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Abstract
Background: Meloidogyne incognita is the most frequently reported species from the root-knot nematode
(RKN) complex responsible for causing damage in several different crops worldwide. The interaction
between M. incognita and host plants involves the secretions of molecular factors from the nematode,
which mainly suppress the defense response and promote plant parasitism. On the other hand, several
plant elements are associated with the immune defense system that opposes nematode infection.

Results: In this study, the interaction of the Mi-EFF1/Minc17998 effector with the soybean GmHub6
(Glyma.17G099100; TCP14) protein was identi�ed and characterized in vitro and in vivo. Data showed
that the GmHub6 gene is upregulated by M. incognita infection in a nematode-resistant soybean cultivar
(PI595099) compared to a susceptible cultivar (BRS133). Accordingly, the Arabidopsis thaliana AtHub6
mutant line (AT3G47620, orthologous gene of GmHub6 displayed normal vegetative development of the
plant but was more susceptible to M. incognita. Thus, since the soybean and A. thaliana Hub6 proteins
are TEOSINTE BRANCHED/CYCLOIDEA/PCF (TCP) transcription factors involved in plant development
and morphogenesis modulation, �owering time regulation, and the activation of the plant immune
system, our data suggest that the interaction of Mi-EFF1/Minc17998 and Hub6 proteins is associated
with an increase in plant susceptibility to nematode infection during parasitism. It is suggested that this
interaction may prevent the nuclear localization or disturb the activity of GmHub6 as a typical
transcription factor modulating the cell cycle of the plant, avoid the activation of the host’s defense
response, and successfully promote parasitism.

Conclusion: Our �ndings indicate the potential of the Mi-EFF1/Minc17998 effector for the development of
biotechnological tools based on the approaches of RNA interference and GmHub6 gene overexpression
for RKN control.

Background
Meloidogyne incognita is a biotrophic pathogen and obligate sedentary endoparasite belonging to the
root-knot nematode (RKN) complex, which consists of the unique genus Meloidogyne spp. [1, 2]. The RKN
life cycle consists of six stages: egg, J1 (�rst-stage juvenile), J2 (second-stage juvenile), J3 (third-stage
juvenile), J4 (fourth-stage juvenile), and adult (female and male). J3, J4, and female individuals are
typically sedentary endophytes, while the egg, J1, and preparasitic J2 stages are exophytes in most
Meloidogyne species [2-4]. M. incognita is one of the major agricultural pathogens responsible for
causing signi�cant annual economic losses worldwide [5]. It disturbs plant roots by altering the cell cycle,
increasing the size of parasitized cells, and causing cell hyperproliferation and the development of giant
cells [6-10]. These disorders disrupt water and nutrient uptake in roots and may reduce plant growth and
yield [11-13].

The interaction between M. incognita and host plants involves an extensive molecular immunity network
involved in defense and counter-defense [14, 15]. In addition to basal defense mechanisms, after the
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recognition of nematode elicitors, host plants increase the production of reactive oxygen and nitrogen
species and other toxic compounds derived from secondary metabolism [16-19]. In contrast, M. incognita
increases the production and release of antioxidant and detoxifying compounds [20-23] and, particularly,
effector proteins to overcome host defense [24-26]. Thus, several nematode effector proteins modulate
different biological processes and defense responses of the host plant [24, 26-30]. For example, Mi-
MSP18 [28] and Mi-Msp40 [31] effectors function in cell death suppression and can increase plant
susceptibility and modulate host immunity. Likewise, the Mi-Mi8D05 effector interacts with the plant
tonoplast intrinsic protein 2 (TIP2) aquaporin, suggesting that it regulates solute and water transport
within giant cells [32]. Other examples include Mi-MiPFN3, which disrupts the plant’s actin cytoskeleton
[33], while Mi-MiMIFs interfere with annexin-mediated plant immune responses [30] to promote plant
infection.

In this context, secretome analyses of M. incognita J2 preparasites allowed the identi�cation of
numerous candidate effector proteins [20, 34-36], but their roles in host parasitism are still not well
understood. By applying comparative genomic approaches to EST datasets, Jaouannet et al. [37]
identi�ed at least three genes that were speci�cally expressed in the esophageal glands of parasitic M.
incognita juveniles. Among these genes, the Mi-EFF1/Minc17998 effector is secreted during parasitism
within giant cells and is targeted to the nuclei. Therefore, the Mi-EFF1/Minc17998 effector has been
suggested to be involved in the manipulation of the nuclear functions of the host cells [37]. Nevertheless,
the precise role of this effector during plant parasitism has not yet been demonstrated. Previous studies
on protein-protein interactions between Arabidopsis thaliana and different phytopathogens (bacteria,
oomycetes, and fungi) showed that several pathogen effector proteins preferentially interact with a
limited set of highly connected (hub) proteins of the host plant [38-40]. AtHub6 (AT3G47620), the most
targeted hub protein, was shown to interact with four effectors of the bacterium Pseudomonas syringae,
25 effectors of the oomycete Hyaloperonospora arabidopsidis [38], and 23 effectors from the fungus
Golovinomyces orontii [39]. Interestingly, AtHub6 is a TEOSINTE BRANCHED/CYCLOIDEA/PCF (TCP) 14
(AtTCP14) transcription factor that transcriptionally activates or interacts with numerous other plant
proteins associated with cell cycle control, plant development [41-46], and regulation of the immune
system [38, 42, 47-49]. Curiously, Yang et al. [48] showed that the P. syringae HopBB1 effector interacts
with the AtTCP14 protein and targets it to the SCFCOI1 degradation complex, thus promoting bacterial
virulence. Similarly, the A. thaliana triple T-DNA insertion mutant for the AtTCP8, AtTCP14, and AtTCP15
genes (tcp8, tcp14, and tcp15) proved to be more susceptible to P. syringae pv. maculicola than wild-type
(WT) plants [47]. Additionally, Spears et al. [43] demonstrated that the A. thaliana tcp8 tcp14 tcp15 triple
mutant exhibited impairment of pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI),
which is one layer of the plant innate immune system. Despite its involvement in plant developmental
and defense responses, there is no information about the interaction of AtHub6 with nematode effectors
and the role of these protein-protein interactions in plant susceptibility to nematode infection.

Soybean (Glycine max) is one of the most important agricultural commodities worldwide and is
indispensable for human and animal nutrition [50, 51]. However, soybean crop expansion and yields have
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been limited by nematode incidence [52]. The main commercial soybean cultivars are highly susceptible
to nematode infections, and under ine�cient nematode management, signi�cant yield and economic
losses are caused annually by RKNs, including M. incognita [53]. Thus, a better understanding of the
molecular interactions between soybean and nematodes may allow the development of new
biotechnological tools (NBTs) for RKN control [54, 55]. Herein, we identi�ed and validated the interaction
between the Mi-EFF1/Minc17998 effector and the soybean GmHub6 protein (orthologue of AtHub6)
using in vitro and in vivo approaches. Curiously, our data obtained using an A. thaliana T-DNA mutant of
the AtHub6 gene suggested that the disruption of AtHub6 protein function can be associated with an
increase in plant susceptibility to nematode infection. Therefore, our data strongly indicate that this
interaction can modulate the development of parasitized cells, prevent the activation of the immune
system and, consequently, support the parasitism of the host plant.

Results
In silico analysis of the Mi-EFF1/Minc17998 effector sequence

Pairwise comparisons of nucleotide and amino acid sequences showed that the Mi-EFF1/Minc17998
effector shares low sequence identity with other effectors that are currently better characterized, ranging
from 50 to 75% (Fig. 1A) and 15 to 35% (Fig. 1B), respectively. In addition, it has been observed that the
Mi-EFF1/Minc17998 effector exhibits relatively conserved orthologous genes in the other species of the
Meloidogyne genus (Figure S1). A paralogous gene for the Mi-EFF1/Minc17998 effector identi�ed
(Minc3s01563g24741) in the M. incognita genome (BioProject PRJEB8714, [56] showed considerable
homology with its corresponding Mi-EFF1/Minc17998 gene (Figure S1). Phylogenetic analysis based on
nucleotide sequences showed that the Mi-EFF1/Minc17998 effector clustered with the MiPFN3 and Mj-
NULG1a effectors (Fig. 1C), while amino acid sequence analysis showed that the effector grouped most
closely to the Minc00469 and MiISE5 effectors (Fig. 1D). These data obtained from sequence
comparisons and the analysis of phylogenetic relationships suggest that the Mi-EFF1/Minc17998
effector does not exhibit a well-de�ned origin or conserved relationships with other nematode effectors.
Transcriptome data mining revealed the expression pro�les of the Mi-EFF1/Minc17998 effector and the
Minc3s01563g24741 gene paralog in different nematode life stages. The two genes showed similar
expression levels, with higher expression in the J3, J4, and female stages, while expression was lower in
the egg and preparasitic J2 stages (Fig. 1E). RT-qPCR assays revealing the Mi-EFF1/Minc17998 effector
expression pro�le con�rmed that expression was higher in the J2/J3, J3/J4, and female stages, but
signi�cant expression was also observed in the egg and J2 stages (Fig. 1F). These data showed that Mi-
EFF1/Minc17998 gene expression is closely associated with the infection stages in the host plant.

The Mi-EFF1/Minc17998 effector interacts with the soybean GmHub6 protein

In this study, eight of the A. thaliana hub proteins previously identi�ed by Mukhtar et al. [38] were
selected, and their orthologous soybean genes were identi�ed: GmHub4 (COP9 signalosome complex
subunit 5), GmHub6 (TCP family transcription factor), GmHub10 (kinesin light chain), GmHub12
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(APC8/anaphase -promoting complex subunit), GmHub17 (TCP family transcription factor), GmHub42
(transcription factor UNE12-related), GmHub47 (jasmonate ZIM domain-containing protein), and
GmHub61 (uncharacterized conserved protein containing an emsy amine-terminus domain) (Table 1).
Soybean CDS sequences were cloned into entry and destination vectors to assess the interaction with the
Mi-EFF1/Minc17998 effector by in vitro and in vivo protein-protein interaction assays. Yeast two-hybrid
(Y2H) assays were performed with the soybean proteins and Mi-EFF1/Minc17998, and speci�c protein-
protein interactions were observed only with the GmHub6 protein (Fig. 2A). The Mi-EFF1/Minc17998
effector showed speci�c interaction with the GmHub6 protein in both Y2H (Fig. 2B and C) and in vivo by
bimolecular �uorescence complementation (BiFC) assays in tobacco (Nicotiana tabacum) (Fig. 2D). In
addition, both Mi-EFF1/Minc17998 and the GmHub6 protein showed an autoactivation ability (Fig. 2B).
The Mi-EFF1/Minc17998 and GmHub6 interaction was considered a relatively weak interaction based on
the results of the addition of the 3AT competitive inhibitor to selective medium (Fig. 2C).

In silico characterization of the soybean GmHub proteins

All eight GmHub proteins studied here showed transcript accumulation in almost all plant tissues tested
(Figure S2A to S2B). In addition, their protein-protein interaction networks were distinct, except for
GmHub10 and GmHub12, which simultaneously interacted with Glyma.07G190600 (anaphase-promoting
complex 4) (Figure S2C). GmHub6 and its homologous gene (Glyma.05G027400) showed higher amino
acid identity with AtHub6 (approx. 55%) and SlTCP14 (approx. 70%), while lower sequence identity
(approx. 25%) was observed with other soybean GmHub proteins except for GmHub17 (Fig. 3A). In
addition, phylogenetic analysis using amino acid sequences showed that GmHub6 and its homologous
gene were grouped close to the TCP transcription factors AtHub6, GmHub17, and SlTCP14 (Fig. 3B). The
biological functions of the GmHub6 protein are involved in plant development and the regulation of the
defense response, and the protein contains a typical TCP domain (pfam03634) and nuclear localization
signal (Tables 1 and 2; Additional �le 1). The protein-protein interaction network retrieved from the
STRING database highlighted that GmHub6 is the core protein that interacts with numerous other
proteins (Figure S3A) similar to the AtHub6 network (Figure S3B). These proteins from the GmHub6
network include several other TCP proteins (Table 2), but considering the orthology with AtHub6, this
network of interactions maybe even larger, including dozens of proteins with highly distinct functions
[38]. Curiously, GmHub6 transcripts accumulated in almost all soybean tissues and all different
conditions examined, with very low accumulation being observed in the nodules under symbiotic
conditions, roots under ammonia treatment, youngest roots, and seeds, in contrast to the relatively high
abundance observed in leaves (Figure S3C). In addition, the GmHub6 gene showed a positive correlation
at the expression level with the Glyma.01G014900, Glyma.16G004300, and Glyma.18G296100 genes
from its network in the same soybean tissues or conditions (Figure S3D).

GmHub6 expression pro�le in soybean roots during M. incognita infection

RT-qPCR assays showed that the GmHub6 gene was upregulated in the axillary roots during nematode
infection (at 3 dpi) only in the nematode-resistant soybean cultivar PI595099 (Fig. 3C). However, the
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GmHub6 expression level was similar in the noninoculated roots of both the resistant and susceptible
soybean cultivars. In contrast, a higher expression level of the GmHub6 gene was observed at 25 dpi in
the resistant cultivar in both mock-treated and inoculated roots. With respect to the GmHub6 expression
level in the four developmental stages (stage I, II, III, and IV) of the soybean plants, signi�cant differences
were observed from stage I to stage IV in both soybean cultivars. Thus, in both mock-inoculated and
infected plants, the GmHub6 gene expression level was �nely modulated throughout plant development,
which was more pronounced in the resistant soybean cultivar, mainly as a consequence of nematode
infection.

M. incognita susceptibility assessment of the A. thaliana AtHub6 mutant

A. thaliana AtHub6 mutant plants showed normal development, similar to that of the WT plants (data not
shown). To assess whether the interaction of the Mi-EFF1/Minc17998 effector with the soybean GmHub6
protein may be associated with an increase in plant susceptibility, the AtHub6 mutant was inoculated
with 250 M. incognita J2 individuals, and the evolution of parasitism was evaluated over time. The
nematode penetration e�ciency, post penetration development, and formation and morphology of the
galls in AtHub6 mutant plants were similar to those in the WT and AtEds1 control plants (data not
shown). However, at 40 dpi, the AtHub6 plants showed a greater number of eggs and J2 individuals per
gram of roots, a similar number of galls per gram of roots, and a higher nematode reproduction factor
(NRF) compared with the WT and AtEds1 mutant plants (Fig. 3D to 3G). These data indicate that plants
in which the AtHub6 gene was mutated were more susceptible to the nematode.

Discussion
Plants exhibit numerous mechanisms associated with defense against pathogens that are regulated in
the presence or absence of pathogens to prioritize the development of the plant or the defense response
[57-59]. The growth defense trade-off is essential to ensure plant survival and reproduction [60]. The
development and defense pathways are closely related so that any disturbance in the cell cycle can
trigger the plant immune system [61, 62]. Initially, the root damage caused by RKN infection releases
plant-derived compounds that act as damage-associated molecular patterns (DAMPs) and subsequently
activate a PTI-like basal defense response [63]. Another step in PTI against RKNs may involve the
recognition of PAMPs or nematode-associated molecular patterns (NAMPs), including ascarosides,
cuticle, or chitin fragments [64].

In addition to inactivating host defenses, RKNs also need to modulate the cell cycle of the host plant for
the successful establishment of a feeding site [8, 65, 66]. The RKNs are sedentary endoparasitic
pathogens that spend most of their life cycle inside the roots and giant cells from J2 entry to oviposition
by adult females. This infective phase usually lasts approximately 20 to 35 days for M. incognita, and
effector proteins are essential to nematode infection [67, 68]. Since the �rst M. incognita genome
sequence was reported [2, 56], several effector proteins have been identi�ed, and some have been
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characterized, but their role after their secretion in the host plant cell is still poorly understood [15, 20, 34,
69].

In this study, we have contributed to the knowledge of the functional characteristics of the Mi-
EFF1/Minc17998 effector and proposed a role of this effector in the parasitism of the host plant.
Jaouannet et al. [37] and Quentin et al. [70] demonstrated that this effector is produced in the esophageal
glands of parasitic juveniles, secreted within the feeding site and targeted to the nucleus, suggesting its
involvement in the modulation of host cell metabolism. Herein, we showed that this effector presents low
sequence identity and distant phylogenetic relationships with other well-known effectors, suggesting a
speci�c mode of action after delivery in the host plant. In addition, our data showed that the Mi-
EFF1/Minc17998 gene is strongly upregulated during parasitism in the J2/J3, J3/J4, and female stages
but is also expressed in eggs and preparasitic J2 individuals, suggesting the role of its product as a
putative avirulence protein and its involvement in the formation of giant cells. A speci�c protein-protein
interaction between Mi-EFF1/Minc17998 and the soybean GmHub6 protein was demonstrated, and the
functional disruption of the GmHub6 protein has been speculated to occur in the context of plant
parasitism. Considering that the GmHub6 protein could play an essential role similar to that of
AtHub6/TCP14 in the regulation of the cell cycle, plant growth and development [41-46] and the
regulation of the plant’s defense responses [38, 42, 47-49], this speculation is quite plausible. Accordingly,
several molecular interactions between nematode effectors and host plant proteins have already been
characterized and associated with cell cycle modulation [8, 65] and host defense suppression [25, 30, 69,
71-73]. In our study, the data on the EFF1/Minc17998 effector and GmHub6 protein interaction, together
with the increased susceptibility of the AtHub6 mutant plants to M. incognita infection, suggest that this
effector may be associated with cell cycle modulation and/or the suppression of plant defense
responses. Similarly, Kim et al. [49], Li et al. [47] and Spears et al. [43] demonstrated that the A. thaliana
attcp8, attcp14, and attcp15 triple mutant exhibited impaired immune responses, while Yang et al. [48]
showed that the AtTCP14 protein was targeted for degradation after interaction with the P. syringae
HopBB1 effector.

Stam et al. [74] showed that the Phytophthora capsici CRN12_997 effector interacts with the tomato
SlTCP14 (putative ortholog of the GmHub6 and AtHub6 genes) protein, reducing the SlTCP14 association
with nuclear chromatin and altering its subnuclear localization. In addition, SlTCP14 overexpression
enhances plant immunity to P. capsici, while the coexpression of the CRN12_997 effector abolishes this
phenotype [74]. Accordingly, our data showed that the GmHub6 gene was upregulated in response to M.
incognita infection but only in the resistant soybean cultivar, suggesting that its accumulation may be
mainly associated with resistance improvement in the plants. Thus, we believe that the EFF1/Minc17998
effector acts by interacting with the GmHub6 protein to primarily alter the cell cycle, which in turn
activates the immune system. Subsequently, the functional disturbance of the GmHub6 protein in plant
cells targeted by the nematode strongly impairs the host defense responses and allows M. incognita to
complete its life cycle.
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Given this hypothesis, the use of RNAi technology to target the Mi-EFF1/Minc17998 effector may be an
interesting strategy for improving resistance to M. incognita in transgenic plants. This hypothesis is
supported by the low genetic variability (approx. 0.02% of nucleotides) observed in protein-coding regions
among different M. incognita races or isolates [75]. In addition, only slight variations in gene copy
number and expression levels have been observed among different M. incognita isolates and races [76].
In contrast, the expression modulation of the GmHub6 gene (or its orthologous genes in other crops of
interest) via its overexpression or targeted transcriptional modulation using the CRISPR/dCas system [77]
can be evaluated (or combined with an RNAi strategy) to improve plant resistance to RKNs.

Conclusion
Several features of the M. incognita Mi-EFF1/Minc17998 effector and soybean GmHub proteins
(especially the GmHub6 protein) have been highlighted, and we suggest their great importance for
successful plant parasitism or plant resistance, respectively. The interaction between the Mi-
EFF1/Minc17998 effector and the soybean GmHub6 protein is suggested to be a mechanism associated
with a reduction in plant resistance to nematode infection via the disruption of GmHub6 activity. The high
conservation of this effector in other Meloidogyne species suggests that NBTs based on RNAi could be
developed to target and downregulate this effector gene in different RKN species or races. Therefore, our
�ndings showed that the Mi-EFF1/Minc17998 effector and the soybean GmHub6 protein are powerful
targets for the development of NBTs for nematode control in crops.

Methods
In silico analysis of the M. incognita Mi-EFF1/Minc17998 effector and soybean GmHub proteins

All sequences of M. incognita effector genes were retrieved from BioProject ID PRJEB8714 (sample
ERS1696677) [56] from the online WormBase Parasite Database version WBPS13 [78]. Pairwise identity
matrices for nucleotide and amino acid sequences were generated using Sequence Demarcation Tool
Version 1.2 software [79]. Phylogenetic analyses of the M. incognita effector sequences were performed
using the Phylogeny.fr web service [80]. For these analyses, sequences were aligned with MUSCLE
software [81], and the alignment was curated by the Gblocks model. Then, phylogenetic analyses were
performed using the maximum likelihood method with PhyML software using approximate likelihood-
ratio test (aLRT) SH-like branch support and the GTR and WAG substitution models for nucleotide and
amino acid sequences, respectively. Phylogenetic trees were generated and visualized with TreeDyn
software, which was implemented at the same web service. Comparative genomic trees were generated
from BioProject PRJEB8714 [56] by the WormBase ParaSite Database using the Ensembl Compara tools.
The in silico expression levels of Mi-EFF1/Minc17998 and its paralogous gene Minc3s01563g24741 in
different M. incognita life stages were determined using transcriptome datasets (BioProject number:
PRJNA390559; [82]) retrieved from the BioSample database (NCBI). For this analysis, 15 transcriptome
libraries from the M. incognita egg, J2, J3, J4, and female stages generated by Choi et al. [82] using the
Truseq RNA Sample Prep Kit (Illumina) and mRNAs that were paired-end sequenced (2x101 bp) using
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Illumina HiSeq 2000 technology were downloaded and trimmed, and the transcripts were mapped using
the genome reference retrieved from the WormBase Parasite Database (BioProject ID PRJEB8714) [83].
The gene expression pro�les in different nematode life stages were normalized to transcripts per million
(TPM) values.

On the other hand, the sequences and characteristics of soybean genes were retrieved from G. max
Wm82.a2.v1 (BioProject: PRJNA19861) [84] via the Phytozome v.12 database [85]. Conserved domains in
the gene sequences were identi�ed using the CDD Database from NCBI [86], annotation was con�rmed by
the HMMER prediction server [87], and nuclear signal localization (NLS) motifs were predicted using the
NLStradamus online tool [88]. The pairwise identity matrices were generated, and phylogenetic analyses
were performed as described above. The interactome network of soybean and A. thaliana hub proteins
with their interacting proteins was retrieved from the STRING database v.11 platform [89]. The organ- and
tissue-speci�c expression of the eight GmHub genes, including the top 10 soybean proteins with which
GmHub6 interacted, is presented in the heat map plot generated by the PhytoMine tool
(https://phytozome.jgi.doe.gov/phytomine/begin.do) using all gene expression data in the database
related to tissue- and organ-speci�c expression.

Mi-EFF1/Minc17998 expression pro�le determined using RT-qPCR assays

The Mi-EFF1/Minc17998 gene expression levels in different nematode life stages (egg, J2, J2/J3, J3/J4,
and female) during plant infection were determined using tomato roots inoculated with 500 M. incognita
J2 race 3 individuals. Total RNA was isolated using the Concert™ Plant RNA Reagent (Invitrogen,
Carlsbad, CA, USA) supplemented with PVP-40. The RNA concentration was estimated using a
spectrophotometer (NanoDrop 2000, Thermo Scienti�c, Massachusetts, USA), and RNA integrity was
evaluated via 1% agarose gel electrophoresis. The RNA samples were treated with RNase-free RQ1 DNase
I (Promega, Madson, Wisconsin, USA) according to the manufacturer’s instructions. Then, 2 to 4 μg of
DNase-treated RNA was employed as a template for cDNA synthesis using Oligo-(dT)20 primers and
SuperScript III RT (Life Technologies, Carlsbad, CA, USA) according to the manufacturer’s instructions.
The cDNA was quanti�ed by spectrophotometry and diluted 1/10 with nuclease-free water. RT-qPCR
assays were performed in an Applied Biosystems 7500 Fast Real-Time PCR System (Applied Biosystems,
Foster City, CA, USA) using 400 ng of cDNA, each gene-speci�c primer at 0.2 µM (Table S1) and GoTaq®

qPCR Master Mix (Promega, Madson, Wisconsin, USA). The qPCR conditions included an initial step at
95°C for 10 min, then 40 cycles of 95°C for 15 s and 60°C for 1 min, followed by a �nal melting curve
analysis. The relative expression of the Mi-EFF1/Minc17998 gene was normalized using Mi18S (GenBank
accession U81578) [90] as an endogenous reference gene. Three biological replicates composed of one
plant each were performed, and the cDNA samples were used in technical triplicate reactions. Primer
e�ciency and target-speci�c ampli�cation were con�rmed on the basis of a single distinct peak in the
melting curve analysis. The relative expression level (fold change) was calculated using the 2-∆Ct or
method [91].

In vitro and in vivo transactivation assays for the evaluation of protein-protein interactions
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Protein-protein interaction tests were performed to evaluate the interaction of the Mi-EFF1/Minc17998
effector with eight soybean hub proteins: GmHub4 (COP9 signalosome complex subunit 5), GmHub6
(TCP family transcription factor), GmHub10 (kinesin light chain), GmHub12 (APC8/anaphase -promoting
complex subunit), GmHub17 (TCP family transcription factor), GmHub42 (transcription factor UNE12-
related), GmHub47 (jasmonate ZIM domain-containing protein), and GmHub61 (uncharacterized
conserved protein containing an emsy amine-terminus domain) (Table 1). The cDNA sequences of the
soybean hub proteins were ampli�ed from total RNA isolated from the roots of the soybean cv. Williams
82. Amplicons of the expected size were cloned into the pGEMT easy vector (Promega, Madson,
Wisconsin, USA) and sequenced by Macrogen (Geumcheon-gu, Seoul, South Korea); after sequence
analysis, desirable amplicons were subcloned based on the restriction sites present in the primers into the
entry vector of the Gateway cloning system (pENTR11; Invitrogen). Sequence identities were con�rmed by
comparison with gene sequences retrieved from G. max Wm82.a2.v1 (BioProject: PRJNA19861) [84] via
the Phytozome v.12 database [85]. The transfer of the cDNA clones from the entry vector to the pGADT7-
AD, pGBKT7-BD, and BiFC destination vectors was performed using the enzyme Gateway ™ LR Clonase ™
II Enzyme mix (Invitrogen). The full-length cDNA sequence of the Mi-EFF1/Minc17998 effector was
synthesized by Epoch Life Science (Sugar Land, TX, USA), cloned into the pENTR11 vector, propagated in
E. coli DH5α, and subsequently transferred to the pGADT7-AD and pGBKT7-BD destination vectors using
the LR clonase system. Y2H experiments were performed using the MatchmakerTM GAL4 Two-Hybrid
System 3 (Clontech) based on the GAL4 binding (BD) and transactivation (AD) domains present in these
destination vectors. Both Y2H vectors were sequentially cotransformed into competent cells of the
Saccharomyces cerevisiae YRG2 strain (Matα, ura3-52, his3-200, ade2-101, lys2-801, trp1-901, leu2-3, 112,
gal4-542, gal80-538) using the lithium acetate/polyethylene glycol (PEG) method. Single colonies of
cotransformed yeast were grown overnight in selective yeast nitrogen base (YNB) medium in a shaking
incubator at 180 rpm at 30°C. Yeast cells were diluted in fresh YNB medium to an optical dilution (OD600)
of approximately 1 to 0.01. Then, 100 µl of the suspension was plated on synthetic dropout medium
lacking leucine, tryptophan, and histidine and containing the 3-amino-1,2,4-triazole (3-AT) His3 gene-
product competitive inhibitor at 5 to 10 mM, followed by incubation at 28°C for three to �ve days. The
empty pGADT7-AD and pGBKT7-BD vectors were used as negative controls for protein-protein
interactions, while pGADT7-AD::NIG and pGBKT7-BD::AtWWP1 were used as positive controls. The A.
thaliana AtWWP1 (AT2G41020) and NIG (AT4G13350) protein interactions were previously validated by
Calil et al. [92].

BiFC assays were carried out using different combinations of the A. tumefaciens GV3101 strain carrying
pSITE BiFC cEFYP (GU734652) and nEYFP (GU734651) binary vectors containing the 35S:GmHub6-cYFP
and 35S:Mi-EFF1/Minc17998-nYFP fusion proteins. An A. tumefaciens coculture was coin�ltrated into
the abaxial surface of N. tabacum leaves at an OD600 nm of 0.7 at a �nal ratio of 1:1. Yellow �uorescence
was analyzed in epidermal cells three days after in�ltration using a Zeiss inverted LSM510 META laser
scanning microscope equipped with an argon laser and a helium laser as excitation sources. Yellow
�uorescent protein (YFP) was excited at 514 nm using an argon laser, and YFP emission was detected
using a 560-615-nm �lter.
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GmHub6 expression pro�le in soybean roots during M. incognita infection

M. incognita J2 race 1 was obtained from tomato plants (Solanum lycopersicum cv. Santa Clara) that
were inoculated and maintained for eight to ten weeks under greenhouse conditions. Infected roots were
washed and macerated using a blender after treatment with 0.5% sodium hypochlorite. Eggs were
harvested, rinsed with tap water, and subsequently separated from root debris using 100- to 550-μm
sieves [93]. Then, the eggs were hatched under aerobic conditions at 28°C, and J2 individuals were
harvested every two days, decanted and quanti�ed under a microscope using a counting chamber.
Soybean plants were inoculated with 1,000 newly hatched M. incognita J2 individuals suspended in
distilled water. The conventional soybean cultivars PI595099 (resistant) and BRS133 (susceptible), which
are considered to exhibit contrasting RKN resistance levels [94], were inoculated with 1,000 M. incognita
J2 individuals, and axillary root samples were harvested at 3, 8, 15, and 25 dpi from mock- and
nematode-inoculated plants. Total RNA was puri�ed using the Concert™ Plant RNA Reagent (Invitrogen,
Carlsbad, CA, USA) supplemented with PVP-40, and cDNA was synthesized from DNA-free, highly pure
RNA as described above. The expression pro�le of the GmHub6 gene during nematode infection was
measured by RT-qPCR assays using speci�c primers and normalized with GmCYP18 (Glyma.12G024700)
as an endogenous reference gene (Table S1). The thermocycling reactions and conditions used were the
same as those described above. Four biological replicates were performed for each treatment, and each
biological replicate was composed of four plants. All cDNA samples were used in technical triplicates,
and primer e�ciency and target-speci�c ampli�cation were con�rmed by a single, distinct peak in the
melting curve analysis. The relative expression level (fold-change) was calculated using the 2-∆Ct method
[91].

M. incognita resistance assessment of the AtHub6 mutant

A. thaliana seeds from the AtHub6 gene mutant line hub6 (T-DNA insertion; attcp14-5, GK-
611C04/CS458588, of AT3G47620, an orthologous gene of soybean GmHub6; Additional �le 1) and the
null mutant line for the enhanced disease susceptibility 1 (eds1; AT3G48090; SALK_034340) gene were
obtained from the Arabidopsis Biological Resource Center (ABRC; Columbus OH, 43210, USA). The A.
thaliana seeds were surfaced sterilized and sown in Murashige and Skoog (MS)-containing agar plates.
The plates were strati�ed in the dark at 4°C for 72 h. Plants were grown in a growth chamber at 22°C
under a 12 h light/12 h dark photoperiod. For growth under in vivo conditions, plants from the WT, AtEds1,
and AtHub6 lines were transferred to 1:1 substrate: sand (autoclaved commercial substrate and sand at a
1:1 ratio) and grown as described above. Then, two- or three-week-old plants were inoculated with 250 M.
incognita J2 individuals as described above. The inoculated roots were harvested at 5, 10, 15, and 25
days postinoculation (dpi) and stained with acid fuchsin as described by Bybd et al. [95], and the
penetration e�ciency in the roots, the post penetration development of the nematodes, and the formation
of galls were evaluated. In addition, the number of eggs per gram of roots, the number of J2 individuals
per gram of roots, the number of galls per gram of roots, and NRF were determined from an additional
plant set at 40 dpi. The NRF was determined as described above, and the AtEds1 mutant line was used as
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a susceptibility control. Each A. thaliana line included 15 to 20 plants, which were divided into three
biological replicates.

Abbreviations
RKN: root-knot nematode; Mi: Meloidogyne incognita; PAMP: pathogen-associated molecular pattern; PTI:
PAMP-triggered immunity; Gm: Glycine max; EST: expressed sequence tag; At: Arabidopsis thaliana; NBT:
new biotechnological tool; Mj: Meloidogyne javanica; Y2H: yeast two-hybrid; BiFC: bimolecular
�uorescence complementation; WT: wild-type; AtEds1: A. thaliana Enhanced disease susceptibility 1
gene.
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Tables
Table 1. Features of the eight soybean GmHub proteins retrieved from the G. max Wm82.a2.v1
(BioProject: PRJNA19861) genome dataset [84] from the Phytozome v.12 database [85].
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Table 2. Features of the soybean GmHub6 (Glyma.17G099100) gene and its interactor genes retrieved
from the G. max Wm82.a2.v1 (BioProject: PRJNA19861) genome dataset [84] from the Phytozome v.12
database [85].
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Figure 1

Sequence analysis and expression pro�le of the Mi-EFF1/Minc17998 effector. Pairwise sequence identity
matrices of (A) nucleotide and (B) amino acid sequences generated using Sequence Demarcation Tool
version 1.2 software [79]. Evolutionary analysis of (C) nucleotide and (D) amino acid sequences
generated by the Phylogeny.fr web service [80]. Gene sequences were retrieved from the online WormBase
Parasite Database version WBPS13 [78]. (E) Expression pro�le of the nematode Mi-EFF1/Minc17998
effector and its paralogous gene Minc3s01563g24741 in different life stages (egg, J2, J3, J4, and
female) of M. incognita determined using transcriptome datasets (BioProject number: PRJNA390559;
[82]) retrieved from the BioSample database (NCBI). Error bars represent con�dence intervals
corresponding to three libraries per life stage of the nematode. (F) Expression pro�le measured by real-
time RT-qPCR of the Mi-EFF1/Minc17998 effector in different life stages of M. incognita race 3 during
tomato parasitism. The fold-change values were calculated with the 2-∆CT formula using the Mi18S
gene as the endogenous reference gene (Table S1). Error bars represent the con�dence intervals
corresponding to three biological replicates.



Page 28/31

Figure 2

Protein-protein interaction assays between the Mi-EFF1/Minc17998 effector and eight soybean GmHub
proteins. (A) Yeast two-hybrid (Y2H) results for the Mi-EFF1/Minc17998 effector and the soybean
GmHub4 (Glyma.06G076000), GmHub6 (Glyma.17G099100), GmHub10 (Glyma.19G008200), GmHub12
(Glyma.11G026400), GmHub17 (Glyma.02G105900), GmHub42 (Glyma.19G160900), GmHub47
(Glyma.09G174200), and GmHub61 (Glyma.02G178800) proteins (Table 1). Mi-EFF1/Minc17998 and the
soybean GmHub proteins were expressed in yeast with a GAL4 activation domain (AD) and binding
domain (BD) fusions. The interactions between these proteins were examined by monitoring histidine
prototrophy. Yeast cells were transformed with a combination of DNA constructs, and proteins were
expressed in yeast and assayed for interaction on selective synthetic medium (SD) in the presence of 5 to
10 mM 3-amino-1,2,4-triazol (3-AT) and cell dilutions at an optical density (OD) of 1.0, 0.1 or 0.01. (B)
Autoactivation assays with Mi-EFF1/Minc17998 and GmHub6 proteins. (C) Mi-EFF1/Minc17998 and
GmHub6 protein interactions in Y2H screening. The protein-protein interactions were evaluated using
pGBK empty vector-BD + GmHub6-AD and AtWWP1 (AT2G41020)-BD + NIG (AT4G13350)-AD [92] as
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negative and positive controls, respectively. (D) In vivo interaction between Mi-EFF1/Minc17998 and
GmHub6 assessed by bimolecular �uorescence complementation (BiFC) assays. Fluorescence (YFP)
images were acquired after the coexpression of the binary vectors pSITE BiFC cEFYP (GU734652) and
nEYFP (GU734651) with the 35S:GmHub6-cYFP + 35S:Mi-EFF1/Minc17998 -nYFP fusion proteins in N.
tabacum leaves. Negative controls were based on the empty vectors used in BiFC assays. Images are
representative samples from three independent biological repeats. Scale bars are 20 μm.
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Figure 3

In silico analysis and GmHub6 (Glyma.17G099100) gene expression pro�le in soybean roots during M.
incognita infection. (A) Pairwise sequence identity matrix from amino acid sequences generated using
Sequence Demarcation Tool version 1.2 software [79]. In addition, GmHub4 (Glyma.06G076000),
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GmHub6 (Glyma.17G099100), GmHub12 (Glyma.11G026400), GmHub17 (Glyma.02G105900),
GmHub42 (Glyma.19G160900), GmHub47 (Glyma.09G174200), GmHub61 (Glyma.02G178800) (Table
1), one putative homologous protein of GmHub6 (Table 2), and Solanum lycopersicum SlTCP14
(NP_001234586) were included in this sequence analysis. (B) Evolutionary analysis of amino acid
sequences generated by the Phylogeny.fr web service [80]. Red and green boxes are highlight the
GmHub6 and AtHub6 proteins, respectively, which were studied in this work. Soybean gene sequences
were retrieved from G. max Wm82.a2.v1 (BioProject: PRJNA19861) [84] via the Phytozome v.12 database
[85], while the S. lycopersicum SlTCP14 amino acid sequence (NP_001234586) was retrieved from the
GenBank Database. (C) Expression pro�le of the GmHub6 gene in the axillary roots of the conventional
soybean cultivars BRS133 (susceptible) and PI595099 (resistant), which are considered to present
contrasting root-knot nematode resistance/susceptibility [94]. The expression pro�le was measured in the
mock-inoculated and M. incognita race 1-inoculated plants using RT-qPCR assays at 3, 8, 15, and 25 days
postinoculation (dpi). The time points of 3, 8, 15, and 25 dpi correspond to development stages I (opening
of the second trifoliate), II (opening of the fourth trifoliate), III (opening of the sixth trifoliate in cultivar
BRS133 and beginning of �owering in cultivar PI595099), and IV (beginning of �owering in cultivar
BRS133 and the grain boot stage in cultivar PI595099) in the plants maintained under greenhouse
conditions. The fold-change values were calculated using the 2-∆CT formula with the GmCYP18 gene as
an endogenous reference gene (Table S1). Error bars represent con�dence intervals corresponding to four
biological replicates (each biological replicate was composed of four plants). Different letters in the
graph bars indicate signi�cant differences based on Tukey’s test at the 5% level of signi�cance.
Susceptibility of the A. thaliana AtHub6 (AT3G47620; attcp14-5; GK-611C04/CS458588) mutant (T-DNA
insertion) line to M. incognita race 3 compared to the A. thaliana Col-0 ecotype (wild-type; WT) and the
null mutant line for the enhanced disease susceptibility 1 (AT3G48090; Eds1; SALK_034340) gene. (D)
Number of eggs per gram of roots, (E) number of M. incognita J2 per gram of roots, (F) number of galls
per gram of roots, and (G) nematode reproduction factor (NRF) in A. thaliana WT (AtWT1 and AtWT2), A.
thaliana AtEds1 mutant (AtEds1KO), and A. thaliana AtHub6 mutant (AtHub6KO). Error bars represent
con�dence intervals corresponding to three technical replicates (D, E, and G) or to each plant evaluated
(F), while each treatment was composed of 15 to 20 plants. Different letters on the graph bars indicate
signi�cant differences based on Tukey’s test at the 5% level of signi�cance.

Supplementary Files

This is a list of supplementary �les associated with this preprint. Click to download.

FigureS1.tif

FigureS2.tif

FigureS3.tif

Additional�le1.docx

https://assets.researchsquare.com/files/rs-29152/v1/FigureS1.tif
https://assets.researchsquare.com/files/rs-29152/v1/FigureS2.tif
https://assets.researchsquare.com/files/rs-29152/v1/FigureS3.tif
https://assets.researchsquare.com/files/rs-29152/v1/Additionalfile1.docx

