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Abstract 15 

The implementation of the new Water Reuse regulation in the European Union brings to the 16 

forefront the need to evaluate the risks of using wastewater for crop irrigation. Here, a two-17 

tier ecotoxicological risk assessment was performed to evaluate the fate of wastewater-borne 18 

micropollutants in soil and their ecotoxicological impact on plants and soil microorganisms. 19 

To this end, two successive cultivation campaigns of lettuces were irrigated with wastewater 20 

(at agronomical dose (not spiked) and spiked with a mixture of 14 pharmaceuticals at 10 and 21 

100 µg/L each) in a controlled greenhouse experiment. Over the two cultivation campaigns, 22 

an accumulation of PPCPs was observed in soil microcosms irrigated with wastewater spiked 23 

with 100 μg/L of PPCPs with the highest concentrations detected for clarithromycin, 24 

hydrochlorothiazide, citalopram, climbazole and carbamazepine. The abundance of bacterial 25 

and fungal communities remained stable over the two cultivation campaigns and was not 26 

affected by any of the irrigation regimes applied. Similarly, no changes were observed in the 27 

abundance of ammonium oxidizing archaea (AOA) and bacteria (AOB), nor in clade A of 28 

commamox no matter the cultivation campaign or the irrigation regime considered. Only a 29 

slight increase was detected in clade B of commamox bacteria after the second cultivation 30 

campaign. Sulfamethoxazole-resistant and -degrading bacteria were not impacted either. The 31 

irrigation regimes had only a limited effect on the bacterial evenness. However, in response to 32 

wastewater irrigation the structure of soil bacterial community significantly changed the 33 

relative abundance of Acidobacteria, Chloroflexi, Verrucomicrobia, Beta-, Gamma- and 34 

Deltaprotebacteria. Twenty-eight operational taxonomic units (OTUs) were identified as 35 

responsible for the changes observed within the bacterial communities of soils irrigated with 36 

wastewater or with water. Interestingly, the relative abundance of these OTUs was similar in 37 

soils irrigated with either spiked or non-spiked irrigation solutions. This indicates that under 38 
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both agronomical and worst-case scenario the mixture of fourteen PPCPs had no effect on soil 39 

bacterial community.  40 

Keywords: microbial ecotoxicology, PhACs, PPCPs, antibiotic resistance, antibiotic 41 

degradation, ammonium oxidation 42 

1. Introduction 43 

Water is a finite resource crucial for livestock and agricultural crop production. Agricultural 44 

practices alone account for up to 70% of water withdrawals. The effects of global change and 45 

water scarcity constitutes a major concern for the agricultural sector, especially in arid and 46 

semiarid regions and countries with poor water management practices. Within this context, 47 

the use of wastewater can overcome the shortage of freshwater resources for crop irrigation 48 

(Garcia and Pargament, 2015; Petrie et al., 2015). Recently, the European Commission 49 

launched the Water Reuse regulation that among others, defined the minimum quality 50 

requirements of wastewater for crop irrigation (European Comission, 2020). Although the 51 

environmental risks caused by water reuse in agriculture are on the top priority, 52 

environmental fate of wastewater-borne biotic and chemical contaminants and their possible 53 

ecotoxicological effects on soil living organisms and supported ecological functions are still 54 

missing. 55 

In spite of the important reduction of pollutants in the treatment plants, most of the 56 

wastewater discharges remain contaminated with pharmaceutical active compounds (PhACs) 57 

and personal care products (PPCPs). Irrigation of crops with wastewater therefore brings a 58 

mixture of micropollutants to agricultural soils. In soils, the fate of these contaminants is 59 

governed by a series of abiotic and biotic processes interacting together and varying according 60 

to the physico-chemical properties of each pollutant and to the edaphoclimatic conditions 61 

specific for each soil (Hiller and Šebesta, 2017). While sorption results in the stabilisation of 62 
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micropollutants in the soil where they persist and accumulate (Tolls, 2001; Xu et al., 2021), 63 

abiotic and biotic transformations contribute to their dissipation (Grossberger et al., 2014; 64 

Thiele-Bruhn, 2003; Thiele-Bruhn and Peters, 2007). Nevertheless, these transformation are 65 

often partial and lead to transformation products that can be more toxic, persistent or 66 

bioavailable than the parent compounds from which they originate (Celiz et al., 2009; Pérez 67 

and Barceló, 2007). Micropollutants and their transformation products in the soil water can 68 

further be transferred to connected water resources via leaching or runoff as well as to soil 69 

living organisms including plants, macro-and mesofauna (Bigott et al., 2020; Carter et al., 70 

2020; Gallego et al., 2021). Uptake of residues of PhACs and PPCPs by plants can result in 71 

the contamination of the food chain in a variety of ways with possible consequences on 72 

human health (Aryal and Reinhold, 2011; Kalaji and Rastogi, 2017). 73 

Microorganisms are able to degrade a wide range of organic micropollutants including PhACs 74 

and PPCPs. In soils microbial degradation of the anti-inflammatory drugs naproxen (Topp et 75 

al., 2008), ibuprofen (Girardi et al., 2013) and diclofenac (Facey et al., 2018), the analgesic 76 

paracetamol (Li et al., 2014), the antiseptics triclosan and triclocarban (Al-Rajab et al., 2015), 77 

and several antibiotics and antifungals (J. Chen et al., 2019; Sabourin et al., 2011) was 78 

observed. Degrading microorganisms use PhACs and PPCPs as carbon source or energy to 79 

fuel their growth (Moreira et al., 2014). In some cases, their degrading capacities are 80 

improved in response to repeated exposure to micropollutants (Hirth et al., 2016). However, 81 

other microorganisms can be affected in response to their exposure to these micropollutants. 82 

Certain PhACs and PPCPs can be toxic to specific microbial guilds with great repercussion on 83 

the accomplishment of key microbial functions with consequences on the numerous 84 

ecosystem services supported by soil microorganisms (Cavicchioli et al., 2019; Delgado-85 

Baquerizo et al., 2020; Domeignoz-Horta et al., 2020; Wagg et al., 2014).  86 
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Despite the important role of soil microorganisms for soil health, studies assessing the 87 

ecotoxicological effects of PhACs on soil microorganisms are scarce (Barra Caracciolo et al., 88 

2015; Gallego and Martin-Laurent, 2020). In addition, most of them are focused on the 89 

estimation of the effects of single active compounds on the abundance of bacteria and fungi 90 

with classical Pasteurian approaches and on enzyme activities (Butler et al., 2011; Cycon et 91 

al., 2016; Cycoń et al., 2019; Park et al., 2013; Waller and Kookana, 2009). Only a few 92 

studies measured the ecotoxicological effects of PhACs applied alone to agricultural soils 93 

using the latest -omic methodologies available (Gallego et al., 2021; Thelusmond et al., 2019, 94 

2018, 2016) and to our best knowledge, no studies assess the effects of PhAC mixtures on soil 95 

microorganisms.  96 

Within this context, this study aims to investigate the impact of crop irrigation with 97 

wastewater contaminated with a complex mixture of PPCPs on soil microorganisms. A two-98 

tier experiment to test both agronomical (treated wastewater) and worst-case (treated 99 

wastewater spiked with a complex mixture of PPCPs (at 10 µg/L and 100 µg/L each)) 100 

scenario of exposure was conducted in a greenhouse under controlled conditions over two 101 

successive culture cycle of lettuces. The fate of the 14 different pollutants and the presence of 102 

transformation products spiked to treated wastewater in soil was determined by liquid 103 

chromatography-high resolution mass spectrometry (LC-HRMS). The ecotoxicological 104 

effects of the irrigation with treated wastewater spiked or not with a mixture of PPCPs on soil 105 

microorganisms were evaluated using an array of approaches including the estimation of the 106 

abundances of the total fungal and bacterial communities, component of specific microbial 107 

guilds involved in the ammonium oxidation and in the antibiotic resistance and degradation, 108 

as well as the bacterial community composition and diversity assessed by 16S rRNA 109 

amplicons sequencing. 110 

 111 
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 2. Materials and Methods 112 

2.1 Chemicals 113 

Analytical standards (acesulfame, benzotriazole, carbamazepine, carbamazepine-10,11-114 

epoxide, ciprofloxacin, citalopram, clarithromycin, climbazole, diclofenac, 4'-115 

hydroxydiclofenac, hydrochlorotiazide, irbesartan, metropolol, sucralose, sulfamethoxazole, 116 

4-nitro-sulfamethoxazole, valsartan, valsartan acid were obtained from Sigma Aldrich (St. 117 

Louis, MO, U.S.). Isotopically labelled standards for quantitation purposes (acesulfame-d4, 118 

benzotriazole-d4, carbamazepine-d10, ciprofloxacin-d8, citalopram-d6, climbazole-d4, 119 

diclofenac-13C6, hydrochlorothiazide-d2, irbesartan-d6, metoprolol-d7, sucralose-d6, 120 

sulfamethoxazole-d4, valsartan acid-d4, and valsartan-d3) were purchased from Cerilliant 121 

(Sigma Aldrich, St. Louis, MO, U.S.) and Toronto Research Chemicals (Toronto, ON, 122 

Canada). 14C-phenyl ring-labelled sulfamethoxazole was purchased from IZOTOP (specific 123 

activity 3.0 Mbq·mg). LC-MS grade solvents (acetone, acetonitrile (≥ 99.9%), methanol (≥ 124 

99.9%), dimethyl sulfoxide (≥ 99.9%), and HPLC water were purchased from Merck 125 

(Darmstadt, Germany). All the above-mentioned reference standards were prepared 126 

individually in 100% methanol, 100% dimethyl sulfoxide, 100% acetonitrile, or 100% HPLC 127 

water according to compounds solubility and stored at −20°C. Their relevant physicochemical 128 

properties are reported elsewhere (Montemurro et al., 2021). Commercially available Original 129 

QuEChERS extraction salts kit (4 g MgSO4 + 1 g NaCl) were obtained from BEKOlut GmbH 130 

& Co. KG (Hauptstuhl, Germany). Disodium hydrogenphosphate dihydrate 131 

(Na2HPO4·2H2O), citric acid monohydrate and anhydrous ethylenediamine tetraacetic acid 132 

(EDTA) (≥99%) for preparation of the EDTA-McIIvaine buffer (pH 4) (Montemurro et al., 133 

2021) were obtained from Sigma Aldrich (St. Louis, MO, U.S). 134 

2.2 Soil and wastewater collection and analysis 135 
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The soil used in this study was collected from the experimental fields of IRSTEA at 136 

Montpellier (Lavalette, France, 43.64682 N, 3.87418 E). Soil was sieved (4mm) and stored at 137 

4ºC until use. Secondary treated domestic wastewater was collected from the wastewater 138 

lagoon at Murviel-les-Montpellier (Hérault, France, 43.605034 N, 3.757292 E) and stored at 139 

4ºC until use. The wastewater treatment plant operated on the basis of stabilization ponds with 140 

three successive lagoons (13,680, 4,784 and 2,700 m3, respectively). It had a nominal capacity 141 

of 1,500 Inhabitant Equivalent. The major physico-chemical characteristics of the soil and 142 

wastewater are reported in Table 1. 143 

2. 3 Experimental design 144 

A greenhouse experiment consisting in two successive lettuce campaigns planted on the same 145 

soil was performed. The experimental set up consisted in 30 soil pots of 3L containing 2 and 146 

1.1 kg dwt of soil for the first and second campaign, respectively. Soil water holding capacity 147 

was adjusted daily to 50% with deionized water and soil was pre-incubated for four weeks at 148 

20ºC. Lettuce seeds (Lactuca sativa var. Tizian) were germinated in peat soil and plantlets 149 

were transferred to pots after 4 weeks (one lettuce per pot). Lettuce plants were then daily 150 

irrigated for 7 weeks with the same volume (c.a. 30-80 mL per day) of six different solutions 151 

(five replicates per treatment) and with deionized water to adjust the water holding capacity to 152 

70%. Soil collected at the end of the first campaign was stored at 4ºC for two weeks prior to 153 

its use for the second campaign. In total 3 and 2.7 L of solutions were added to each pot for 154 

the first and second campaign, respectively. The irrigation solutions were: deionized water 155 

(water), deionized water spiked with a mixture of 14 compounds at 10 µg/L (water 10 µg/L), 156 

deionized water spiked with a mixture of 14 compounds at 100 µg/L (water 100 µg/L), 157 

wastewater (ww), wastewater spiked with a mixture of 14 compounds at 10 µg/L (ww 10 158 

µg/L), wastewater spiked with a mixture of 14 compounds at 100 µg/L (ww 100 µg/L). The 159 

mixture of compounds was prepared by combining 14 individual solutions of each of them 160 
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(acesulfame, benzotriazole, carbamazepine, ciprofloxacin, citalopram, clarithromycin, 161 

climbazole, diclofenac, hydrochlorotiazide, irbesartan, metropolol, sucralose, 162 

sulfamethoxazole and valsartan) dissolved in methanol, ethanol, acetonitrile or water at 10 or 163 

100 µg/L final concentration. The selection of the compounds was done in the basis of their 164 

frequency of detection and concentration in treated wastewater as well as to include a wide 165 

range of compounds with variable physico-chemical properties (Montemurro et al., 2020b). 166 

The same quantity of water-solvent mixture (with or without the mixture of compounds) was 167 

added to all the irrigation solutions (0.2% v:v). For the second campaign, to overcome 168 

nutrient deficiency symptoms, plants were irrigated four times (once per week) with 60 mL of 169 

modified Hoagland ¼ solution (Hoagland and Arnon, 1938). This experiment was carried out 170 

in a greenhouse under controlled conditions at 20ºC (± 5ºC) with a 16h photoperiod. Soil pots 171 

were daily randomized. At the end of each campaign, lettuce plants and soil samples were 172 

collected. Soil samples were stored either at 4ºC or -20ºC for further chemical and DNA 173 

based analyses. Lettuce plants (separated in leaves and roots) were thoroughly washed and 174 

weighed. 175 

2.4 Soil chemical analysis 176 

Soil nitrate and ammonium concentrations (NO3
- and NH4

+) present in soil were extracted 177 

using 25 mL of potassium chloride (KCl) 1M that was added to ca. 5 g fresh soil, shaken 178 

vigorously (125 rpm for 1 h at 20ºC), filtered and kept frozen until quantification according to 179 

ISO standard 14256-2 (ISO 14256-2, 2005). Quantification was performed using a blank in 180 

each series by colorimetry in a BPC global 240 photometer (Axflow, Plaisir, France). 181 

Soil sample extraction was performed according to Manasfi et al. (2021. in preparation). 182 

Briefly, 10 g of air-dried soil sample were added to a 50-mL polypropylene centrifuge tube 183 

and 3 mL of acetone were added followed by 50 μL of isotopically labeled compounds 184 

mixture (2 μg/mL). The tubes were then vortexed for 2 min at 2500 rpm using a BenchMixer 185 
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XLQ QuEChERS Vortexer (Benchmark Scientific, Sayreville NJ, US) and left overnight 186 

under the hood at room temperature. Next, 8 mL of EDTA-Mcllvaine buffer were added to 187 

rehydrate the samples and then vortexed and left to stand for one hour prior to the extraction 188 

step. When 80% hydration was achieved, 10 mL of acetonitrile was added to the sample and 189 

vortexed again. To promote salting out, the QuEChERS original salt kit was emptied into the 190 

extraction tube and the resulting mixture was immediately shaken by hand for one minute to 191 

avoid salt agglomeration and then vortexed for another minute. Finally, the tube was 192 

centrifuged for 10 min at 4000 rpm and 4 ⁰C and 1 mL of the obtained supernatant was 193 

evaporated under a gentle nitrogen stream at room temperature to total dryness. Lastly, the 194 

samples were reconstituted with 1 mL of water/10% methanol solution and injected for LC-195 

MS/MS analysis. Analysis of pharmaceuticals in samples was based on the high-resolution 196 

multiple reaction monitoring (MRMHR) acquisition performed by a SCIEX X500R QTOF 197 

system (Sciex, Redwood City, CA, U.S.). All information about MRMHR transitions for each 198 

analyte, its corresponding surrogate, optimized parameters, as well as any detailed 199 

information regarding LC-MS/MS methodology are described elsewhere (Montemurro et al., 200 

2021, 2020a). 201 

2.5 Mineralization of 14C- sulfamethoxazole 202 

Sulfamethoxazole mineralization of 14C-phenyl-ring-labelled sulfamethoxazole was measured 203 

by radiorespiromtry. 14C-phenyl-ring-labelled sulfamethoxazole and unlabelled 204 

sulfamethoxazole were mixed in water and added to 20 g dwt soil microcosms to a final 205 

concentration of 10 mg·kg-1 containing 120.7 bq·g-1. The soil moisture content was adjusted 206 

to 70% of the water holding capacity. All soil microcosms were placed in airtight jars 207 

containing a plastic vial filled with water to maintain the humidity within the respirometer jar 208 

(Soulas, 1993) and incubated at 20ºC in the dark. 14CO2 was trapped in 5 mL of 0.2 M sodium 209 

hydroxide. At each sampling day, the NaOH trap was recovered, mixed with 10 mL 210 
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scintillation liquid (ACII scintillation fluid, Amersham) and analysed by liquid scintillation 211 

counting (LS 6500 Multi-463 Purpose Scintillation Counter, Beckman Coulter, Brea, CA, 212 

USA). Sulfamethoxazole mineralization parameters were determined as previously described 213 

(Hussain et al., 2013). 214 

At the end of the incubation period, 14C mass balance analysis was performed by measuring 215 

the amount of extractable (ER) and non-extractable (NER) radioactive residues in the soil 216 

samples. To determine the ER fraction, 10 mL of methanol were added to each sample, 217 

thoroughly mixed and placed on a rotary shaker at 150 rpm for 24 hours. After centrifugation 218 

for 10 min at 6000 x g, the supernatant was recovered, and 5 mL aliquots were mixed with 219 

scintillation liquid and measured for radioactivity by liquid scintillation counting. The 220 

remaining soil was recovered and entirely dried at ambient temperature. The 14C NER were 221 

determined by combustion of 0.5 g of dried packing material under O2 flow at 900°C for 4 222 

min, using a Biological Oxidizer OX-500 (EG&G Instruments, France) as previously 223 

described by El-Sebai et al. (2005). Mass balance of 14C-residues was calculated as a 224 

percentage of the total amount of 14C-radioactivity retrieved from the different fractions 225 

analysed (i.e. 14CO2 residues, ER- and NER-14C-residues). 226 

 227 

2.6 Soil DNA extraction and quantification of microbial guilds 228 

Soil DNA was extracted using the DNeasy PowerSoil HTP 96 Kit (Qiagen, Germany). The 229 

extracted DNA was quantified by using Quant-iT™ PicoGreen® dsDNA assay kit 230 

(Invitrogen, France). Total bacterial and fungal communities were quantified using 16S rRNA 231 

and fungal internal transcribed spacer (ITS) region primer-based qPCR assays with 341F 232 

CCTACGGGAGGCAGCAG / 534R ATTACCGCGGCTGCTGGCA (López-Gutiérrez et al., 233 

2004; Muyzer et al., 1993) and ITS3 5ʹ-GCATCGATGAAGAACGCAGC-3ʹ/ITS4 5ʹ-234 

TCCTCCGCTTATTGATATGC-3ʹ primers (White et al., 1990), respectively. Bacterial and 235 
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archaeal ammonia-oxidizers (AOB and AOA, respectively) were quantified targeting amoA 236 

gene using amoA1F GGGGTTTCTACTGGTGGT / amoA2R 237 

CCCCTCKGSAAAGCCTTCTTC (Leininger et al., 2006) and A23F 238 

ATGGTCTGGCTWAGACG / A616R GCCATCCATCTGTATGTCCA (Tourna et al., 2008) 239 

primers, whereas quantification of clade A and clade B of commamox was performed 240 

targeting amoA genes using C1F TAYAAYTGGGTSAAYTA /C1R 241 

ARATCATSGTGCTRTG and C2F TAYTTCTGGACRTTYTA /C2R 242 

ARATCCARACDGTGTG primers (Pjevac et al., 2017). The abundance of 243 

sulfamethoxazole-resistant bacterial communities was assessed targeting sul1, sul2 and sulA 244 

genes using sul1-F AAATGCTGCGAGTYGGMKCA / sul1-R 245 

AACMACCAKCCTRCAGTCCG (Wei et al., 2018), sul2-F 246 

TCCGGTGGAGGCCGGTATCTGG / sul2-R CGGGAATGCCATCTGCCTTGAG and 247 

sulA-F TCTTGAGCAAGCACTCCAGCAG / sulA-R TCCAGCCTTAGCAACCACATGG 248 

primers respectively (Pei et al., 2006; Wei et al., 2018) whereas the quantification of 249 

sulfamethoxazole-degrading bacteria was performed targeting sadA gene using sadA-F 250 

CCGGTACGGATGATGACTCT / sadA-R GGGACCATAGGCGTGAGATA primers (Billet 251 

et al., 2021). 252 

All qPCR assays were carried out in a ViiA7TM thermocycler (Life Technologies, Carlsbad, 253 

CA, USA) in a 15-µl final reaction volume containing 1x Takyon Low Rox SYBR masterMix 254 

blue dTTP (Eurogentec, Seraing, Belgium), 1 µM of each primer (Eurogentec, Seraing, 255 

Belgium), 250 ng of T4 gene 32 (MP Biomedicals, Illkirch, France) and 0.5 ng of DNA. The 256 

qPCR conditions were 95°C for 3 min for enzyme activation, followed by 40 cycles of 257 

denaturation at 95°C for 15 sec, primer annealing at 60°C (for 16S rRNA, sul1, sul2, sulA, 258 

sadA), 55°C (for ITS, amoA for AOA, and AOB) and 52°C (for amoA for clade A and B of 259 

commamox) for 30 sec and extension at 72°C for 30 sec with data acquisition. After 260 
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amplification a melting curve stage was performed with 15 sec at 95ºC, 1min at 68ºC 261 

followed by a temperature increase (+0.5°C/sec) to 95°C with data acquisition and 95°C for 262 

15 sec. Five independent replicates and three no-template controls (NTC) were used for each 263 

real-time PCR assay. Standard curves were obtained using serial dilutions of linearized 264 

plasmids containing appropriated cloned targeted genes from bacterial strains or 265 

environmental clones. The absence of qPCR inhibitors in DNA extracts was verified by 266 

estimating the copy number of the plasmid pGEM-T Easy Vector (Promega, Madison, WI) 267 

spiked in known amount with the soil DNA extracts as previously described (Henry et al., 268 

2006) 269 

2.7 Bacterial diversity and composition 270 

The diversity and composition of the bacterial community were determined from MiSeq 271 

sequencing of 16S rRNA amplicons. Briefly, a two-step PCR approach targeting the 16S 272 

rRNA gene sequence was used. First step PCR was performed using the universal bacterial 273 

primers U341_F - 805_R with overhang adapters (forward adapter: TCGTCGGCAGCGTC 274 

AGATGTGTATAAGAGACAG, reverse adapter: 275 

GTCTCGTGGGCTCGGAGATGTGTATA AGAGACAG). The resulting amplicons were 276 

used as template in a second PCR carried out with multiplexed primers containing the 277 

universal overhang adaptors and specific barcodes. The first step PCR contained 2 ng of DNA 278 

as template, 7.5 µL of 2X Phusion High Fidelity PCR MasterMix (Thermo Scientific, 279 

Waltham, MA, USA), 250 ng of T4 gene 32 protein (MP Biomedicals, Santa Ana, CA, USA), 280 

0.375 µL of each primer (10 µM) and ultrapure sterile water to a total volume of 15 µL. 281 

Thermal conditions were 3 min at 98°C, 25 cycles at 98 C for 30 sec, 55°C for 30 sec and 282 

72°C for 30 sec followed by a final extension of 10 min at 72°C. Duplicates of each PCR 283 

reaction were pooled and then a 6 µL aliquot was used as template to carry out eight further 284 

amplification cycles with the barcoded primers containing the adapters. The second-step PCR 285 
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was performed using a 384 Nextera XT index kit (Illumina, San Diego, CA, USA) for the 286 

addition of multiplexing index-sequences. It was carried out in 30 μL reaction volumes 287 

containing 2.5 μL sterile water, 15 μL 2X Phusion HF master mix (Thermo Scientific, 288 

Waltham, MA, USA), 250 ng of T4 gp32 (MP Biomedicals, Santa Ana, CA, USA), 3 μL of 289 

each primer (10 μM) and 6 μL of the step-one PCR product. The thermal cycling was 98°C 290 

for 3 min, followed by eight cycles of 98°C for 30 sec, 55°C for 30 sec and 72°C for 30 sec, 291 

with a final extension of 72°C for 10 min. The size of the amplicons was verified by 292 

electrophoresis on a 2% agarose gel. PCR products were purified (amplicon library 293 

purification, PicoGreen® quantification and pooling) and sequenced (Illumina MiSeq 2 294 

x300bp) by Microsynth (Balgach, Switzerland). PCR products were normalized 295 

(SequalPrepTM kit), purified (Pippin prep) and sequenced by Microsynth (Switzerland). The 296 

sequence data was analyzed using an in-house developed Phyton notebook pipeline and 297 

different bioinformatics tools. 16S rRNA sequences were assembled using PEAR software (J. 298 

Zhang et al., 2014) with default settings. Further quality checks were conducted using the 299 

QIIME 1 pipeline (Caporaso et al., 2010a). Sequences shorter than 380 bp were removed. 300 

Reference-based and de novo chimera detection, as well as clustering into operational 301 

taxonomic units (OTUs) was performed with VSEARCH software (Rognes et al., 2016) using 302 

appropriate reference databases (Greengenes’ representative set of sequences for 16S rRNA) 303 

with a threshold set at 94% identity. Representative sequences for each OTU were aligned 304 

using PyNAST (Caporaso et al., 2010b). Phylogenetic trees were constructed using FastTree 305 

(Price et al., 2009). Taxonomy was assigned using UCLUST (Edgar, 2010) and the latest 306 

released Greengenes database (v.05/2013, McDonald et al., 2012) for 16S rRNA sequences. 307 

Sequences were deposited in the GenBank to the sequence read archive (SRA) under the 308 

accession number PRJNA630861: SRR12832230-12832289. A range of bacterial α-diversity 309 

indices pertaining to richness (Chao1), evenness (Simpson reciprocal) and relatedness (PD 310 
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whole tree) were calculated based on rarefied tables (14,000 sequences per sample) (Suppl. 311 

Fig. S1). In total, after de-multiplexing and removal of low-quality raw sequence reads, 312 

amplicon sequencing generated 1,843,505 high quality sequences with an average sequence 313 

length of 471.3 ± 1.1 bp. Using a threshold at 94% nucleotide sequence identity, these 314 

sequences were grouped in 6,058 different OTUs (Suppl. Table S1). UniFrac distance 315 

matrices were also computed to detect changes in the composition of microbial communities. 316 

Principal Coordinate Analysis (PCoA) of OTUs on weighted and unweighted Unifrac distance 317 

matrices was also performed and plotted. The relative abundance of the different bacterial 318 

phyla was also determined using a comparative bar chart.  319 

2.8 Statistical analyses 320 

All statistical analyses were performed in R (http://www.r-project.org). The normality of the 321 

data and residuals was checked (Shapiro Wilk’s test with p>0.05) and the homogeneity of 322 

variances was verified (Levene’s test with p>0.05). Root square, arcsin and log-323 

transformations of the data were performed when necessary to fulfil the normality and the 324 

homogeneity of variances of the dataset. For parametric distributions, ANOVA followed by 325 

Tukey’s test and t-student were used to determine differences. For non-parametric 326 

distributions, data was compared using Kruskal Wallis test followed by pairwise comparisons 327 

with Bonferroni correction. Permutational Multivariate Analysis of variance (Permanova) was 328 

performed on Unifrac distance matrices using Adonis function from R package “vegan” 329 

(Oksanen et al., 2018), while pairwise post-hoc comparisons were detected using “mctoolsr” 330 

package (Legendre and Anderson, 1999) 331 

Significant differences in OTU abundance between the different treatments were detected 332 

using the function “mvabund” from R package. Relative abundance of selected OTUs were 333 

then visualized using a heatmap. 334 
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3. Results 335 

3.1 Effects of watering the plant with water and wastewater spiked with fourteen PCPPs 336 

on plant biomass  337 

At the end of the two campaigns, the biomass of the plants was measured. No matter the 338 

irrigation solution applied, the total fresh weight of lettuce plants collected at the end of the 339 

second campaign was significantly lower (average weight 44.2 ± 20.0 g) than those of the first 340 

campaign (average weight 99.1 ± 30.1 g) (p<0.01) (Suppl. Table S2). In addition, at the end 341 

of the second campaign, one can observe that plants irrigated with wastewater (spiked or not) 342 

presented significantly higher biomass than those irrigated with water (p=0.00000) (Fig. 1). 343 

Concomitantly, a significant NO3
- depletion (p<0.00002) was observed in the soil no matter 344 

the solutions used to water the plants as well as a significant increase in NH4
+ in soils irrigated 345 

with wastewater (p<0.02) (Suppl. Fig. S2). For the two campaigns of production, fresh weight 346 

of lettuces obtained in soil irrigated with the solution (either water or wastewater) spiked with 347 

PPCPs was not significantly different from their respective water and wastewater control. 348 

 349 

3.2 Fate of wastewater-borne chemicals in soil 350 

The fourteen compounds and their main transformation products were tracked using LC-351 

HR/MS analyses carried out on QuEChERS extracts of soils irrigated either with 100 µg/L 352 

spiked water or 100 µg/L spiked wastewater after two consecutive campaigns. All the spiked 353 

compounds were detected in soil extracts (Fig. 2). 354 

The highest mean concentrations observed in the different samples analyzed were obtained 355 

for clarithromycin (from 219 ± 49 to 357 ± 33 ng/g) and hydrochlorothiazide (from 27 ± 5 to 356 

33 ± 2 ng/g) followed by citalopram, climbazole, carbamazepine (from 3 ± 0.3 to 13 ± 1.3 357 

ng/g), irbesartan, ciprofloxacin, benzotriazole and sucralose (ranging from 0.2 ± 0.5 to 2 ± 0.2 358 
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ng/g). The lowest concentrations were obtained for acesulfame, sulfamethoxazole, 359 

metoprolol, diclofenac, and valsartan with values ranging from 0.3 ± 0.2 ng/g to below limit 360 

of quantification (BLOQ). Carbamazepine epoxide, valsartan acid and 4-361 

nitrosulfamethoxazole, the transformation products of carbamazepine, valsartan and 362 

sulfamethoxazole respectively, were detected at low concentrations (from BLOQ to 2.3 ± 0.4 363 

ng/g). 4’-hydroxydiclofenac, the transformation product of diclofenac, was not detected. The 364 

concentration of spiked compounds and main transformation products was significantly 365 

higher in extracts of soil irrigated with both water and wastewater collected at the end of the 366 

second campaign than in those collected at the end of the first campaign. However, this trend 367 

was not observed for sucralose, which was detected at BLOQ concentrations at the end of the 368 

second campaign and for acesulfame, which at the end of the second campaign, slightly 369 

decreased in soils irrigated with spiked water and was hardly detected (at BLOQ) in soils 370 

irrigated with spiked wastewater. Climbazole (p<0.007), carbamazepine (p=0.002), and 371 

irbesartan (p=0.0003) were detected in significantly higher amount in extracts of soils 372 

irrigated with wastewater than in those irrigated with water. Contrarily, sucralose, acesulfame 373 

(for the first campaign), clarithromycin, hydrochlorothiazide, ciprofloxacin, benzotriazole and 374 

sulfamethoxazole (for the second campaign) were detected in slightly lower amount in 375 

extracts of soil irrigated with wastewater than in those irrigated with water, but this observed 376 

trend was not significant (p>0.7). 377 

 378 

3.3. Effects of watering the plant with water and wastewater contaminated with PCPPs 379 

on soil microorganisms 380 

3.3.1 Effects on the abundance of total bacteria and fungi, ammonia oxidizers, antibiotic 381 

degradation and resistance. 382 
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The effect of watering the plant with water or wastewater spiked or not with PCPPs on the 383 

abundance of soil microorganisms was assessed through qPCR assays. The total bacterial 384 

community ranged from 1.1 x 105 ± 1.3 x 104 to 1.3 x 105 ± 3.0 x 104 16S rRNA sequences 385 

per ng of soil DNA. The fungal community ranged from 4.95 x 103 ± 7.93 x 102 to 9.20 x 103 386 

± 2.52 x 103 ITS sequences per ng of soil DNA (Suppl. Table S3). The abundances of total 387 

fungal and bacterial communities were neither affected by the campaign production nor by the 388 

irrigation regimes used to grow the lettuces (p>0.07). The abundance of bacteria involved in 389 

the nitrogen cycle was also quantified by qPCR targeting amoA. Neither the campaign nor the 390 

irrigation regimes changed the proportion of bacterial and archaeal-ammonia oxidizers nor of 391 

clade A of commamox bacteria (Suppl. Table S4 and Suppl. Table S5). One can observe that 392 

the abundance of the clade B of commamox bacteria increased after the second cultivation 393 

campaign no-matter the irrigation regimes considered with significant differences in soil 394 

samples irrigated with water and 10 µg/L spiked water as compared to the respective control 395 

(p<0.007) (Suppl. Table S5). The proportion of sulfamethoxazole-resistant bacteria, estimated 396 

as sul1, sul2 or sulA sequence per 102/104 16S rRNA, was similar in all soils no matter the 397 

irrigation regime applied and slightly increased but not significantly during the second 398 

cultivation campaign (Suppl. Table S6). For both campaigns, no sulfamethoxazole-degrading 399 

bacteria could be detected using sadA qPCR assay in any of the treatments applied to the soil. 400 

Nonetheless, radiorespirometric analysis showed that within 100 days of incubation, the 401 

indigenous soil microbial community was able to mineralize in mean 9.2 ± 0.9% and 8.8 ± 402 

0.9% of 14C-sulfamethoxazole to 14CO2 for the first and second cultivation campaign, 403 

respectively (Suppl. Fig. S3). Modelling the 14C-sulfamethoxazole mineralization kinetics 404 

revealed a lag phase (λ) of 12.2 ± 1.4 and 12.6 ± 1.4% days with a maximum % 405 

mineralization (A) of 8.54 ± 0.9 and 7.9 ± 0.8% (p=0.0000000) and a mineralization rate (μm) 406 

of 0.2 ± 0.03 and 0.2 ± 0.02% day -1. Mass balance analysis at the end of the incubation 407 
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showed that 64.0 ± 7.6% and 62.01 ± 3.6% of the initial radioactivity was recovered as 14CO2 408 

(9.2 ± 0.9% and 8.8 ± 0.9%), ER (0.9 ± 0.2 and 0.9 ± 0.1%) and NER (54.0 ± 7.4 and 52.3 ± 409 

4.04%) for the first and second cultivation campaign, respectively (Suppl. Table S7). 410 

 411 

3.3.2 Effects on soil bacterial diversity and composition 412 

The impact of irrigation regime on the diversity and composition of the soil bacterial 413 

community was assessed by MiSeq sequencing of 16S rRNA gene. For each irrigation 414 

regime, a range of α-diversity indices pertaining richness (Chao1), relatedness (PD whole 415 

tree) and evenness (Simpson reciprocal) were calculated using rarefied data (Suppl. Table 416 

S8). Statistical analysis showed that none of the irrigation regimes nor the production 417 

campaign had an effect on Chao1 and PD whole tree. However, at the end of the second 418 

campaign, Simpson reciprocal significantly decreased in soils irrigated with wastewater 419 

spiked with 100 µg/L of PPCPs (p=0.04). β-diversity analyses based on weighted and 420 

unweighted Unifrac distance matrices were plotted using PCoA and showed a relatively good 421 

reproducibility between replicates from same irrigation regime, which grouped together (Fig. 422 

3 and Suppl. Fig. S4). Samples of the first campaign were clearly separated from those of the 423 

second campaign along the second axis accounting for 11.3 and 3.3 % of the variance 424 

explained in weighted and unweighted Unifrac matrices-based ordinations. Adonis analysis 425 

confirmed these observations for both weighted and unweighted PCoA ordinations 426 

(p=0.0001) (Suppl. Table S9 and Suppl. Table S10). For the first campaign, the soil bacterial 427 

community composition from soil irrigated with water clustered together with that of soil 428 

irrigated with spiked water (p>0.139) and both were clearly separated from those found in 429 

soils irrigated with wastewater spiked or not with PPCPs (Fig. 3 and Suppl. Table S9). For the 430 
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second campaign, a similar trend was observed (Fig. S4) although Permanova analysis 431 

showed significant differences between the different irrigation regimes (Suppl. Table S10). 432 

Taxonomic analysis led to the identification of 7 major phyla: Proteobacteria, Actinobacteria, 433 

Bacteroidetes, Firmicutes, Chloroflexi and Verrucomicrobia (Suppl. Fig. S5). Overall, the 434 

relative abundance of major phyla remained constant no-matter the irrigation regime and the 435 

production campaign considered. However, for the first campaign, the relative abundance of 436 

Verrucomicrobia increased in soils irrigated with 10 µg/L spiked water (p=0.03), 10 µg/L 437 

(p=0.0002) and 100 µg/L spiked wastewater (p=0.003) as compared to the control irrigated 438 

with water. Similarly, the relative abundance of Chloroflexi significantly increased in soils 439 

irrigated with 10 µg/L spiked wastewater (p=0.0003). For the second campaign, as compared 440 

to their respective control, the relative abundances of Chloroflexi and Betaproteobacteria 441 

significantly increased in soil irrigated with wastewater (p=0.02) and with 100 µg/L spiked 442 

wastewater (p=0.007), respectively. On the contrary, as compared to control soil samples, the 443 

relative abundances of Acidobacteria, Gamma- and Deltaproteobacteria significantly 444 

decreased in soil irrigated with 100 µg/L spiked water and wastewater (spiked or not) 445 

(p<0.018), 100 µg/L spiked water (p=0.026) and 100 µg/L spiked wastewater (p=0.0016), 446 

respectively. 447 

To further evaluate the effect of wastewater irrigation on a lower taxonomic level, OTUs 448 

represented by at least one sequence per sample and in half of the samples (a total of 2,917 449 

OTUs) were analyzed using the mvabund R package. A total of 28 OTUs (p<0.05) were 450 

selected as responsible for the shifts observed between irrigation regimes (Fig. 4). The 451 

majority of these discriminant OTUs were affiliated to the Betaproteobacteria class (a total of 452 

21). Two discriminant OTUs affiliated to Deltaproteobacteria (Sorangium and Myxococcales) 453 

and the rest affiliated to Chloroflexi (Herpetosophonales), Gammaproteobacteria 454 

(Pseudomonas), Actinobacteria (Aeromicrobium), Cytophagia (Algoriphagus terrigen) and 455 
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Alphaproteobacteria (Rickettsiacea). With the exception of three OTUs (two OTUs belonging 456 

to the Betaproteobacteria class and one OTU closely related to the Herpetosiphonales), whose 457 

relative abundances were lower in wastewater irrigated soils samples than in the control 458 

irrigated with water, the majority of the discriminant OTUs were highly represented in soils 459 

irrigated with wastewater. Overall, their relative abundances remained constant along the two 460 

cultivation campaigns. 461 

4. Discussion 462 

The advantages of treated wastewater reuse in agriculture have been widely reported (Meli et 463 

al., 2002; Mohammad Rusan et al., 2007). Nutrients brought by wastewater effluents can 464 

reduce the need for supplementary mineral compounds (such as N, P, and K) and increase the 465 

concentration of some elements (Ca, B, Fe, Cu, Zn, Mn and Mb), essential for the growth and 466 

development of crops (Gatta et al., 2016; Urbano et al., 2017; Vivaldi et al., 2019). In our 467 

study, the fresh weight of lettuces irrigated with treated domestic wastewater (spiked with 468 

PPCPs or not) was significantly higher than that of lettuces irrigated with clean water (spiked 469 

with PPCPs or not) at the end of the second campaign. The high amounts of N-NH4
+ (29 470 

mg/L) and phosphorous (8 mg/L) supplied by the wastewater could explain the observed 471 

difference.  472 

Although the supply of mineral nutrients brought by wastewater is valuable to crops, 473 

continuous and/or repeated irrigation of crops with wastewater may lead to the accumulation 474 

of wastewater-borne micropollutants into the soil. Numerous studies have addressed this 475 

environmental key question by monitoring the fate of micro-pollutants in crops irrigated with 476 

wastewater. However only a very few have assessed the ecotoxicological effects of PhACs on 477 

soil-living organisms, such as microorganisms (Barra Caracciolo et al., 2015; Gallego and 478 

Martin-Laurent, 2020). These are generally experiments performed under controlled or 479 

laboratory conditions within a limited period of time, considering the effect of contaminants 480 
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one by one and only a few of them report the fate and the effect of complex mixtures of 481 

contaminants in the natural environment or field conditions (Manasfi et al., 2020). In an 482 

attempt to evaluate under a worst-case scenario, the fate and ecotoxicological effects of the 483 

most relevant wastewater-borne organic contaminants in soil, the accumulation of fourteen 484 

chemicals and major transformation products was assessed over two successive lettuce 485 

campaigns planted on the same soil in a controlled greenhouse experiment. Water and treated 486 

wastewater spiked with a mixture of PPCPs (at 100 µg/L for each compound) were used to 487 

mimic the worst-case scenario defined by repeated irrigation of crops with wastewater. 488 

Although wastewater generally results in soil alkalinisation, the soil pH remained stable 489 

during the two campaigns of productions no matter the solution used for watering of the 490 

lettuces, (data not shown). This is worth noticing since changes in soil pH have been reported 491 

to modify the sorption of several pharmaceuticals active compounds, their bioavailability and 492 

consequently their ultimate distribution into the different environmental compartments 493 

(Brienza et al., 2020; Hiller and Šebesta, 2017; Y. L. Zhang et al., 2014).  494 

Residues of all 14 spiked compounds were detected in soil samples collected after the first 495 

and/or second cultivation campaign. The antibiotic clarithromycin, diuretic 496 

hydrochlorothiazide, antidepressant citalopram, antifungal climbazole and antiepileptic 497 

carbamazepine were detected at the highest concentrations ranging from few ng up to several 498 

hundred ng per g of soil. These observations are in line with Manasfi et al. (2020), who 499 

similarly found the highest concentration for these compounds in a parallel study conducted 500 

under realistic agronomical conditions using the same soil and treated wastewater fortified at 501 

10 µg/L over five cultivation campaigns. Their relatively high Kd values (Klement et al., 502 

2018; Manasfi et al., 2020; Sibley and Pedersen, 2008) and recalcitrance (Chen et al., 2013; 503 

Li et al., 2013; Styrishave et al., 2011) could account for the observed results. The occurrence 504 

of clarithromycin (Corada-Fernández et al., 2015; Dalkmann et al., 2012), 505 
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hydrochlorothiazide and carbamazepine (Biel-Maeso et al., 2018; Corada-Fernández et al., 506 

2015; Dalkmann et al., 2012; Gibson et al., 2010; Grossberger et al., 2014; Kinney et al., 507 

2006) has been previously documented in soils irrigated with wastewater. However, contrary 508 

to our findings, clarithromycin was detected at very low concentrations (<3ng/g), probably as 509 

consequence of its enhanced microbial dissipation after years of exposure as reported by Topp 510 

et al., 2016. Interestingly, carbamazepine epoxide, a degradation intermediate of 511 

carbamazepine was also detected at few ng per g of soil, which evidences the presence of 512 

carbamazepine degrading microorganisms in the soil (Golan-Rozen et al., 2015; Kittelmann et 513 

al., 1993; Li et al., 2013).  514 

A few ng per g of soil of irbesartan, ciprofloxacin and benzotriazole were detected, which is 515 

consistent with observations made by Manasfi et al (2020). The angiotensin receptor blocker 516 

irbesartan, poorly removed in wastewater treatment plant (Bayer et al., 2014), showed a 517 

relatively low sorption to soil (Klement et al., 2018) but is known to be degraded by various 518 

soil microorganisms (Frková et al., 2020), which could explain the low concentrations found 519 

in our study. The antibiotic ciprofloxacin and the corrosion inhibitor benzotriazole are hardly 520 

biodegradable (Girardi et al., 2011; Liu et al., 2011; Walters et al., 2010) but they are known 521 

to photodegrade under UV irradiation and simulated solar radiation respectively (Batchu et 522 

al., 2014; Hem et al., 2003; Serdechnova et al., 2014), and to be assimilated by plants (Castro 523 

et al., 2003; Eggen et al., 2011; LeFevre et al., 2015; Riemenschneider et al., 2016; Sabourin 524 

et al., 2012; Zhao et al., 2018), which might explain why they were detected in our 525 

experiment at low concentrations. The food additive sucralose was also detected at few ng per 526 

g of soil in microcosms irrigated with both spiked water and wastewater, presumably due to 527 

its limited biodegradation (Biel-Maeso et al., 2019; Buerge et al., 2011). However, it was 528 

hardly detected after the first cultivation campaign, probably because of its high water 529 

solubility, lack of sorption to soil (Kd <10) or even plant uptake (Manasfi et al., 2020).  530 
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Concentrations lower than 1 ng per g of soil were detected for the artificial sweetener 531 

acesulfame, the antibiotic sulfamethoxazole and the anti-inflammatory diclofenac. This 532 

observation is in agreement with their high mobility (Belton et al., 2020; Drillia et al., 2005; 533 

Lin and Gan, 2011; Storck et al., 2016) and fast microbial degradation in soils (Al-Rajab et 534 

al., 2010; Buerge et al., 2011; Reis et al., 2014). Additionally, recent studies have shown that 535 

they can be transferred from soil to plants (Bartha et al., 2014; González García et al., 2018; 536 

Kodešová et al., 2019; Manasfi et al., 2020; Zhang et al., 2017). Diclofenac was only detected 537 

in soil microcosms irrigated with spiked wastewater. Given that 4’-hydroxydiclofenac, a 538 

biotransformation product from diclofenac (Prior et al., 2010) was never detected, we could 539 

hypothesize that the degradation of the diclofenac molecule was complete. Interestingly, 540 

mineralization kinetics of 14C-sulfamethoxazole recorded in soil samples collected at the end 541 

of each campaign of production showed that less than 10% of 14C-sulfamethoxazole initially 542 

applied was mineralized by an indigenous soil microbial community and that more than half 543 

of the radioactivity was recovered as NER. Additionally, 4-nitro-sulfamethoxazole, a photo-544 

transformation product of sulfamethoxazole (Su et al., 2016) was only detected at BLOQ 545 

concentrations, which led us to conclude that contrary to previous studies this compound was 546 

hardly transformed and remained adsorbed to soil particles. 547 

The anti-hypertensive metoprolol was also found at very low concentrations. Manasfi et al. 548 

(2020) using chiral analysis showed that enantiomer profiles did not changed during the time 549 

course of the five lettuce growing campaigns as compared to the standard, suggesting that 550 

microbial biodegradation did not occur. Given its moderate photostability (Neamţu et al., 551 

2014) and its variable sorption behavior (Kodešová et al., 2015), further studies are needed to 552 

elucidate the processes governing its dissipation in soil.  553 

While Manasfi et al. (2020) detected the antihypertensive valsartan at concentrations around 2 554 

ng per g of soil, in our study the antihypertensive valsartan was always detected in soil 555 
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microcosms at BLOQ concentrations no matter the production campaign considered. 556 

Valsartan acid, its major transformation product was detected at few ng per g of soil in 557 

microcosms irrigated with spiked treated wastewater only after the second cultivation 558 

campaign. This is in accordance with Gallego et al. (2021) suggesting that valsartan 559 

dissipation is accompanied by the formation of valsartan acid.  560 

As a general trend, a significant carryover of contaminants was observed over the two 561 

cultivation campaigns. The accumulation and persistence of PhACs in soils has been 562 

previously reported (Chen et al., 2013; Dalkmann et al., 2012; Williams and McLain, 2012) 563 

because of the associated human and environmental risks (Aryal and Reinhold, 2011; Fatta-564 

Kassinos et al., 2011; Pérez et al., 2020). Similar concentrations of spiked PCPPs and 565 

metabolites were observed in soil microcosms irrigated with spiked wastewater or water 566 

irrigated. For climbazole, carbamazepine and irbesartan significantly higher values were 567 

observed in spiked wastewater-irrigated than in spiked water-irrigated microcosms. This 568 

difference might be explained by the interaction of these compounds with different 569 

components brought by wastewater influencing their fate in soil (Goldstein et al., 2018; 570 

Katsoyiannis and Samara, 2007; Müller et al., 2007; Nason et al., 2019). It might also be 571 

explained by an inhibitory or toxic effect of other PPCPs brought by wastewater, in addition 572 

to the 14 micropollutants spiked, on specific microbial guilds involved in their degradation, 573 

which might hinder their elimination and increase their persistence in soil. This hypothesis is 574 

supported by the fact that several antibiotics (Cycoń et al., 2019), the non-steroidal anti-575 

inflammatory drugs naproxen and diclofenac (Cycon et al., 2016) and the antiseptic triclosan 576 

(Butler et al., 2011; Waller and Kookana, 2009) have previously been shown to induce 577 

changes in the abundance and enzymatic activities of soil microorganisms.  578 

The ecotoxicological effects of wastewater irrigation on the abundance and the composition 579 

of soil microbial communities were assessed. The abundance of bacterial and fungal 580 
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communities remained stable no-matter the irrigation regime and cultivation campaign 581 

considered. This trend was also observed for the abundance of microbial guilds (AOA, AOB 582 

and clade A commamox) involved in ammonia oxidation processes. Only the abundance of 583 

the clade B commamox bacteria was slightly increased in water and 10 μg/L spiked water 584 

irrigated microcosms after the second cultivation campaign. Altogether one can conclude that 585 

none of the soil microbial communities targeted in our study were affected in their abundance 586 

in response to the nutrients and PhACs brought by spiked wastewater or to the PhACs 587 

brought by spiked water used to irrigate the microcosms planted with lettuces. These 588 

observations are in agreement with previous studies showing that below 5 µg per g various 589 

pharmaceutical and pollutant applied had no effect on the abundance and activities of N-590 

cycling microbial communities (Crouzet et al., 2016; Rosendahl et al., 2012; Wang and 591 

Gunsch, 2011). Given these results, it could be hypothesized that none of the irrigation 592 

regimes had an effect on the total respiration and nitrification processes. To further test this 593 

hypothesis normalized OECD and ISO tests (such as luminescent bacteria tests ISO 11348-594 

3:2007, respiration and nitrification inhibition tests OECD 209 and ISO 9509:2006, 595 

respectively) might be applied.  596 

Similarly, the abundance of sulfamethoxazole-resistant bacteria remained stable no matter the 597 

irrigation regime, probably because this antibiotic was dissipated in soil. Only 9% of 14C-598 

sulfamethoxazole was mineralized over the incubation period, which is consistent with the 599 

fact that sadA carrying microorganisms involved in the biodegradation of sulfamethoxazole 600 

were not detected. These results indicate that contrary to previous studies (Topp et al., 2016, 601 

2013), an enhanced biodegradation of sulfamethoxazole did not occur despite the repeated 602 

exposure to this antibiotic. The simultaneous application of a complex mixture of PhACs 603 

might have caused a detrimental effect on both sulfamethoxazole-resistant bacteria and 604 
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sulfamethoxazole-degrading microorganisms, hindering their growth in response to repeated 605 

exposure to sulfamethoxazole.  606 

α- diversity analyses showed that none of the irrigation regimes had a significant effect on the 607 

richness and phylogenetic diversity of the bacterial community. Only a limited effect for soils 608 

irrigated with 100 µg/L spiked wastewater on the evenness of the bacterial community was 609 

observed. Our findings are in line with other studies (Broszat et al., 2014; Frenk et al., 2014; 610 

Ibekwe et al., 2018) but partly in accordance with previous studies performed in agricultural 611 

soils receiving swine and dairy manures (Z. Chen et al., 2019) or soil microcosms treated with 612 

valsartan, carbamazepine, or tetracycline (Gallego et al., 2021; Thelusmond et al., 2016; 613 

Zheng et al., 2020). This discrepancy might be explained by the high doses applied in those 614 

studies and shorter incubation times which combined led to the observation of a marked 615 

ecotoxicological impact on both diversity and composition of soil bacterial communities. 616 

However, the irrigation with wastewater significantly modified the structure of soil bacterial 617 

communities, which resulted in changes in its composition. In-depth analysis of the OTUs 618 

responsible for the significant differences found between the six irrigation regimes led to the 619 

identification of 28 OTUs affiliated to Betaproteobacteria (21), Deltaproteobacteria (2), 620 

Chloroflexi (1), Gammaproteobacteria (1), Actinobacteria (1), Cytophagia (1) and 621 

Alphaproteobacteria (1). With the exception of two OTUs belonging to Betaproteobacteria 622 

and one OTU closely related to Herpetosiphonales, the relative abundance of the rest of them 623 

significantly increased in the presence of wastewater, suggesting that those OTUs may benefit 624 

from it by using it as carbon source or energy for their growth. Interestingly, similar OTU 625 

profiles were found in soils irrigated with either spiked or non-spiked irrigation regimes 626 

indicating that in our experimental conditions, the PPCPs had no effect on soil bacterial 627 

community. 628 

5. Conclusions 629 
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Lab-to-field tiered exposure scenarios are recommended to accurately assess the fate and the 630 

assessment of environmental risks for in soil living organisms within the pesticide 631 

authorization processes of the active ingredient. This approach was applied in this study to 632 

assess the fate and ecotoxicological effects of a mixture of PPCPs frequently found in treated 633 

wastewater. This is the first report on the evaluation of the ecotoxicological effects on soil 634 

microorganisms of a complex mixture of PPCPs brought by wastewater used to irrigate 635 

lettuces. Our results showed that under the worst-case scenario of exposure (irrigation with 636 

water or wastewater spiked with a mixture of 14 PPCPs at 100 μg/L each) several PPCPs 637 

accumulated in lettuce planted soil. Irrigation of lettuces with wastewater (spiked or not) had 638 

limited or no effects on the abundance, diversity and functions of soil microbial populations, 639 

but induced significant changes in the structure of the soil bacterial community. PPCPs 640 

accumulated in the lettuce planted soil had no effect on soil microorganisms. However, they 641 

may transfer from the soil to the plant and enter the food chain.  642 
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Table 1. Physico-chemical characteristics of the soil of Lavalette (IRSTEA, Montpellier, 
France) and treated wastewater of Murviel-les-Montpellier (France) used in this study 

Parameter Wastewater Parameter Soil 

pH 7.1 pH 8.2 
Conductivity (μS/cm) 1053 sand/silt/clay (%) 45/40/15 
TSS (mg/L) 58  (loam) 
VSS ( mg/L 19.3 SOM (%) 3.68 
COD (mg O2/L) 200 CEC (meq/Kg) 139 
BOD (mg O2/L)  21   
TOC (mg/L) 56.8 TOC (%) 2.13 
N Kjeldahl (mg/L) 21 TN (%) 0.201 
N-NH4

+ (mg/L) 29 N-NH4
+ (mg/Kg) 4.1 

N-NO3
- (mg/L) <0.22 N-NO3

- (mg/Kg) 8.6 
Total P (mg/L) 8.12 Total P (Kg/L) 0.57 
Soluble P (mg/L) 7.19 P2O5 (Kg/L) 0.023 
TSS: total suspended solids; VSS: volatile suspended solids; COD: chemical oxygen demand; 
BOD: biochemical oxygen demand; TOC: total organic carbon; SOM: soil organic matter; 
TN: total nitrogen 

  



 

Figure 1. Relative increase or reduction of fresh weight in lettuce plants irrigated with water 

spiked with a mixture of PPCPs (at 10 μg/L or 100 μg/L each), wastewater or wastewater 

spiked with a mixture of PPCPs (at 10 μg/L or 100 μg/L each). Measurements were done on 

plants collected at the end of the first and second cultivation campaign. Each value is the 

mean of five replicates. Standard deviations are indicated by error bars. ANOVA followed by 

Tukey’s test was performed. Values indicated by different letters are significantly different. 
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Figure 2. Concentration of the spiked products and major metabolites in soil planted with 

lettuces irrigated with either water spiked with a PPCPs mixture (at 100 μg/L each) or 

wastewater spiked (100 μg/L). Measurements were done on soil samples collected at the end 

of the first and second cultivation campaign. ANOVA followed by Tukey’s test and Kruskal 
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Wallis followed by pairwise comparisons with Bonferroni correction (*) were performed. For 

benzotriazole and ciprofloxacin ANOVA was performed on log-and root square transformed 

data. Each value is the mean of five replicates. Standard deviations are indicated by error bars. 

The MQL (minimum quantification level) [ng g-1 d.w.] are ciprofloxacin = 0.03, sucralose = 

0.05, acesulfame = 0.01, sulfamethoxazole = 0.03, metoprolol = 0.01, diclofenac = 0.16, 

valsartan = 0.03, valsartan acid = 0.12 and 4-nitro-sulfamethoxazole = 0.07. For wastewater 

100 μg/L, 2nd campaign, n=4. 

  



 

Figure 3. Bacterial β-diversity analysis from soil planted with lettuces irrigated with either 

water, water spiked with a mixture of PPCPs (at 10μg/L or 100μg/L each), wastewater or 

wastewater spiked with a mixture of PPCPs (at 10μg/L or 100μg/L each). Measurements were 

done on soil samples collected at the end of the first and second cultivation campaign. The 

first three axes of the PCoA weighted Unifrac distance matrix of 16S rRNA sequences are 

shown. The variance explained by each axis is given as a percentage. For each irrigation 

regime, the five independent replicates were considered except for irrigation with wastewater 

spiked with 100 μg/L PPCPs from 1st campaign, which had only four replicates. All replicates 

of a given irrigation regime are represented by the same color. 

  



Figure 4. Heatmap plot representing the relative abundances of significant OTUs in soil 

planted with lettuces irrigated with either water, water spiked with a mixture of PPCPs (at 10 

μg/L or 100 μg/L each), wastewater or wastewater spiked with a mixture of PPCPs (at 10 

μg/L or 100 μg/L each). Measurements were done on soil samples collected at the end of the 

first and second cultivation campaign. For wastewater 100 μg/L, 1st campaign, n=4. 
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