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Illustration of the application of the multi-observers approach

Ihab Haidar1, Jean-Pierre Barbot1,2 and Alain Rapaport3

Abstract— Consider the observation problem of bidimen-
sional systems which requires the construction of an embedding
in higher dimension. A multi-observers approach has been
recently introduced by the authors to deal with a class of such
singularly observable systems. This approach does not require
any coordinates transformation. In this work we illustrate
through an academic example the applicability of this approach.

Keywords Nonlinear systems, Observability, State ob-
server, Singularity.

I. INTRODUCTION

Consider the dynamics in the plane

ẋ1 = ax2 − (x21 + x22 − a2) (1)
ẋ2 = −ax1 (2)

where a is a positive real number. The objective is to
reconstruct x2 with the measurement of x1. Observe that the
construction of x2 presents a singularity, which may recurs
periodically over the time, at x2 = a/2. This singularity
problem requires an immersion in higher dimension for the
observer design (see, e.g., [1], [2], [3], [4], [5], [10], [11],
[12], [13]). A systematic approach to obtain an observer
in the original coordinates with an exponential convergence
consists in transforming the original system into the so
called observability form [6], determine an observer in this
canonical form, and then expressing the estimation back in
the original coordinates. However, this approach presents
several difficulties in the construction of the embedding and
the lipschitzian extension of the dynamics outside the set of
its forward orbits. Constructive methods have been proposed
in [7], [12] to deal with such difficulties.

A new approach has been recently introduced in [9]. This
is based on running in parallel a set of estimators in the
original coordinates, each one follows dynamically one and
only one root of equation (1), and then use the further
derivatives of the output together with equation (2) to select
at any time the right estimator. This approach does not
require any coordinates transformation, and by consequence
no problem of transformation inversion of the observability
map nor its Jacobian is posed.

The paper is organized as follows. In Section II we recall
the multi-observers approach. In section III we describe our
roots tracking methods. Section IV is devoted to the illustra-
tion of the multi-observers approach through system (1)-(2).
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II. THE MULTI-OBSERVERS APPROACH

Here we recall the multi-observers approach. Consider the
dynamics

ẋ1 = f1(x1, x2) (3)
ẋ2 = f2(x1, x2) (4)

where f1 is a rational function and f2 is a sufficiently smooth
function, along with the observation of y = x1. Let D be
a relatively compact subset of R2 not containing the poles
of f1 and positively invariant by (3)-(4). Suppose that the
application

z̄ = Φ(x) =
[
h(x), Lfh(x), · · · , Lm−1

f h(x)
]T
, (5)

where f = (f1, f2)T and h(x) = x1, defines an injective
immersion on D, for some m ≥ 2. Let N and D be the
numerator and denominator of f1, respectively. Observe that,
since we suppose that D does not contain the poles of f1 and
that is positively invariant by the dynamics (3)-(4), a solution
s(t) of equation (3) must satisfy the following equation

N(y(t), s(t))− ẏ(t)D(y(t), s(t)) = 0, ∀ t ≥ 0. (6)

The solution s of (6) is, in general, not uniquely determined.
But, since N and D are polynomial functions, then, for each
fixed z in R2 (z will play the role of the first two components
of z̄), there exist at most p solutions s1, · · · , sp such that

F (z, si) := N(z1, si)− z2D(z1, si) = 0, (7)

for i = 1, · · · , p, where p = max{deg(N), deg(D)}. Ob-
serve that the number of real solutions of (7) could depend
on z. At any time t ≥ 0, there exists at least one root si
such that s(t) = si. The multi-observers approach consists
in computing dynamically p-parallel estimators ŝ1, · · · , ŝp of
these roots. The way to determine these estimators will be
addressed in the next section. The final task is to provide, at
each t ≥ 0, an estimation of x2(t) among ŝ1(t), · · · , ŝp(t).
For this purpose, using the further derivatives of y and the
injectivity of the map Φ, we consider the test T (z̄, s) = 0,
where the function T is defined as follows

T (z̄, s) := ‖ (z̄2 − Φ2(z̄1, s), · · · , z̄m − Φm(z̄1, s)) ‖M ,

and ‖ · ‖M denotes the norm associated to a real symmetric
positive definite (m − 1) × (m − 1) matrix M . We choose
ŝ(t) = ŝi?(t)(t) for which ŝi?(t)(t) minimizes the func-
tion T (z̄(t), ŝi(t)) among the estimators {ŝi(t)}i=1,··· ,p, for
t ≥ 0. The choice of the norm plays a role when noisy output
is considered.



III. THE ROOTS TRACKING METHOD

Consider, for k > 0, the following implicit dynamics with
complex variable{

d
dtFε(z(t), ŝε(t)) = −kFε(z(t), ŝε(t)) ∀ t ≥ 0,

ŝ(0) ∈ C\R,
(8)

where the function Fε : R2 × C → C is defined, for ε > 0,
by Fε(z, s) := F (z, s)−εi, and i denotes the imaginary unit
number. The roots tracking method proposed in [9] requires
the following two assumptions.

Assumption 1: For all z ∈ Φ1(D) × Φ2(D), the polyno-
mial ∂sF (z, s) does not admit complex roots.

Remark that Assumption 1 is related to the polynomial F
in s only. If this assumption cannot be checked analytically
(notably, when its degree is larger than 6), one may look for
numerical verifications.

Assumption 2: The number of roots of Fε(z(t), ·) is con-
stant and equal to p over R+.
The idea behind introducing the perturbation parameter ε
is clarified by the following observation. Knowing that for
t ≥ 0 and ε > 0 the roots of Fε(z(t), ·) are always
complex, and those of ∂sFε(z(t), ·) = ∂sF (z(t), ·) are
always reals (Assumption 1), the polynomial Fε(z(t), ·)
cannot have multiple roots. By consequence, for t ≥ 0 and
ε > 0, Fε(z(t), ·) admits p-distinct time-varying complex
roots, sε,1(z(t)), · · · , sε,p(z(t)), which vary continuously
with respect to time.

Let us introduce the map Fε : R+ × C→ C, given by

Fε(t, σ) = −(∂sFε(z, σ))−1 (∂zFε(z, σ)ż + kFε(z, σ)) ,

which, thanks to Assumption 1 and the perturbation param-
eter ε, is well defined. Using Fε, the dynamics (8) can be
explicitly written as{

˙̂sε(t) = Fε(t, ŝε(t)), ∀ t ≥ 0,
ŝε(0) ∈ C\R. (9)

The following theorem shows the uniform convergence of
the solutions of (9) to the roots of (7).

Theorem 1 ([9]): Suppose that Assumption 1 and As-
sumption 2 hold. Then, for every δ > 0 and every i ∈
{1, · · · , p} there exists ε̄ > 0 such that for every ε ∈ (0, ε̄)
the solution of (8) starting from sε,i(z(0)) satisfies the
following inequality

sup
t≥0
|ŝε(t)− si(z(t))| < δ. (10)

Theorem 1 assumes the perfect knowledge of z, that is
the first two components of z̄. In practice, one can use a
numerical differentiator to estimate z allowing a short time
interval [0, η] for the differentiator to converge and then one
can use the roots tracking method that we propose from time
η (i.e. all the roots are computed once at time η and then
tracked over time by continuation).
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Fig. 1. Illustration of the estimated roots (left) with perfect knowledge of z
together with the exact and the constructed solution (right) with ε = 0.001
(top) and ε = 0.1 (bottom).

IV. APPLICATION TO EXAMPLE (1)-(2)

Consider system (1)-(2) along with the observation of x1.
It is easy to see that the ball B(0, a) is invariant by the
dynamics (1)–(2). For the construction of x2 we define firstly
the function F (z, s) = −s2 + as − z21 − z2 + 1. We can
easily verify that Assumption 1 and 2 are satisfied. In order
to show the applicability of our approach in this case of
periodic singularity, we simulate system (9) starting from
the initial conditions of Fε(z(0), sε,i0) = 0, for i = 1, 2 and
for different values of ε. The value of a is fixed to a = 2 and
the initial condition of the original system (1)–(2) is fixed
at (0, 2). The parameter k, relative to (8) has been fixed to
k = 150. An explicit Euler scheme with a discretization
step equal to h = 10−3 has been chosen for the simulation.
Assuming the perfect knowledge of z, by Figure 1 we show
the different real and complex parts of the estimated roots
(left) together with the constructed solution (right), where
the perturbation parameter ε is taken equal to 0.001 (top)
and 0.1 (bottom). The test function defined in Section II is
used to select at any time the right estimated root. Now,
we consider that the output measurements are randomly
disturbed by a white noise proportional up to 50% of y.
The first two derivatives of the output are estimated using a
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Fig. 2. Illustration of the estimated roots (left) without assuming the
perfect knowledge of z together with the exact and the constructed solution
(right) for ε = 0.1. Case of estimated z without noise (top) and with noise
measurement proportional up to 50% of x1 (bottom).
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Fig. 3. The exact solution together with the constructed one (with ε = 0.1)
and that obtained with Φ−1. Case of estimated z with noise measurement
proportional up to 0.2% of x1 and without any filtering strategy.

high-gain differentiator. The output as well as its numerical
derivatives are filtered offline using moving average filters.
We also consider a short delay before using the estimated
derivatives, the time for the differentiator to converge. We
simulate system (9) in the same conditions as before, where
ε is fixed at 0.1. By Figure 2 we show the different real

and complex parts of the estimated roots (left) together with
the estimation of x2 (right) in two cases: without noise
measurement (top) and with noise measurement proportional
up to 50% of x1 (bottom). The identity matrix M = I2 is
simply chosen to define the test function.

We end this section by underlying the advantage of the
proposed approach to deal with singularities. For this, we
compare the constructed solution together with the one
obtained directly by inverting the observability map Φ. A
straightforward computation gives

Φ−1(z) =

(
z1,

a2 + 2z2 + z3/z1
2a

)T

.

By Figure 3 we show the solution constructed by our method,
with ε = 0.1, together with the one obtained by Φ−1, in
the case of estimated z, with white noise proportional up
to 0.2% of x1. This comparison is done without using any
filtering strategy. The performance of our approach is once
again shown by this comparison.

V. CONCLUSION

We illustrate through an example the multi-observers ap-
proach introduced recently in the literature to deal with a
class of singularly observable bidimensional systems. Future
works will attempt to extend this approach to more general
class of higher dimensional autonomous systems.
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