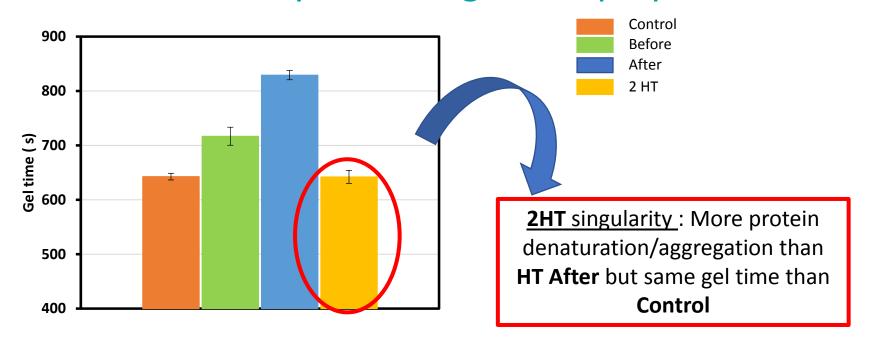


Results : Protein denaturation / aggregation

Result: Enzymatic coagulation properties

(Kethireddipalli et al. 2015; Vasbinder et al. 2003; Donato et Guyomarc'h. 2009)

INRA@ STLO / UMET



K-casein/Whey protein complexes disrupt hydrolyzed casein micelle aggregation

- > Steric hindrance
- ➤ Electrostatic repulsion

Result: Enzymatic coagulation properties

Changes in complexes?

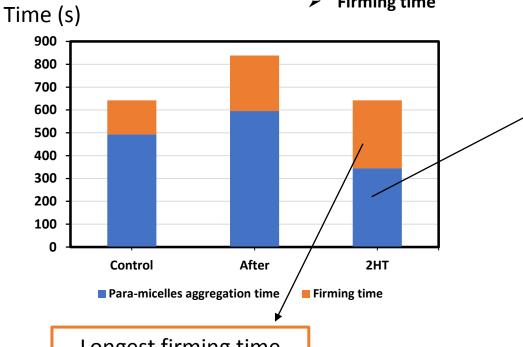
K-casein/WP

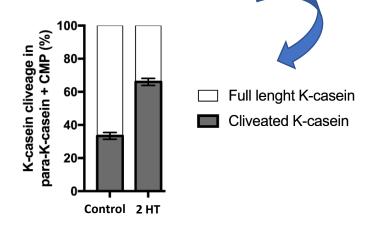
Mechanisms involved?

Investigation of:

- Para casein micelles aggregation time
 - Firming time

INRA@ STLO / UMET


Result: Enzymatic coagulation properties


Para casein micelles aggregation time

Firming time

Using a light backscattering technique (Payne and Castillo. 2007; Bauland and al. 2020)

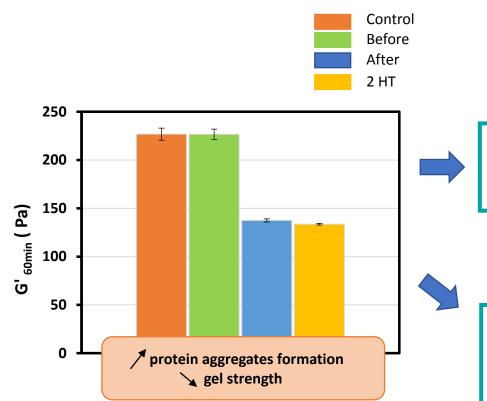
Shortest para-micelles aggregation time

Longest firming time

- Large number of K casein/whey protein complexes on micelles

steric hindrance

2 HT -> preliminary hydrolyse of K-casein


Time to get 80% of micelles hydrolyse and start their aggregation is reduced

p. 13

Result : Enzymatic coagulation properties

✓ HT After / 2 HT: Whey proteins aggregates and k-casein/WP complexes disrupt gel reorganisation and generate very weak gels

(Giroux et al. 2015; Perreault et al. 2017)

✓ HT Before: Same gel strength as Control -> amount of whey proteins aggregates and k-casein/WP complexes seems to be insufficient to disrupt gel reorganisation

Aggregates quantity effect / threshold effect

Take home message

Heat treatment of highly concentrated dairy protein systems:

- 1/ Impact on heat-induced WP/Casein aggregation mechanisms?
 - Increase denaturation/aggregation of whey protein at 20 % (w/w) protein
 - Drive K-casein/whey protein association toward major micellar aggregates
- 2/ Impact on the coagulation properties of the resulting heat-treated solution?
 - 2 Heat treatments -> generate K-casein hydrolysis -> reduce paramicelles aggregation time
 - K-casein/whey protein complexes generated during heat treatment increase firming time, and lead to the formation of weak gels
 - When only few aggregates are present in the bulk, gels produced have the same firmness than control gels

Any questions?