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Abstract 25 
 26 

Complex biological models such as mechanistic research models often need to extend their current use 27 
to a broader audience. Simplification and faster simulations would increase their use. Here, a step-by-28 
step methodology was developed and applied to partially metamodel, hence accelerate, the 29 
mechanistic model FLORSYS. This is a process-based, multiannual and multispecies model ("virtual 30 
field") which simulates crop growth and weed dynamics and allows users to assess cropping systems 31 
for crop production and biodiversity. The model is relatively slow, which makes it difficult to test 32 
numerous and diverse cropping systems needed to identify those reconciling crop production and 33 
biodiversity. Here, we (1) identified the slowest submodel of FLORSYS, i.e. the 3D voxelized light 34 
interception submodel, (2) identified and applied a relevant methodology to metamodel this submodel 35 
in the simplest situation, i.e. we predicted light interception and absorption directly at the scale of the 36 
plant instead of the voxel for a single plant in a field, and (3) extrapolated the method to more complex 37 
situations, i.e. a plant in diverse and heterogeneous crop:weed canopies, (4) replaced the original 38 
process-based FLORSYS submodel by the metamodels, which required additional equations and 39 
decision rules, (5) evaluated the metamodelled FLORSYS with independent field observations, showing 40 
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an adequate prediction quality combined with an increased speed at fine-grained scale since the 41 
metamodelled version was 28 times faster than the process-based version. For steps 2 and 3, we used 42 
the global sensitivity method based on a truncated Legendre polynomial chaos expansion (PCE) 43 
whose coefficients were estimated by Partial Least Squares (PLS) regression to simultaneously 44 
(i) rank inputs with respect to their polynomial and total effects on outputs via the so-called PCE-PLS 45 
sensitivity indices, and (ii) provide metamodels predicting light interception and absorption at the 46 
plant level. These metamodels were then shortened into parsimonious metamodels via a LASSO-PLS 47 
method. The study showed that there was a trade-off between speed gain due to the metamodelled 3D 48 
light submodel and the speed loss due to the additional functions for neighbourhood effects. The 49 
metamodelled version is best used for testing complex systems where plant location must be modelled 50 
precisley (e.g., precision agriculture, intercropping with precision sowing) whereas the voxelized 51 
version with a large voxel size is better for simpler cropping systems. The present step-by-step process 52 
may be helpful for investigating and speeding up other complex simulation models with interacting 53 
objects/agents. It notably uses a hybrid approach, using a process-based (albeit simplified) approach 54 
for the most sensitive plant stage (newly emerged tiny plants) and separate sampling plans and 55 
metamodels to ensure that the more sensitive stages/components are adequately covered (small 56 
plants). 57 

 58 
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 62 

1 Introduction 63 

The study of biological problems usually requires complex mechanistic models, especially when 64 

dealing with weed dynamics (Holst et al., 2007a; Colbach, 2010). Indeed, even though weeds are 65 

considered to be the most harmful pest for crop production (Oerke, 2006), national and European 66 

policies now increasingly focus on the role of weeds for biodiversity (Marshall et al., 2003; Petit et al., 67 

2011) and the need to reduce herbicide use because of health issues and environmental concerns 68 

(Stoate et al., 2009; Waggoner et al., 2013). Unfortunately, to date, no alternative weed control 69 

technique is, alone, as efficient as herbicides, and thus, several cultural techniques must be combined 70 

to control weeds (Liebman and Gallandt, 1997). Many weed dynamics models exist to understand and 71 

predict weed dynamics (see reviews by Colbach and Debaeke, 1998; Holst et al., 2007b; Freckleton 72 

and Stephens, 2009; Bagavathiannan et al., 2020). Only a few take into account the long-term effects 73 

of the weed impacts on crops, the multiplicity of weed species, the complexity of cropping systems, or 74 

the impact on crop production and biodiversity. To date, FLORSYS (Gardarin et al., 2012; Munier-75 

Jolain et al., 2013; Colbach et al., 2014; Colbach et al., 2021) is the one model that answers all these 76 

requirements. This is a process-based "virtual field" model which simulates the effects of cropping 77 

systems on weed dynamics as well as on crop production and weed-related biodiversity, thus making 78 
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possible a multiobjective design of cropping (Colbach et al., 2017; Colbach et al., 2021). 79 

Unfortunately, models like FLORSYS that are accurate enough to reproduce the effects of agricultural 80 

practices on weed dynamics are time-consuming and complex (Colbach, 2010). In order to use 81 

FLORSYS to screen numerous cropping systems and identify sustainable herbicide-sparse cropping 82 

systems, the model must be accelerated and simplified. This question is common to many other 83 

mechanistic models whose use is often limited by their complexity and slowness. 84 

Complex mechanistic models can be simplified by decreasing their precision level as some problems 85 

do not require the same high precision level (Kleijnen and Sargent, 2000; Renton, 2011). To simplify a 86 

model without losing precision is more difficult and requires different methods. Global sensitivity 87 

analyses can explore the model and understand its behaviour to identify which inputs change the 88 

outputs the most. This allows developers to assign constant values to minor inputs and to simplify 89 

equations (Cox et al., 2006). Global sensitivity analyses thus help to find the correct level of 90 

complexity for a metamodel by identifying the non-influential inputs (Faivre et al., 2013). Then, 91 

metamodelling aims at emulating the original model, linking inputs and outputs by less detailed but 92 

faster equations, which simplifies model use for practical applications. Examples are metamodelling of 93 

the noTG forest model (Marie and Simioni, 2014), phoma stem canker control (Hossard et al., 2015) 94 

and the bio-geo-chemical DNDC-EUROPE model (Villa-Vialaneix et al., 2012). Sometimes, 95 

metamodelling a whole model can be impractical, particularly if there are too many inputs and 96 

outputs. If a model consists of several submodels, as is the case of FLORSYS, a more practical solution 97 

is to perform a local metamodelling on the submodel using most of the computing time (Marie and 98 

Simioni, 2014).  99 

Metamodelling requires several steps (Kleijnen and Sargent, 2000) that summarize as (1) what is the 100 

purpose of the metamodel (i.e. what goal, what is the accuracy needed), (2) what do we know about 101 

the model to be metamodelled (i.e. which inputs, which domain of applicability, which outputs), (3) 102 

what method to use (which type of metamodel to use, which experimental design) and (4) how to 103 

evaluate the metamodel (i.e. what fitting, which validity). Many sensitivity analysis and 104 

metamodelling methods exist like the widespread Sobol indices or FAST. Mahévas and Iooss (2013) 105 

identified three criteria to select the best sensitivity analysis for a complex model: (1) the number of 106 

possible simulation runs, (2) the number and (3) type of inputs. The feasible number of runs, 107 

depending on the simulation time and the number of inputs are crucial to select the relevant methods 108 

(Table 1). When little is known about the model behaviour, which is often the case for complex 109 

models, performing early tests to increase the knowledge of the model is needed.  110 

The objective of the present paper was to accelerate and simplify a mechanistic model, by 111 

implementing efficient metamodels through: (1) identification of the sensitivity analysis and 112 

metamodelling methods adapted to a slow, complex model such as FLORSYS, (2) identification of the 113 
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important inputs, (3) simplification of the equations and reduction of the computing time. We 114 

voluntarily excluded technical solutions such as parallel processing or Graphical Processing Unit. We 115 

focused here on the reasoning for choosing the sensitivity and metamodelling methods and how they 116 

were combined with the other steps needed to transform a metamodel into a simulation model. The 117 

chosen method was fully developed in Gauchi et al. (2017) for a preliminary study. This global 118 

sensitivity analysis method is able to deal with both dependent and independent inputs. It is based on a 119 

truncated Legendre polynomial chaos expansion (PCE) whose coefficients are estimated by Partial 120 

Least Squares (PLS) regression (Gauchi et al., 2017) aiming to simultaneously rank inputs as a 121 

function of their polynomial and total effects on outputs via the so-called PCE-PLS sensitivity indices, 122 

and to provide precise and fast metamodels. Finally, the metamodels were reduced into parsimonious 123 

metamodels via a LASSO-PLS regression method.  124 

The methodology to accelerate and simplify FLORSYS involves several steps (Figure 1). Section 2 125 

presents the target model and its submodels in order to identify the most time-consuming submodel 126 

(i.e., the light-interception submodel, step 1). Section 3 first presents the metamodelling approach per 127 

se, with the tests that led to the choice of the most suitable method working with a simple case study 128 

(i.e. a single plant in the field, step 2), and then how we applied this method to cover all situations in 129 

the model (i.e., target plants surrounded by neighbour plants, step 3). Finally, section 4 demonstrates 130 

how the metamodels were integrated into FLORSYS (step 4), and section 5 uses field observations to 131 

investigate which model (process-based vs metamodel) is the best in terms of simulation speed and 132 

precision, depending on the model use (step 5). 133 

2 Identification of the model constraints 134 

2.1 Presentation of FLORSYS 135 

FLORSYS (Gardarin et al., 2012; Munier-Jolain et al., 2013; Colbach et al., 2014; Colbach et al., 2021) 136 

is a mechanistic (i.e. process-based) model which simulates multispecies weed dynamics depending on 137 

the cropping system and pedoclimate in a “virtual field”. Its purpose is to experiment numerous 138 

cropping systems to design sustainable weed management strategies that reconcile reduced herbicide 139 

use, crop production and biodiversity. FLORSYS simulates the annual life-cycle of crop and weed 140 

plants at a daily time step and is a combination of submodels such as plant emergence, plant growth or 141 

radiation interception. FLORSYS inputs are daily weather, soil characteristics, initial weed seed bank, 142 

and cropping system practices (crop succession and detailed list of cultural operations). Outputs 143 

include crop yield, daily weed seed bank, plant densities and biomass (for more information see 144 

supplementary materiel online S1). As FLORSYS consists of a collection of submodels, the 145 

simplification should not concern the whole model, but individual submodels should be simplified 146 

individually to keep modularity and access to specific submodels outputs.  147 
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2.2 Identification of the most time-consuming submodel in FLORSYS 148 

(step 1) 149 

The computing time for each FLORSYS submodel was registered for a simulation with diverse crops 150 

and cultural practices over 13 years corresponding to a cropping system trial (Colbach et al., 2016a). 151 

Code profiling of the C++ source code of FLORSYS showed that the 3D radiation interception 152 

submodel was by far the most time-consuming submodel. This submodel predicts the 153 

photosynthetically active radiation (PAR) intercepted by each plant of the crop:weed canopy volume 154 

discretised into voxels (3D pixels). It used 57%, 64% and 99% of total simulation time with a voxel 155 

edge size of 7, 4 and 1 cm, respectively. The second most time-consuming submodel was the 156 

germination/emergence submodel which used 20%, 7% and 0.04% of the computation time for the 157 

three voxel edge sizes. Consequently, we will focus here on simplifying and accelerating the radiation 158 

interception submodel. 159 

2.3 A short presentation of the 3D radiation interception submodel 160 

The 3D radiation interception submodel (Munier-Jolain et al., 2013) simulates a 3D sample of the 161 

virtual field where the space is discretised into voxels (i.e. 3D pixels). Crop and weed plants are placed 162 

onto this field, with plant position and morphology resulting from other FLORSYS submodels. Crop 163 

plants can be sown in rows or broadcast (i.e. random position in the field); weeds can be positioned 164 

randomly or in species-specific patches. The radiation interception submodel calculates the amount of 165 

photosynthetically active radiation (PAR) that arrives on top of the crop:weed canopy and that trickles 166 

down to the voxels in the underlying layers, depending on plant leaf areas, species radiation extinction 167 

coefficients and solar angle (which depends on latitude and season). In total 14 input variables can be 168 

modified in the submodel for five different outputs. 169 

2.3.1 3D radiation interception inputs 170 
Plants are represented as cylinders delimited by their height and width (Figure 2, Table 2.A). The leaf 171 

area (LA) of the plant is distributed across the successive voxel layers of the cylinder, with 50% of the 172 

cumulative leaf area below relative median leaf height (RH50) of the plant and its distribution 173 

governed by the shape parameter, b. The species radiation extinction coefficient (k) and the plant leaf 174 

area inside each voxel determine how much incident radiation of the voxel is absorbed by the plant's 175 

leaves. The radiation absorbed by each plant (PARa) is the sum of the radiation absorbed by its leaves 176 

in the different voxels. Other inputs describe the location: (1) the field sample, i.e. dimensions in the 177 

north-south and in the east-west directions, as well as the grain of the discretization, i.e., the voxel 178 

edge size, and (2) the position of the solar angle, i.e. latitude of the simulated field and the Julian day.  179 
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2.3.2 3D radiation interception outputs 180 
Outputs of this submodel (Table 2.B) are used for different purposes in FLORSYS: the 181 

photosynthetically active radiation absorbed by a plant (PARaP) drives biomass accumulation in the 182 

growth submodel, the daily shading intensity perceived by the plant (SID) drives etiolation in the 183 

morphology submodel. The relative intercepted photosynthetically active radiation (rPARi) is 184 

considered at three scales, the top of a given plant (rPARitop), over the whole plant (rPARiplant), and the 185 

soil surface below all plants (rPARibase). These are used as proxies for herbicide penetration and 186 

interception in the canopy in the herbicide treatment submodel.  187 

As single plants are not shaded by neighbouring plants, their relative PAR intercepted on the plant's 188 

top (rPARitop) is always 1.Thus, for the single plant case, only four outputs were studied, i.e. PARaP, 189 

SID, rPARiplant, rPARibase. For the "plant in a canopy" step, all five outputs are studied (Table 2.B). 190 

The metamodels also predict PARa per cm² (PARaC), i.e. relative absorption efficiency for a given 191 

plant volume. 192 

3 Simplification and acceleration of the 3D radiation 193 

interception submodel 194 

To find the best metamodelling and sensitivity analysis method for the radiation-interception 195 

submodel, we started with the simplest possible situation for this submodel which consists of a single 196 

plant in a field, without shade due to surrounding plants (step 2 in Figure 1). Once identified, this 197 

method was then applied to more realistic but more complex occurrences relevant for the submodel, 198 

i.e. target plants surrounded by neighbour plants (step 3 in Figure 1).  199 

3.1 Simplified case study with single target plants (step 2) 200 
This section aims (1) to test the effect of the range of variation in inputs, (2) to test the effect of 201 

correlations between inputs, (3) to analyse the sensitivity indices for unshaded (single) plants, and 202 

(4) to evaluate the metamodels predicting the radiation interception variables for unshaded plants. 203 

3.1.1 Testing the sensitivity to the range of the inputs (step 2.i) 204 
Two input range sizes were tested following a Plackett & Burman experimental design (Plackett and 205 

Burman, 1946) with 12 combinations of the two extreme ranges for the 11 inputs with Latin 206 

Hypercube Sampling (LHS) designs of 29200 rows (supplementary material online S2 section 1): (1) a 207 

small range corresponding to France, focusing on spring and summer, and the plant morphologies 208 

most common in fields and (2) a large range for all possible plant morphologies growing, all year and 209 

all around the world (except polar regions). For each configuration of ranges, the FLORSYS radiation 210 

interception submodel was run with a single target plant located at the center of the field sample, and 211 

Sobol sensitivity indices (Saltelli, 2002) were estimated for the analysed outputs. Sobol indices are the 212 

most widely used sensitivity indices and are robust enough for complex models (Gauchi et al., 2017). 213 
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The Sobol decomposition leads to decompose the variance of a on-linear model output into 214 

percentages of variance which can be attributed to the different inputs, discriminating the variance due 215 

to the main effect of a given input from the one resulting from interactions with other inputs. The 216 

Sobol indices, based on these variance percentages can be directly interpreted as measures of 217 

sensitivity measured across the whole input space. The main advantages is that Sobol indices can deal 218 

with nonlinear responses and interactions in non-additive systems. This design gave a set of 12 219 

sensitivity indices for each of the 11 inputs. A linear regression of these sensitivity indices was fitted, 220 

where the regression coefficients indicate the importance of the effect of the range.  221 

Absolute values and ranking of sensitivity indices of the various inputs changed for all outputs when a 222 

small input range was used instead of large one (supplementary material online S2 section 1). Not all 223 

inputs were, though, concerned, depending on the analysed output, e.g. the range of the voxel was 224 

important for the relative intercepted PAR (PARi) but not for the shading index (SID). Consequently, 225 

for the subsequent steps, the large input ranges were used to cover all the possible input situations and 226 

notably for novel combinations of species traits, e.g. resulting from new crop varieties or invasive 227 

weed species. 228 

3.1.2 Sensitivity indices estimation via Sobol-Saltelli method and via 229 

Polynomial Chaos Expansion 230 
The objective of this section was to compare the Sobol sensitivity indices that we estimated in section 231 

3.1.1 with a method that both estimates sensitivity indices and fits a metamodel. The Polynomial 232 

Chaos Expansion (PCE) method uses the same principle as Sobol sensitivity indices via Ordinary 233 

Least Square Regression (Sudret, 2008), here shortened to PCE-OLS. For each input, the sensitivity 234 

indices estimated by the polynomial chaos expansion are (1) the polynomial effect that accounts for 235 

the effect of the input only (i.e. the main effect of the input) and (2) the total effect (i.e. quantifying all 236 

the interactions of this input with other inputs). These indices are respectively comparable to the first-237 

order indices and the total-effect indices of Sobol indices. The large-range experimental design via 238 

Latin Hypercube Sampling, LHS (McKay et al., 2000), created in the previous section was used to 239 

estimate both indices. PCE-OLS indices were similar to Sobol indices computed on the same dataset 240 

(supplementary material online S2 section 2). The largest difference was of 0.13 for the total effect of 241 

the voxel on the radiation intercepted by the target plant (rPARiplant). The ranking of the inputs was the 242 

same with both methods. We thus preferred PCE in the following steps since it both estimates 243 

sensitivity indices and fits a metamodel, which is needed to simplify the radiation interception 244 

submodel.  245 

3.1.3 Sensitivity indices with correlated inputs (step 2.ii) 246 
The method for estimating PCE-OLS indices assumes that inputs are independent and uncorrelated. 247 

However, some inputs of the radiation interception submodel are correlated, e.g. plant height and the 248 
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total leaf area are strongly linked (e.g. Galium aparine L. (Klem et al., 2014)). We thus tested the 249 

effect of including correlations among inputs on the estimation of the sensitivity indices and decided 250 

whether the method needed to be adapted. This part was fully presented in Gauchi et al. (2017) and 251 

further details can be found in supplementary material online S2. In summary, the space filling LHS 252 

design of section 3.1.1 was modified to include correlations among inputs following the Iman and 253 

Conover method (Iman and Conover, 1982). These correlations (supplementary material online S2 254 

section 3) were estimated on simulated plants occurring in 10 diverse cropping systems (Colbach et 255 

al., 2016b). A number of 10000 runs were selected out of a total of 29200 runs to avoid an excessive 256 

weight of outputs too close to the limit of the ranges. We ensured that the experimental design 257 

remained orthogonal and that enough runs were kept to estimate the sensitivity indices. Adding 258 

correlations to the space filling design of the inputs changed absolute values of sensitivity indices 259 

PCE-OLS for all outputs and gave deviant values (< 0 or > 1).  260 

Consequently, it was essential to find a method better adapted to correlated inputs. Gauchi et al. 261 

(2017) proposed to calculate the sensitivity indices (i.e. polynomial effect and total effect) by 262 

estimating the coefficients of Polynomial Chaos Expansion using a Partial Least Squares method, 263 

namely a Partial Least Squares Regression (PCE-PLS, see (Wold et al., 2001)). Here, the resulting 264 

PCE metamodels were though too complex to speed up FLORSYS computations. We thus built more 265 

parsimonious and faster metamodels, using a method developed by Gauchi et al (2017) who tested it 266 

on a single FLORSYS output. These parsimonious faster metamodels were built with a LASSO 267 

regression (Tibshirani, 1996) to select monomials via GLMSELECT (SAS). With the selected 268 

monomials we performed a new PLS regression for the final parsimonious metamodel (hence, "fast" 269 

metamodel). This combination of methods was hence referred to as LASSO-PLS. The resulting single 270 

plant PCE-PLS metamodels (full and fast) were evaluated via a PLS specific criterion, the Q2
cum 271 

(Tenenhaus, 1998; Lazraq et al., 2003) for fitting and prediction qualities. We used the same principle 272 

and stopping rule as in Gauchi et al. (2017) giving a Q2
cum(h*) referred to as Q2cum in this paper. This 273 

cross-validated fitting prediction criterion is bounded between 0 and 1; the closer to 1 it is, the better 274 

the metamodel is in terms of prediction and fitting. The prediction error was evaluated via the relative 275 

mean squared error in predicton RRMSEP (supplementary material online S5 section 1). This method 276 

was used for the sensitivity analysis and metamodelling of the single-plant case (sections3.1.5) and 277 

then for the more complex case with target plants surrounded by neighbouring plants (section3.2).  278 

3.1.4 Identifying the key inputs that drive radiation interception of 279 

single plants (step 2.iii) 280 
The sensitivity analysis based on PCE-PLS showed that that the most important inputs for the 281 

photosynthetically active radiation absorbed by the plant (PARaP, which drives plant growth) were 282 

voxel size and plant width (Figure 3). The third most important inputs were the target-plant 283 

characteristics driving potential leaf area absorption ability, i.e. total plant leaf area and species 284 
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extinction coefficient. Total leaf area and plant volume (determined by its width and height) affected 285 

PARaP more than leaf distribution (RH50 and b). The environmental variables (latitude and day) as 286 

well as field size had small but non-negligible impacts. All inputs strongly interacted, with interactions 287 

making up between 46 % (voxel edge size) and almost 100% of the total effect (all others except plant 288 

width). Consequently, the sign of the main regression coefficient of an input was useless to assess how 289 

an output varied with an input. Graphs of outputs vs. inputs confirmed that interactions made it usually 290 

impossible to identify general tendencies, except that PARaP tended to decrease with increasing plant 291 

height and width, indicating a self-shading effect (supplementary material online S2, Figure 2 in 292 

section 5).  293 

The same general tendencies as for PARaP were observed for the other outputs, i.e. all inputs matter, 294 

voxel edge size and target plant variables mattered more than physical variables and field size (though 295 

voxel size could be less important for some outputs such as the shading index, SID); plant volume 296 

(though the most relevant variable could be height rather than volume) and leaf area mattered more 297 

than plant shape and leaf distribution (supplementary material online S2 section 4). 298 

This analysis also showed that large voxel edge sizes (i.e., 10 cm and above) frequently led to weird 299 

outputs values, such as an abnormal concentration of 0.5 values for the rPARiplant (supplementary 300 

material online S2 section 5). This is due to the computational effect of the voxel-based algorithms, 301 

notably when voxels are so large that they include the whole plant (further details in supplementary 302 

material online S2 section 5). For small voxels, this only occurs during the 1-2 days after plant 303 

emergence, at a time when shading and light absorption have no influence on later plant growth 304 

because young plants do not respond to shading and their biomass accumulation only depends on 305 

temperature in FLORSYS. 306 

3.1.5 Metamodels for a single plant (step 2.iv) 307 
The metamodels for a single target plant in the field included all inputs as the sensitivity analysis 308 

indicated that all were influential, albeit to varying degrees. The full metamodels included 4367 309 

monomials resulting in a good (i.e. close to 1) Q2cum (0.93 - 0.98) (Table 3.A, lines 1, 3, 5, 7) and a 310 

low prediction error (RRMSEP = 0.15 – 0.25 MJ∙MJ-1) (supplementary material online S5 section 3). 311 

LASSO-PLS selection produced simpler and faster metamodels, with only 25 to 27 monomials, 312 

resulting in a quite good Q2cum (0.70 - 0.90) but a slightly worse prediction error (RRMSEP = 0.35 – 313 

0.55, Table 3.A, lines 2, 4, 6, 8). Regardless of the metamodelling approach (fast or full), radiation 314 

interception at the base of the target plant (rPARibase, a proxy for the total herbicide penetration into 315 

the canopy) is the least well predicted output. This was also the only output that was not calculated at 316 

the scale of the plant but at the field scale.  317 
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3.1.6 Summary for single target plants 318 
We tested different sensitivity-analysis methods that increased our knowledge of the 3D radiation 319 

interception submodel. This resulted in a more appropriate method that accounted for the correlated 320 

inputs. We then proposed a handy solution for more parsimonious and faster metamodels. Part of the 321 

methods were developed in a previous study on a single output (Gauchi et al., 2017) and were 322 

completed here before being applied to a larger set of outputs. 323 

3.2 Case for a target plant inside a canopy (step 3) 324 
Fields (or even field portions) rarely only comprise a single plant. Step 4 thus focused on radiation 325 

interception of target plants surrounded by neighbouring plants. The method developed in the previous 326 

step to analyse and metamodel radiation interception from target-plant, environmental and precision 327 

inputs was adapted to (1) include contrasting canopies representing the diversity in crop:weed 328 

canopies in arable fields in the simulation plan while (2) limiting the amount of additional inputs 329 

needed to describe the canopy surrounding the target plant.  330 

3.2.1 Simulation plan 331 
A canopy is a complex set of plants of different species, sizes, widths, positions, etc. To set up diverse 332 

plant canopies in our virtual field, we needed to vary many variables: plant density (crop density, weed 333 

density, amount of bare field area), the position of weeds (random or in patches, number of patches in 334 

the field), the position of crop plants (row vs broadcast sown, inter-row width), canopy structure (e.g., 335 

presence and diameter of canopy gaps surrounding target plants), the heterogeneity of plant 336 

morphology (mean and variation coefficient of target plant characteristics), weed populations being 337 

more heterogeneous than crop population (i.e. presenting a larger range of variation) (see 338 

supplementary material online S3). These preliminary inputs were used in a LHS design of 20440 339 

rows. Correlations were added in the same way as for the single-plant study, with the Iman and 340 

Conover method (Iman and Conover, 1982). The diverse canopies were built by placing the plants on 341 

a virtual field and attributing morphologies, and then radiation interception and absorption were 342 

simulated with the FLORSYS radiation interception submodel. Cases with outlying values were 343 

removed as well as output values too close to the range limits (i.e. 0, 1 or 100 depending on the 344 

output) to avoid side effects due to computation errors; 2536 canopies remained after the sorting. The 345 

PCE-PLS method was used to metamodel and perform the sensitivity analysis. 346 

3.2.2 Describing the canopy 347 
Many detailed variables are needed to create contrasting canopies in FLORSYS, but only a limited 348 

number of inputs are allowed keeping the metamodel simple. The detailed canopy variables were thus 349 

aggregated into five mean canopy inputs (Table 2), to account for the canopy effect in the metamodel. 350 

The nearer the neighbours are to the target, the more their characteristics contribute to the variables 351 

describing the average canopy characteristics, here the example of the canopy height (cm): 352 
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where di is the distance (m) of the target plant to the closest neighbour plant i (+1 to account for a zero 354 

distance when the neighbour is located in the same voxel as the target), ℎ���ℎ	� is the height (cm) of 355 

neighbour i and � the number of neighbour plants in the field sample. For the equations of the other 356 

canopy variables, see supplementary material online S3 section 4. 357 

In addition to these aggregated canopy inputs, we added: (1) the plant density and the maximum 358 

distance between the target plant and neighbour plants, (2) target plant variables (as in the single plant 359 

case) and (3) two environmental variables (latitude and day), resulting in 15 metamodel inputs (Table 360 

2). To reduce the number of inputs, field dimensions (Xmax and Ymax) whose effect was shown to be 361 

slight in the single-plant sensitivity analysis of the single plant (section 3.1.4) were both fixed at 8 m 362 

which allowed having large plants in the virtual field sample. The voxel size was shown to be 363 

important for most outputs (section 3.1.4), but to simplify and accelerate the simulation plan, we kept 364 

it constant. Additional simulations (supplementary material online S2 section 6) showed that a voxel 365 

edge size of 4 cm was the best compromise between the precision of the radiation interception 366 

submodel output and the computation time. 367 

3.2.3 Sensitivity indices (step 3.i) 368 
The sensitivity analysis of radiation interception outputs to inputs depicting target plant, physical 369 

environment and neighbour plants showed that input effects were almost entirely due to interactions 370 

among inputs (Figure 4). Globally, target-plant inputs had the most and neighbour-plant inputs the 371 

least impact. Inputs of a given type had similar effects, except for the relative PAR intercepted by the 372 

target plant (rPARiplant) whose height effect was several times the effect of any other inputs. As for the 373 

single-plant scenario (section 3.1.4), the interactions among inputs were generally too complex to 374 

identify general tendencies, whether from the signs of the polynomial effects or from graphs 375 

(supplementary material online S2 section 5). And again, outputs were sensitive to all inputs via 376 

interactions with other inputs and none of latter could be set at a default value in the following 377 

metamodels. 378 

3.2.4 Metamodels (step 3.ii) 379 
The metamodels for target plants surrounded by neighbour plants included all inputs, i.e. for 380 

describing the target plant, the physical environment and the biological environment due to the 381 

neighbour plants. The polynomial degree of these metamodels was smaller than for the single-plant 382 

ones, except for the relative intercepted PAR rPARi, (Table 3.B, lines 14-15); the Q2cum was always 383 

lower and the prediction error higher (Table 3.B vs A). Further increasing the polynomial degree did 384 

not improve the Q2cum or reduce the prediction error (results not shown). The need for a higher 385 

polynomial degree for the rPARi points to more and more complex interactions among inputs. The fast 386 
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metamodels usually needed a higher polynomial degree and more complex monomials (Table 3.B) 387 

than full metamodels to optimize the Q2cum. The latter though remained low (0.27-0.56) and 388 

prediction error was much larger than for single plants (0.85 and 0.65). Radiation interception and 389 

absorption by a plant surrounded by neighbour plants is thus much harder to simplify via a small 390 

metamodel than for single plants.  391 

3.2.5 Summary for plants in the canopy 392 
The metamodels for radiation interception and absorption by a plant surrounded by neighbour plants 393 

were simple enough to be implemented into FLORSYS but with a poorer prediction quality than for a 394 

single plant. The canopy creates a complex interaction with the radiation that cannot be easily 395 

simplified at a scale as large as the plant. Strong interactions between all inputs prevented us from 396 

setting the least important inputs to constants.  397 

4 Combining the metamodels into a FLORSYS submodel 398 

(step 4) 399 

As we had developed metamodels for two situations, i.e. single plant and plant in a canopy, it was 400 

necessary to establish rules to determine when to use which metamodel in a simulation using the 401 

whole FLORSYS including the metamodels (hereafter called FLORSYS-ML). This section presents how 402 

the metamodels were combined and what else was needed to cover all likely canopy scenarios with 403 

FLORSYS-ML. 404 

4.1 Principle 405 
Even when there is more than one plant in a field, some of these plants can be considered as single if 406 

they do not interfere with each other's radiation interception, which depends on plant sizes, solar angle 407 

and distance between plants. Consequently, each day, for each target plant (crop or weed), rules are 408 

needed to determine whether a target plant can be considered as single or as surrounded by neighbour 409 

plants (supplementary material online S4 section 2).  410 

When building the metamodels, a large number of runs were eliminated because outputs were too 411 

close to the limits of the range or because their combination was biologically impossible and resulted 412 

in deviant values (section 3.2.1). This also reduced the ranges accepted by the metamodels for several 413 

key inputs such as target leaf area, making it impossible to predict radiation interception for newly 414 

emerged seedlings (i.e. with almost nil height, width and leaf area), voluminous single plants (having 415 

reached the maximum height and width possible for the species) or mature plants with dried leaves 416 

(with a near zero leaf area). But such plant morphologies are frequent in any cropping system. To 417 

remedy this, further metamodels were built for the particular case of small seedlings, and for the 418 

remaining outlying situations, equations were added to predict radiation interception and absorption 419 

from ecophysiological knowledge, or from likely constants (section 4.3). Figure 6 summarizes how the 420 
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different rules, equations and metamodels were aggregated. Finally, the calculation loops over 421 

neighbour plants needed to calculate the aggregated canopy variables are often time-consuming. As a 422 

consequence, alternative methods to compute aggregated neighbour were tested (section 4.4). 423 

4.2 Rules for deciding whether to use the single plant or plant in a 424 

canopy metamodel 425 

4.2.1 Method 426 
The PAR intercepted at the top of a target plant (rPARitop) is relevant to identify whether radiation 427 

interception by the target plant is impacted by neighbour plants, because this output is always 1 for 428 

single targets and decreases in the presence of shading neighbours. To establish decision rules to 429 

discriminate these two situations, a regression tree was built from the data sets of sections 3.1 and 3.2, 430 

using the inputs listed in Table 2. As the metamodels in the previous sections showed that it was 431 

difficult to take account of all effects and interactions with these inputs, some were transformed and 432 

others added in the present analysis. The environmental variables were transformed to emphasize the 433 

effect related to solar angle: latitude was transformed into degrees to the equator (i.e. absolute latitude) 434 

and Julian days into days from the summer solstice to the winter solstice (i.e. between solstice days). 435 

The distance from target plant to its closest neighbour was also used as input (with distances 436 

calculated between plant centres), and all other inputs were weighted by the inverse of this distance to 437 

take into account that closer neighbours shade more than farther neighbours. Finally, the target height 438 

relative to the canopy height (overtaking percentage) was integrated via the ratio of the difference 439 

between the two heights (eq. 6 supplementary material online S3 section 5). 440 

The CART method (Breiman et al., 1984) was used to build a classification tree to determine the 441 

decision rules. This method successively splits the data set into two subsets along a threshold value of 442 

an input (e.g. distance to the closest neighbour) in order to maximize the difference between subsets in 443 

terms of output. Branches are combinations of input values that lead to output predictions contained in 444 

leaf nodes. CART also ranks the input according to their importance to explain the output.  445 

The output analysed in the trees was not directly the rPARitop but a binary variable indicating whether 446 

the target plant was considered single or inside canopy, depending on whether its rPARitop was 447 

respectively ≥ or < a threshold value. In addition to the theoretical value of 1, ten other thresholds 448 

were tested, ranging from 0.90 to 0.99 (incremented by 0.01), in order to increase the number of single 449 

plant cases compared to canopy cases and thus the robustness of the tree. Among the 11 trees, the one 450 

corresponding to the 0.98 threshold was chosen. This threshold is close to 1 (i.e. the theoretical value 451 

of rPARitop in single plants) and it identified the most situations when to use the single-plant 452 

metamodel. The latter allows accelerating calculations because the single-plant metamodels were 453 

simpler and did not need to calculate the aggregated canopy variables. 454 
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4.2.2 Decision tree to determine where a target is shaded by 455 

neighbours 456 
The rules determining whether a target plant can be considered as single are shown in Figure 5. For 457 

example, if the nearest neighbour is further than 1.6 m, and the target plant is taller than the 458 

neighbouring canopy, the target can be considered as single. Surrogates of the tree (i.e. variables 459 

correlated to the variable in the tree that could also explain the segmentation, but to a lesser degree) 460 

and ranking of variables in their order of importance (supplementary material online S3 section 6) 461 

showed that nearest neighbour distance (either alone or in interaction with other variables) are 462 

predominant to determine whether the target plant is single or within a canopy.  463 

Based on expertise, we added a further logical rule: if there are no neighbours whose height exceeds 464 

the distance separating the outer rims of the neighbour and target plants, the target is considered as 465 

single. In that case, even if the sun is low on the horizon, the closest neighbour is too far to shade the 466 

target (supplementary material online S4). The combination of the decision tree and this additional 467 

rule constitute step A in Figure 6. 468 

4.3 Adding equations at the limits of the input ranges 469 
The input ranges of the metamodels missed small seedlings for which good prediction is essential as 470 

their initial growth determines which plants outgrow the others. Consequently, we ran a further 471 

simulation plan to build a third metamodel focusing on small seedlings (Step C, Figure 6), using the 472 

method developed in section 3 (supplementary material online S4 section 4). This additional 473 

metamodel was still inadequate for fresh seedlings whose leaf area was lower than the metamodel's 474 

accepted input range. In that case, as there is neither shading nor self-shading, the PARa absorbed by 475 

the plant is the product of the incident PARa, the plant leaf area times its extinction coefficient, based 476 

on Beer's law (Monsi and Saeki, 1953, 2005) (step B in Figure 6). This works fine for single plants 477 

that are unshaded by neighbours. To include either small plants surrounded by neighbours or any 478 

plants by small neighbours outside the canopy metamodel range, a linear combination of predictions 479 

for single plants (either small or large) and plants in canopy was used, step G in Figure 6. This was 480 

particularly true for canopy leaf area whose lower range limit was extremely high (Table 2). Single-481 

plant predictions and target-in-canopy predictions were weighted by respectively 1 and the canopy leaf 482 

area, and divided by the same of these weights (supplementary material online S4 section 4).  483 

The metamodels do not include voluminous or mature leaf-less plants either. As these have finished 484 

their growth, outputs were simply fixed either to a minimum or maximum value, or linked with a 485 

simple regression if one input was out-of-range (step Figure 6). The values were based on graphs of 486 

outputs vs. inputs from the complete data set including the outliers that were ousted during metamodel 487 

construction (supplementary material online S4 section 4). If several inputs were out of range, the 488 

output was estimated based on the analysis of the most influential input, with the strongest polynomial 489 



15 

 

effect in the sensitivity analysis (supplementary material online S4 section 4). For example, if a target 490 

plant surrounded by neighbours is taller than 254.8 cm, then its relative intercepted PAR is 0.00649 491 

MJ∙MJ-1.  492 

4.4 Different methods to aggregate neighbour plants into canopy 493 

variables 494 
We proposed three different methods to calculate the aggregated neighbour variables of each target 495 

plants: (1) all neighbours close to the target are used for the computation ("local" neighbours), (2) all 496 

plants in the field are averaged and the same aggregated variables were used for all target plants 497 

("average" neighbours), (3) a mix between the previous two methods, using average canopy variables 498 

when the plant density exceeds 500 plants.m-2, and local neighbours otherwise. The effect of the 499 

aggregation method on prediction error and simulation speed of the whole FLORSYS-ML was 500 

evaluated in section 5. 501 

5 Evaluation of the simplified FLORSYS-ML with field 502 

observations (step 5) 503 

5.1 Objective 504 
Sections 3.1.5 and 3.2.4 evaluated the prediction quality of the individual metamodels. Here, the 505 

objective was to evaluate how good and fast the predictions produced by FLORSYS-ML compared to 506 

the process-based FLORSYS, by comparing simulations to field observations following the methods 507 

developed in a previous paper (Colbach et al., 2016b). Different voxel edge sizes and the three 508 

methods for aggregating neighbour plants were tested. 509 

5.2 Material and methods 510 

5.2.1 Field observations and features common to all simulations 511 
Observations were taken from the INRAE long-term field experiment at Dijon-Epoisses (Burgundy) 512 

(Chikowo et al., 2009) where weed and crop variables (plant and seed densities, plant biomass, yield) 513 

were monitored from 1999 to 2012. Details can be found in (Colbach et al., 2016b). This trial included 514 

ten fields with diverse crop rotations, ranging from intensive herbicide-based to herbicide-free systems 515 

and varying degrees of tillage and mechanical weeding. Weed flora was assessed, with species 516 

identification, plant density, above-ground biomass and seed bank measurements. Crop yield was also 517 

estimated.  518 

5.2.2 Simulation plan 519 
The simulation combined (1) the FLORSYS version (metamodelled or process-based), with (2) the 520 

voxel edge size (1, 4 or 7 cm) which determined the precision of plant location (all FLORSYS versions) 521 

and plant morphology (processed-based version). The FLORSYS-ML version moreover tested 522 
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(3) different methods for aggregating neighbour plants (local, average, or mixed, see section 4.4), and 523 

the process-based version tested (4) field sample areas (1m × 1 m, 3 m × 3 m, and 6 m × 3 m) with a 524 

7-cm voxel. Unless otherwise indicated, field area was 6 m × 3 m. In total, nine scenarios were run 525 

with the FLORSYS-ML version and six with the process-based one. Each of the ten field histories was 526 

simulated over 13 years, using the weather measured at the local weather station (INRAE Climatik 527 

platform) and starting with the weed seed bank observed at the onset of the field experiment. Each 528 

scenario was repeated ten times, to account for stochastic effects. Outputs were produced for all the 529 

days where observations were carried out in the fields. Simulations were run with a computer with two 530 

2GHz processors and 16 Gb RAM and their simulation time was recorded and averaged over 531 

repetitions for the different methods. 532 

5.2.3 Evaluation criteria 533 
Simulations with the metamodelled FLORSYS-ML and process-based FLORSYS were compared to field 534 

observations. Prediction error was assessed with the relative root square mean squared error of 535 

prediction (RRMSEP) corrected for variability in observations (due to measurement errors and intra-536 

field variability) and simulations (due to stochasticity) (Colbach et al., 2016b). This error was 537 

calculated relative to the range of variation of the observations (details can be found in supplementary 538 

material online S5 section 1). Outputs were analysed at two temporal scales, either corresponding to 539 

the individual observation dates (daily scale), or values averaged over the simulation (multiannual 540 

scale). 541 

5.3 Results 542 

5.3.1 Mean simulation time 543 
The simulation time of the process based FLORSYS for all cropping systems tested, decreased with 544 

voxel edge size. When voxel edge size increased from 1 to 4 cm, simulation time was divided by 545 

approximately 20 (Figure 7.A). Increasing voxel size further from 4 to 7 cm decreased simulation time 546 

by an additional 43%. Increasing voxel size from 7 to 10 cm did not decrease simulation time any 547 

further. The slowest scenario took 259 times more time than the fastest. The fastest scenario with the 7 548 

cm voxel edge size and 1-m² field sample took 4 minutes for a repetition of the 13 year long cropping 549 

system, compared to more than 18 hours for the slowest, with the 1-cm voxel and the 18-m² area. 550 

Conversely, simulation time increased with field sample area (supplementary material online S5 551 

section 2). Increasing area from 1 to 9 m² multiplied the simulation time by approximately 8; doubling 552 

the field sample area to 18 m² only increased the simulation time by a further 10%. The field size 553 

multiplies the simulation time by 1.15 for every m² of a 13-year simulation 554 

The simulation time of FLORSYS-ML remained stable for all voxel sizes, but it depended on the 555 

method for calculating neighbouring canopy variables (Figure 7.A). The FLORSYS-ML with average 556 

neighbours was fastest and the one combining local and average neighbours was nearly as fast. 557 
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Always using local neighbours made simulations considerably slower than with the process-based 558 

model, and simulation time even increased with voxel edge size. Indeed, in FLORSYS-ML, the voxel 559 

determines plant location, and the larger the voxel is, the more plants are in each voxel. So, when 560 

FLORSYS-ML searches through the voxels surrounding the target plant to compute the canopy inputs, 561 

it must compute more plants, which takes longer. FLORSYS-ML was considerably faster than the 562 

process-based model with small voxel edge sizes, i.e. 28 times faster for FLORSYS-ML with average 563 

neighbours. 564 

5.3.2 Prediction error 565 
In process-based simulations, the prediction error tended to increase slightly with increasing voxel size 566 

(Figure 7.B). The same trend was observed for prediction error in FLORSYS-ML simulations with 567 

larger voxels, suggesting a sensitivity to plant position, which is less precise if the voxel is large. 568 

Simulations with a 1-m² field sample produced slightly better results than 18-m² and larger areas (e.g. 569 

for the multiannual weed density for all species summed, the RRMSEP for 1 × 1, 3 × 3 and 6 × 3 m² 570 

field samples was respectively 63, 113 and 116 MJ∙MJ-1, details in supplementary material online S5 571 

section 3), probably because it increased interspecific competition between weed species by increasing 572 

the probability of overlapping species patches. However, small fields potentially miss rare species, and 573 

overestimate interspecific competition in case of high weed densities. 574 

Generally, the error was larger for metamodel-based vs. process-based simulations, particularly for 575 

weed plant biomass (Table 4), and it varied more among repetitions (supplementary material online S5 576 

section 3). Error was often smaller than the variability in observations, pointing to a negligible 577 

prediction error, and making it impossible to calculate the relative variation in error for metamodelled 578 

vs process-based simulations (Table 4). Conversely, FLORSYS-ML was better than the process-based 579 

FLORSYS to predict multiannual weed plant densities. 580 

Usually, FLORSYS-ML using either local or average neighbours respectively had the smallest and 581 

largest errors, whereas errors were intermediate when using both average and local neighbours (Figure 582 

7.B, Table 4). Regardless of the evaluation criteria, there was no model version (process or 583 

metamodel-based, approach for calculating canopy variables in metamodels) or precision level (voxel 584 

size, field sample area) that optimized the precision of all model outputs. 585 

6 Discussion  586 

6.1 Simplifying a complex process-based model 587 
In this article, we presented a method to accelerate and simplify a complex process-based model. The 588 

paper is of interest for non-statisticians that want to metamodel complex models and are often baffled 589 

by statistical methods and how to apply them in their real-life complicated situation. Another 590 

particularity of our work was that we did not use the metamodel as such but integrated it into a larger 591 
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model and evaluated the latter with independent field data, two steps that have, to the best of our 592 

knowledge, been rarely carried out in the past.  593 

From a more technical point of view, the originality of the approach lies in (1) the choice of 594 

metamodelling only the most time-consuming part of the model (i.e. the 3D light-interception 595 

submodel), (2) the choice of an innovative metamodelling method that handles correlated inputs and 596 

selects monomials, (3) the integration of the metamodelled submodel into the complex model and (4) 597 

the description of the nearby canopy with a limited number of inputs. This work did not compare 598 

different metamodelling methods (Villa-Vialaneix et al., 2012) but provided practical guidelines for 599 

choosing and tuning metamodelling methods with respect to the complex model constraints (e.g. 600 

correlated inputs). It extended what was done in the previous paper (Gauchi et al., 2017) by showing 601 

the whole approach to simplify a complex model. Usually, metamodelling via polynomial chaos 602 

expansion allows reducing the number of inputs in the model by setting the inputs to average values 603 

(Luo et al., 2013; Rothenberg and Wang, 2016). Here, however, no input could be omitted because all 604 

either influenced radiation interception outputs directly or in interaction with other inputs.  605 

Usually, the whole model is metamodelled, avoiding the need to integrate the metamodel into a larger 606 

model (Cohen and Prinn, 2011; Luo et al., 2013). Here, we metamodelled a single time-consuming 607 

submodel in order to accelerate the simulations of the whole FLORSYS model, and we thus had to 608 

integrate the metamodels, together with complementary equations, into FLORSYS. In SIRIUS (Brooks 609 

et al., 2001), only a few equations were metamodelled. No implementation of the metamodel was 610 

needed, as the metamodel was as good as the whole SIRIUS to predict the yield, which was the study's 611 

goal. The constraints of this approach were manageable for the 3D radiation interception of FLORSYS 612 

even though the number of inputs needed to be decreased with the help of aggregated canopy 613 

variables. But these constraints probably make it impossible to apply this metamodelling method to 614 

bigger models like the whole FLORSYS with its many more inputs and correlations. 615 

6.2 Experimental design for analysing a complex model 616 
The numerical space filling design, Latin Hypercube Sampling (LHS), is usually appropriate to 617 

explore the whole space of possible input combinations. For our biological example, we also used the 618 

Iman and Conover method (Iman and Conover, 1982) to apply a correlation matrix to the LHS, to 619 

increase the biologically realistic plant variable combination. It worked less well for the dynamic 620 

FLORSYS model, especially at the outer bounds of input ranges that were not sampled enough, despite 621 

having tested the best minimum row number in the LHS design. This was particularly problematic at 622 

the onset of the plants' life-cycle (i.e. for small plants) as imprecise early predictions would amplify 623 

the next days' prediction errors, thus setting off the plants' growth and development in entirely the 624 

wrong direction. We improved the metamodelling by using separate experimental sampling designs, 625 

combining with a simplified process-based approach, discriminating three types of plants that differ in 626 
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terms of light interception, based on their age and size: (1) a standard LHS and metamodel covering 627 

mostly large and older plants, (2) a second LHS and metamodel specifically targeting younger smaller 628 

plants, (3) a simplified ecophysiological equation for newly emerged tiny plants. The latter approach 629 

was acceptable here as these plants do not self-shade and are rarely shaded by neighbours. No such 630 

effort was made at the other extreme of plant-size range, i.e. large adult plants with dried leaves. 631 

Indeed, these do not photosynthesize anymore and misestimating their absorbed light would have little 632 

impact on their future. Colleagues aiming to similarly metamodel complex could use a similar 633 

approach, i.e. keep a process-based (albeit simplified) approach for the most sensitive 634 

stages/components (here, the newly emerged tiny plants) and combine separate sampling plants and 635 

metamodels to ensure that the more sensitive stages/components are adequately covered (here, the 636 

small plants). 637 

The inability of the metamodels to correctly predict small plants is explained by three combined 638 

reasons: (1) we chose a broad input range to cover all possible plant morphologies in the field, which 639 

reduced the probability of drawing many low input variables, (2) as the simulated plants were the 640 

combination of several inputs, the probability of drawing a small plant combining low values of all 641 

inputs (e.g. low height, width and leaf area) was even lower, particularly as the space filling design 642 

was balanced, (3) the equilibrated design also drew plants combining high values for some inputs with 643 

low values for others, resulting in biological impossible morphologies (e.g. tiny plants with an 644 

enormous leaf area) and non-logical output values. These plants had to be removed from the data set, 645 

decreasing even more the occurrence of extreme input values used in the metamodels. For models with 646 

a high number of inputs it is thus better to sample stepwise rather than have a unique sampling design. 647 

Surprisingly, adding correlation to inputs did not help to ensure many small and plausible plants. 648 

6.3 Which method for which application? 649 
To metamodel and perform a sensitivity analysis, many methods exists, which have been assessed in 650 

comparative studies. We thus decided to detail here the entire path when choosing and applying a 651 

method to transform a complex slow model into a faster metamodel. Polynomial chaos metamodelling 652 

accepts only a small number of inputs, hence the aggregation of neighbour plant variables into a small 653 

number of synthetic canopy variables. Unfortunately, it is the aggregation step, particularly the loop 654 

computing the plants close to the target plant, which cancelled out the simulation time saved thanks to 655 

the metamodels.  656 

Another way to speed up simulations would be to use the initial process-based interception submodel 657 

and to decrease the precision of the canopy structure by increasing the voxel edge size, which governs 658 

the precision of plant locations and volumes as well as leaf distribution along plant height. This 659 

approach led to less precision loss than expected. Indeed, FLORSYS does not explicitly represent plant 660 

architecture in detail, with each organ (e.g., leaf, stem) simulated. If that had been the case, enlarging 661 
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voxels would indeed decrease prediction quality considerably. Actually, FLORSYS distributes leaf area 662 

in voxel layers, without considering leaf size, position or inclination. Very small voxels do thus not 663 

necessarily place leaf area in the correct voxel layer and downsizing voxels cannot be simply 664 

approximated here to differential equations that govern light transmission. We already discussed the 665 

fact that model quality does not decrease below a certain voxel size and is not best for the smallest 666 

voxel (i.e. the highest precision) in Munier-Jolain et al (2013). Moreover, there are several stochastic 667 

functions in FLORSYS, particularly for plant location in the canopy. This explains why differences 668 

between scenarios differing solely in terms of voxel size are not solely due to differences in voxel size. 669 

We thus identified two ways to save simulation time depending on the simulation goal: either by 670 

decreasing the precision of the plant and canopy description (process-based light interception 671 

submodel with a large voxel edge size) or that of the light interception (metamodelled submodel with a 672 

small voxel edge size). Choosing rapidity over precision can be appropriate, for example when 673 

needing quick simulations for workshops with farmers to co-design cropping systems (Bergez et al., 674 

2010). The choice of the approach then depends on the target output (Table 5). When plant location is 675 

essential (e.g., when testing site-specific weed management, small sowing interrows, row-only 676 

nitrogen fertilization) (Berge et al., 2013), then a voxel size of 1 cm is needed, and the metamodelled 677 

FLORSYS-ML would allow faster and thus more simulations than the process-based FLORSYS. When 678 

both moderate simulation time and prediction quality are needed, the process based FLORSYS with a 679 

voxel size of 4 cm would be best. For cropping system tests, a quantitative precision is less essential as 680 

long as the management recommendations are correct (Renton, 2011). 681 

6.4 What other solutions to speed up a complex model? 682 
Instead of only simplifying the process-based approach for tiny newly-emerged plants, we also 683 

thought about using a simplifying process-based light interception model. This approach was used in 684 

early crop-weed competition models (Graf et al., 1990; SOYWEED: Wilkerson et al., 1990; 685 

ALMANAC: Kiniry et al., 1992; e.g. INTERCOM: Kropff and Spitters, 1992; Kropff et al., 1992) as 686 

well as in intercrop models (Gaudio et al., 2019). However, these models only work for homogeneous 687 

2-species canopies and cannot grasp the complexity of heterogeneous multispecies crop-weed 688 

canopies (in terms of location, emergence timing and morphology), as shown by comparisons of 689 

simulations with such models to independent field observations (Debaeke et al., 1997; Deen et al., 690 

2003). Consequently, the recent trend in crop-weed competition modelling goes towards more 691 

complexity rather than less (Renton, 2013). A recent review of multispecies canopy models even 692 

concluded that the FLORSYS approach was a good compromise between simplicity and accounting for 693 

canopy heterogeneity (Gaudio et al., 2019). 694 

There are also technical solutions for speeding up simulations, for instance parallelising the execution 695 

of the source code or using graphical processing units. Unfortunately, these solutions make it difficult 696 



21 

 

to maintain a unique source code for any type of computer or server. A "portable" solution is to run 697 

multiple FLORSYS clones simultaneously on a single computer or server, either manually or 698 

automatically via scripts. The speed gain then depends on the number of logical processors of the 699 

computer. Another avenue is similar to the large-voxel solution, i.e. reduce the size of the simulated 700 

field sample. This solution was already assessed in a previous paper (Colbach et al., 2016b) where we 701 

determined the minimum acceptable size. Again, the more complex (e.g., many species, large 702 

interrows), the larger the field sample needs to be. 703 

So, there are several avenues for speeding up a complex model (Table 6). The best choice depends on 704 

the objective and situation of use, and several solutions can be combined for an even better result. 705 

6.5 Towards a larger simplification of FLORSYS 706 
The simplification of the radiation interception was easier for a single plant in a bare field, than for a 707 

plant located inside a canopy. Indeed, (1) the interaction with the canopy is harder to metamodel, and 708 

(2) the aggregated inputs simplify the canopy too much. Simplifying a complex model with many 709 

inputs is a principal issue when metamodelling. The complexity of the relationship between inputs is 710 

also an issue; for the 3D radiation interception, even small variations in outputs need to be accurately 711 

predicted, because small errors amplify over time as a result of the daily retro-acting interactions of 712 

light interception and growth. Metamodels based on polynomials are efficient to model all the single 713 

variations of the function (Hussain et al., 2002), hence were adapted for the submodel. However, for a 714 

general trend, metamodelling based on polynomials cannot provide such a smooth answer. The present 715 

study suggests that the polynomial chaos expansion metamodelling, even when performed step by step 716 

and improved with expert knowledge, would be inadequate to metamodel the whole FLORSYS model, 717 

with its many and diverse inputs. To build a metamodel and estimate sensitivity indices, this method 718 

was the most suitable as there is no method that can handle many inputs, metamodelling and 719 

estimation of sensitivity indices at the same time.  720 

Consequently, for a global emulation of FLORSYS, in order to synthesize and make available to 721 

farmers the knowledge comprised in FLORSYS to help with decision making (Wilkerson et al., 2002), 722 

other methods need to be considered. In that case, non-parametric methods can be helpful. Villa-723 

Vialaneix et al. (2012) showed that metamodelling methods based on machine learning have good 724 

results for medium and large data sets. This is particularly true for Random Forests (Breiman, 2001) 725 

which provide the best trade-off between speed and accuracy. Moreover, non-parametric methods can 726 

tolerate heterogeneous data sets. This is crucial as FLORSYS with its numerous inputs precludes 727 

building a suitable experimental design as the one needed for the present approach. 728 

The global emulation of FLORSYS will be a necessary step to make the model accessible for farmers 729 

and crop advisors, particularly for a use in participatory workshops (Colas et al., 2020). Indeed, none 730 
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of the avenues proposed in Table 6 will be fast enough or compatible with computers used in such as 731 

situation. 732 

7 Conclusion 733 

The present study demonstrated that the frequent practice of developing statistical methods on rather 734 

simple case studies makes them difficult and sometimes impossible to apply to more complex real-life 735 

situations. Latin Hypercube Sampling (LHS) was used for numerical space filling design, followed by 736 

Partial Least Squares regression, combined with a polynomial expansion chaos model and selection of 737 

the most influential monomials, to produce simple metamodels. The individual methods used here had 738 

trouble handling all the constraints and the domain of validity needed: they (1) eliminated many data 739 

close to the limits of the domain of validity of the metamodel (e.g. tiny plants tiny with near-zero leaf 740 

areas immediately after emergence) from the simulated data set based on LHS in section 3.1.3, 741 

(2) insufficiently accounted for correlations among inputs (e.g. 2-m-tall and 1-cm-narrow plants do not 742 

exist) despite using an adapted LHS sampling plan. But both these extreme cases and correlations are 743 

frequent in real life and essential for correctly predicting the agroecosystem. Notably, (3) the 744 

complexity of radiation transmission and interception inside crop-weed canopies, particularly due to 745 

shading by neighbour plants, made it difficult to directly predict radiation absorption at the plant scale. 746 

(4) This made it necessary to add functions here, which slowed down simulations again considerably 747 

and made us lose most of the speed gain due to the metamodel. 748 

So, to simplify a complex process-based weed dynamics model such as FLORSYS, is is essential to 749 

combine different methods of sensitivity analysis and model simplification to cover the whole range of 750 

relevant stages/morphologies and take account of the complex interactions between plant objects and 751 

the many feedbacks during their life cycle. We used a hybrid approach, using a process-based (albeit 752 

simplified) approach for the most sensitive plant stage (newly emerged tiny plants) and separate 753 

sampling plans and metamodels to ensure that the more sensitive stages/components were adequately 754 

covered (small plants). By evaluating the various approaches with independent field observations, we 755 

assessed the trade-off between prediction accuracy and simulation speed to identify which modelling 756 

approach was best, depending on the objective of the model use.  757 
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 916 
Table 1: Compilation of different sensitivity analysis methods for independent variables depending on complex model’s proprieties. From (Tenenhaus, 1998; 917 
Harrington et al., 2000; Bizouard, 2012; Faivre et al., 2013; Gauchi et al., 2017) 918 

 919 

 ANOVA Sobol-Saltelli FAST PCE-OLS PCE-PLS CART; 
random 
forest 

Neural 
network 

Model characteristics        
Inputs number > 10 difficult to test 

all interactions 
Yes difficult, 

too heavy 
Yes Yes Yes Yes 

Possible run number > 1000 Yes Yes Yes Yes Yes Yes Yes 
Accepts correlated inputs  No No No No Yes Yes Yes 
Properties of sensitivity methods        
Estimates sensitivity indices Yes Yes Yes Yes Yes No No 
Evaluates inputs for their importance Yes Yes Yes Yes Yes Yes Yes 
Provides a metamodel Yes No No Yes Yes Yes Yes 
Simulation design available from: LHS, Sobol 
sequence, Monte-Carlo, Hadamard, Full 
factorial design, Morris, OAT, numerous data 
from different sources 

all LHS, Sobol 
sequence, 

Monte-Carlo 

Monte-
Carlo 

LHS, Sobol 
sequence, 

Monte-Carlo 

LHS, Sobol 
sequence, 

Monte-Carlo 

all all 

 920 
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 922 

Figure 1: Schematic representation of the steps of the simplification and acceleration of the model 923 
FLORSYS. The Arabic numbers and roman numbers correspond to, respectively, the sections and sub-924 
sections of the paper (Floriane Colas © 2017). 925 

 926 

 927 
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Table 2: Definition, range variation and unit of the inputs and outputs of the 3D radiation interception 928 
submodel. 929 
A. Inputs 930 

Type Name Short explanation Step§ 
Range of 
variation 

Unit 

Physical 
environment 

Latitude Latitude of the simulated field both 

[-66; +66] 
single plan 
[0; +66] 
plant in a 
canopy 

angle 
degree 

Day Julian day both [1; 365] no unit 

Model 
precision 

Xmax 
Field sample size in the East-West 
direction 

SP [1; 4] m 

Ymax 
Field sample size in the North- South 
direction 

SP [1; 4] m 

Voxel Voxel edge size SP [1; 20] cm 

Target-plant 
variables 

Height Plant height  both [1; 250] cm 
Width Plant width  both [1; 200] cm 
LA Total plant leaf area both [1; 105] cm2 

k Species radiation extinction coefficient both [0.01; 1.1] no unit 

RH50 
Relative median leaf height below which 
is located half of the leaf area 

both [0.01; 1] cm·cm-1 

b 
Shape parameter for leaf distribution vs. 
plant height 

both [0.01; 6] no unit 

Neighbour 
mean plant 
variables 

Density 
Total plant density of the disc of plants 
(crops + weeds), including the target 
plant 

PIC 
[0.1; 3000] 

plant.m-² 
 

Distance 
to 
neighbour  

Distance of the target plant to the furthest 
neighbour  

PIC [0.1; 3] m 

Height 
Plant height averaged over all neighbours 
and weighted by the inverse of distance 
to target plant 

PIC [0; 240] cm 

Cover 

Plant base area (superposed plants are 
added to the value) averaged over all 
neighbours and weighted by the inverse 
of distance to target plant 

PIC [0; 20000] cm² 

LA 
Plant leaf area averaged over all 
neighbours and weighted by the inverse 
of distance to target plant 

PIC [0; 100000] cm² 

k 
Species extinction coefficient averaged 
over all neighbours and weighted by the 
inverse of distance to target plant 

PIC [0; 0.7] no unit 

RH50 
Plants relative height averaged over all 
neighbours and weighted by the inverse 
of distance to target plant 

PIC [0; 115] cm 

§ Input used in the "Single Plant" step (SP), the "Plant Inside a Canopy" step (PIC) or both 931 
  932 
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B. Outputs (for target plant) 933 
Use for 
FLORSYS Name Short explanation Step§ 

Range of 
variation 

Unit 

Growth 
submodel 

PARaP Proportion of PAR& absorbed by 
the plant at the plant scale 
compared to the PAR above 
canopy.  

both [0; 1] MJ cm-2 MJ-1 
cm² plant-1 

PARaC Proportion of PAR absorbed by the 
plant for 1 cm3 compared to the 
PAR above canopy 

both [0; 1] MJ cm-2 MJ-1 
cm² cm-3 

Morphology 
submodel 

SID Daily Shading Intensity , i.e. 
proportion of incident radiation 
above canopy that does not reach 
the plant 

both [0; 1] MJ MJ-1 

Herbicide 
treatment 
submodel 

rPARipla

nt 

Proportion of radiation intercepted 
by the plant relative to incident 
radiation above canopy 

both [0; 1] MJ.cm-² MJ-1 
cm² 

rPARitop Proportion of radiation intercepted 
by the top of the plant relative to 
incident radiation above canopy 

PIC [0; 1] MJ.cm-² MJ-1 
cm² 

rPARibas

e 
Proportion of radiation intercepted 
by the base of the plant relative 
incident radiation above canopy 

both [0; 1] MJ.cm-² MJ-1 
cm² 

& PAR: Photosynthetically Active Radiation; § Output computed for the "Single Plant" step (SP), the 934 
"Plant Inside a Canopy" step (PIC) or both 935 
 936 
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 937 

 938 

Figure 2: Schematic representation of the inputs and outputs of the 3D radiation interception submodel 939 
of FLORSYS (MUNIER-JOLAIN ET AL., 2013), with environmental and precision inputs (underlined), 940 
plant in a canopy inputs (italics), single plant common inputs (standard font) and outputs (bold). For 941 
abbreviations, see Table 2. (Floriane Colas © 2017 updated from (Gauchi et al., 2017)) 942 
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 944 

Figure 3 : Overall view of sensitivity indices for radiation interception outputs of a target plant, in the 945 
absence of any shading neighbour plants. In hatched colours polynomial effects (i.e. disregarding 946 
interactions), in plain colours total effect (including interactions) of the inputs, environmental and 947 
precision inputs (underlined) and single plant input (normal font). The outputs are the Photosynthetic 948 
Active Radiation (PAR) absorbed by the target plant (PARaP), shading index (SID), relative PAR 949 
intercepted by the whole plant (rPARiplant) or on soil surface (rPARibase). (Floriane Colas © 2018) 950 

 951 
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Table 3: Synthesis of the different 3D radiation interception metamodels (fast and full) computed via 953 
polynomial chaos expansion (PCE) and Partial Least Squares (PLS) regression. Fast metamodels 954 
result from full metamodels via a LASSO-PLS monomials selection. 955 

A. Single target plant without shading neighbouring plants 956 

 Radiation-
interception 
model output 

Metamodel 
type 

Polynomial 
degree 

Monomial 
number 

Fitting 
prediction 
Q2cum 

Prediction 
error 

RMSEP§ 
[1] PARaC full 5 4367 0.96 0.19 
[2] PARaC fast 5 26 0.85 0.39 
[3] SID full 5 4367 0.98 0.15 
[4] SID fast 5 26 0.82 0.43 
[5] rPARiplant full 5 4367 0.95 0.22 
[6] rPARiplant fast 5 27 0.90 0.32 
[7] rPARibase full 5 4367 0.93 0.25 
[8] rPARibase fast 5 25 0.70 0.55 
 957 

B. Target plant inside a canopy 958 

 Radiation-
interception 
model output 

Metamodel 
type 

Polynomial 
degree 

Monomial 
number 

Fitting 
prediction 
Q2cum 

Prediction 
error 
RMSEP§ 

[9] PARaC full 4 3875 0.83 0.33 
[10] PARaC fast 5 30 0.56 0.65 
[11] SID full 4 3875 0.75 0.42 
[12] SID fast 5 29 0.30 0.83 
[13] rPARitop full 4 3875 0.71 0.48 
[14] rPARitop fast 5 28 0.27 0.85 
[15] rPARiplant full 7 4000 0.82 0.36 
[16] rPARiplant fast 5 35 0.52 0.69 
[17] rPARibase full 4 3875 0.76 0.43 
[18] rPARibase fast 5 35 0.37 0.79 
§ root mean squared error predictor 959 
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 961 

Figure 4: Overall view of sensitivity indices for radiation interception outputs of a target plant 962 
surrounded by neighbour plants. Total effects (plain colours) and polynomial effects (i.e. disregarding 963 
interactions, hatched colours) of inputs of the FLORSYS radiation interception submodel. The outputs 964 
are the Photosynthetic Active Radiation (PAR) absorbed by the target plant (PARaP), shading index 965 
(SID), relative PAR intercepted at the summit of the target plant (rPARitop), by the whole plant 966 
(rPARiplant) or at the base of the target plant (rPARibase). (Floriane Colas © 2017)  967 
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Table 4 : Synthesis of the variation in prediction error in simulations with the metamodelled vs. 970 
process-based model. Relative root mean squared error predictor (RRMSEP) in relation to variation 971 
range of observation (max-min)/2.  972 

Output 
Species 
scale 

Time step 

Type of neighbours used for calculating 
canopy variables 

Local Mixed Average 

Weed density 

(plants·m-2) 

By species 
Day +9% ++%$ +10% 

Multiannual -81% -7% -52% 

Sum of all 
species 

Day +9% ++%$ -85% 
Multiannual -50% -8% +152% 

Weed biomass  

(g·m-2) 

By species 
Day +294% +417% +580% 

Multiannual ++%$ for process-based model 

Sum of all 
species 

Day ++%$ . +327% +723% 
Multiannual +1351% +10353% +12391% 

Seedbank  

(seeds·m-2) 

By species Day +164% +163% +84% 
Sum of all 
species 

Day ++%$ for process-based model 

Crop yield (T·ha-1) By species Day +61% +6% 79% 
$ RRMSEP of metamodelled simulation was >> 0 and RRMSEP of process-based simulation was < 973 
variability in observations, i.e. ~0, and no relative variation in RRMSEP could be calculated 974 
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 977 

Figure 5: Classification tree (CART) to decide whether a target plant is single or inside a canopy. The 978 
segmentation is based on relative photosynthetically active radiation on target-plant top rPARitop> 979 
0.98. The adjustment error (or training error) was 0.24, the cross validation error was 0.28 (standard 980 
deviation = 0.01). (Floriane Colas © 2017) 981 
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 983 

Figure 6: The different metamodels and when they are used in FLORSYS-ML depending on target plant 984 
variables, neighbour plant variables and environmental variables. (Floriane Colas © 2017) 985 
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 987 

 988 

Figure 7: Simulation time (A) and prediction error (relative root mean squared error predictor 989 
RRMSEP, B) of the daily weed seedbank by species for the different FLORSYS versions (squares: 990 
process-based, circles: metamodelled FLORSYS-ML), neighbour-aggregrating methods (dark red: local 991 
neighbours, light yellow: average, orange: mixed) and voxel edge sizes. Relative error in relation to 992 
variation range of observation (max-min)/2 (Floriane Colas © 2017)  993 
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Table 5 : Synthesis table to guide the choice of the best simulation method with the smaller prediction error (relative root mean squared error predictor 995 
RRMSEP) depending on the goal and the target output. 996 

Output Species scale Time step 
Simulation goal 
Farmer's workshops (fast simulations: 7 cm 
voxel, 6x3 m² field) 

Site-specific weed management (precise 
simulations : 1 cm voxel, 6x3 m² field) 

Weed density 
(plants·m-2) 

By species Day Process-based Process-based # 
Multiannual Metamodelled with average neighbours Metamodelled with average neighbours * 

Sum Day Process-based Process-based # 
Multiannual Process-based Process-based 

Weed biomass 
(g·m-2) 

By species Day Process-based Metamodelled with local + average & 
Multiannual Metamodelled with local neighbours Metamodelled with local + average neighbours 

Sum Day Process-based Metamodelled with local + average & 
Multiannual Metamodelled with local neighbours Metamodelled with local + average neighbours 

Seedbank 
(seeds·m-2) 

By species Day Process-based * Process-based 
Sum Day Metamodelled with local + average & Metamodelled with local neighbours 

Crop yield (T·ha-1) By species Day Process-based Process-based 
Other methods that are also close in the RRMSEP value: * all of the other methods; & metamodel with average neighbour; # metamodel with local neighbours 997 
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 999 

Table 6 : Summary of avenues for speeding up complex models such as FLORSYS 1000 

Method Advantage Disadvantage Best use for… 
Model modification 
1 Simpler light 

interception 
models 

Simpler process-based Cannot represent 
heterogeneous crop 
canopies 

Homogeneous (single-
species) canopies, 
uniform field 
management 

2 Metamodel Simpler light 
interception, 
identification of key 
factors for light 
interception 

Lose connection of 
processes, cannot wholly 
grasp the complexity of 
plant-plant interactions 

Precision agriculture, 
very heterogeneous 
multispecies canopies, 

Input choice 
3 Increase voxel 

size, decrease 
field-sample area 

No source 
modification needed 

Precision loss Canopies with little 
heterogeneity and few 
species, uniform field 
management 

Technical solutions 
4 Parallel source 

processing, 
graphical 
processing units 

Remain process-based Not "portable" to all 
computers 

Research, all cropping 
systems 

5 Powerful 
computers, 
calculation 
servers 

No source 
modification needed 

Not accessible to non-
researchers 

Research, all cropping 
systems 

 1001 
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