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Abstract
Understanding the relationships between host range and pathogenicity for parasites, and between the efficiency
and scope of immunity for hosts are essential to implement efficient disease control strategies. In the case of
plant parasites, most studies have focused on describing qualitative interactions and a variety of genetic and
evolutionary models has been proposed in this context. Although plant quantitative resistance benefits from
advantages in terms of durability, we presently lack models that account for quantitative interactions between
plants and their parasites and the evolution of these interactions. Nestedness and modularity are important fea-
tures to unravel the overall structure of host-parasite interaction matrices. Here, we analysed these two features
on 32 matrices of quantitative pathogenicity trait data gathered from 15 plant-parasite pathosystems consist-
ing of either annual or perennial plants along with fungi or oomycetes, bacteria, nematodes, insects and viruses.
The performance of several nestedness and modularity algorithms was evaluated through a simulation approach,
which helped interpretation of the results. We observed significant modularity in only six of the 32 matrices,
with two or three modules detected. For three of these matrices, modules could be related to resistance quanti-
tative trait loci present in the host. In contrast, we found high and significant nestedness in 30 of the 32 matrices.
Nestedness was linked to other properties of plant-parasite interactions. First, pathogenicity trait values were
explained in majority by a parasite strain effect and a plant accession effect, with no or minor parasite-plant in-
teraction term. Second, correlations between the efficiency and scope of the resistance of plant genotypes, and
between the host range breadth and pathogenicity level of parasite strains were overall positive. This latter result
questions the efficiency of strategies based on the deployment of several genetically-differentiated cultivars of
a given crop species in the case of quantitative plant immunity.
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Introduction 

The effectiveness of strategies of disease control based on host immunity depends on the underlying 
capabilities of hosts to resist infection, of parasites to overcome this resistance and on the potential of 
these traits to evolve. Parasites and hosts can be specialists or generalists in, respectively, their capacity to 
infect and their immunity. Confronting multiple genotypes of a parasite with multiple genotypes of a host 
reveals their interaction patterns, i.e. the magnitude and arrangement of their mutual specialization or 
generalism, which gives insights into the underlying genetic bases of these characters and allows 
implementing strategies of disease management based on host diversification. 

Importantly, the word “interaction” has different meanings in this context. In ecology, interactions 
between hosts and parasites are the effects that each of these two categories of living organisms have on 
each other. These host-parasite interactions can involve molecular interactions, which are attractive or 
repulsive forces between molecules, for example between parasite elicitors or effectors and host 
receptors. Finally, quantitative pathogenicity traits can be analysed thanks to statistical models that 
include, or not, a significant interaction between variables representing hosts and parasites. In the latter 
acception, “interaction” means that the model departs significantly from a purely additive model, including 
only a parasite effect and a host effect. Statistical interactions are used in the context of quantitative data 
and linear regression models, but not for qualitative binary data. 

The structure of any host-parasite interaction can be represented as a matrix where columns 
correspond to host genotypes (either inbred lines, clones or F1 hybrids) and rows to parasite strains (either 
isolates, clones or populations depending on the considered parasite). Each cell in the matrix indicates the 
result of the pairwise confrontation between the corresponding host genotype and parasite strain. 
Qualitative interactions generate binary matrices with “1” and “0” grades, which correspond to successful 
and unsuccessful infections. These matrices are equivalent to networks, where links are represented 
between pairs of hosts and parasites that correspond to “1” grade in the matrix. Network theory has its 
origins in the study of social networks and in ecology of interacting organisms (Patterson & Atmar, 1986). 
Ecological networks are typically identified by counting in natura the interactions between (or co-
occurrence of) two sets of taxa. These analytical methods were recently used to analyse host-symbiont 
interactions resulting from cross-inoculation experiments, where every host taxon was inoculated with 
every symbiont taxon, and the compatibility of each host-symbiont pair was reported in the matrix (Flores 
et al., 2011; Flores et al., 2013; Weitz et al., 2013). The structural patterns of such matrices, where all host-
symbiont pairs are evaluated under the same experimental and environmental conditions, are mainly the 
result of intrinsic, mostly genetic, differences between host or symbiont taxa. 

Nestedness and modularity are two quantitative properties that reveal non-random distributions of 
“1” and “0” grades in such matrices or networks (Weitz et al., 2013). Nestedness measures the tendency 
of the hosts of a parasite to have a hierarchical organization, where the set of hosts of a given parasite (a 
species or a genotype) is a subset (respectively superset) of that of the parasites of broader (respectively 
narrower) host ranges. Here, the breadth of the host range of a given parasite is defined as the percentage 
of host species (or genotypes) that are infected by this parasite. The same tendency is observed for host 
immunity (Fig. 1A): the set of parasites that are controlled by the immunity of a given host is a subset 
(respectively superset) of that of hosts with broader (respectively narrower) scopes of resistance. Here, 
the scope of the resistance of a given host is defined as the percentage of parasite species (or strains) that 
are targeted by this resistance. 

Modularity measures the strength by which a matrix can be subdivided into a number of groups (i.e. 
modules) of hosts and parasites characterized by successful infections, while infections are rare between 
hosts and parasites that belong to different modules (Fig. 1B). Depending on the genetic, evolutionary and 
mechanistic patterns of host-parasite interactions, contrasted scores for nestedness and modularity are 
expected. 

Evidence of nestedness is frequent for all kinds of matrices, including interactions between hosts and 
symbionts, either mutualistic or parasitic (Bascompte et al., 2003; Joppa et al., 2010; Dormann et al., 2017). 
A number of factors that are external to the interacting organisms can affect properties of such ecological 
networks. For example, nestedness increases with the abundance of taxa (Joppa et al., 2010; Staniczenko 
et al., 2013; Suweis et al., 2013; Valverde et al., 2018), with heterogeneous distribution of connections (i.e. 
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numbers of links between interacting taxa; Jonhson et al., 2013), with the occurrence of broad 
connectivities (Feng & Takemoto, 2014) and with spatially-limited interactions between taxa (Valverde et 
al., 2017).Three main models of host-parasite interactions have been proposed for qualitative plant-
parasite interactions (Fig. 1C to F; see also Dybdahl et al., 2014 and Thrall et al., 2016). These models 
represent the mutual specialization of hosts and parasites in terms of underlying molecular mechanisms 
and genetic determinism and have consequences on the host-parasite coevolution pattern. Each model 
generates a specific structural pattern in the corresponding interaction matrix. 

 

Figure 1. Matrices corresponding to different mechanistic, genetic and evolutionary models of 
qualitative or quantitative host-parasite interactions. In each case, host genotypes correspond to 

different columns and parasite genotypes to different rows) and black and white cells (or “1” and “0” 
grades) correspond to infection or lack of infection, respectively. A: Illustration of an imperfectly nested 
pattern. B: Illustration of a perfectly modular pattern (modules are delimitated with red lines). C and D: 

Gene-for-gene (GFG) models with partial or perfectly nested patterns. C: Case of two genes with two 
alleles in both hosts and parasites. Infection occurs only when no elicitor in the parasite is recognized by 
a product of the resistance alleles in the host. In the other situations, resistance is induced and there is 

no infection. D: Case of a single gene with five alleles in both hosts and parasites. Resistance alleles have 
various levels of specificity: in some plant accessions resistance can be induced by several parasite 
strains. E: Matching-allele model. Infection occurs only if the product of the pathogenicity allele is 

recognized by the product of the susceptibility allele in the host. F: Variation of D with higher specificity: 
resistance is induced by a specific product present in a single parasite genotype. This model was named 

"inverse matching-allele" model (Thrall et al., 2016) and has an anti-modular structural pattern. G: 
Additive QTL model with no plant-parasite QTL × QTL interaction. For each parasite strain i with 

pathogenicity level Pi and each plant accession j with resistance level Rj, infection score corresponds to 
Pi × (1-Rj). 
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Historically, the first model was the gene-for-gene (GFG) model proposed to describe interactions 
between crop plants and their parasites (Flor, 1956). In this model, immunity is induced upon recognition 
of a parasite elicitor by a host receptor, each encoded by a single gene. The loss or alteration of the elicitor 
in the parasite or the absence of a cognate resistance allele in its host results in infection. This model is 
coherent with dominant resistance that involves plant proteins containing nucleotide-binding and leucine-
rich-repeat domains as receptors, and that mounts hypersensitive reactions (programmed cell death) upon 
recognition of parasite elicitors. The corresponding host-parasite matrix has a global nested pattern, with 
partial or complete overlap of the host ranges of the parasite strains and of the resistance spectra of the 
host genotypes (Fig. 1C,D; Gallet et al., 2016). Secondly, the matching-allele (MA) model was proposed to 
describe the self/non-self recognition system of invertebrate immunity (Grosberg & Hart, 2000). In that 
case, infectivity requires a specific match between the host genotype and the parasite strain and, 
accordingly, universal infectivity is impossible. The corresponding host-parasite matrix has a modular 
structure. Cross-infections are frequent between hosts and parasites belonging to the same module but 
rare between hosts and parasites belonging to distinct modules. In extreme cases of specialization, 
modules can be as small as a single host-parasite pair (Fig. 1E). Mechanistically, this model is coherent with 
recessive plant resistance to viruses mediated by eukaryotic translation initiation factors (e.g. Sacristán & 
García-Arenal, 2008) and with necrotrophic fungi which secrete elicitors of programmed cell death that 
increase plant susceptibility by allowing the fungus to feed on dying cells. In the context of plant 
necrotrophic parasites, this model is also confusingly named ‘inverse gene-for-gene’ (Peters et al., 2019). 
Thirdly, the inverse-matching-allele (IMA) model was proposed to reflect the adaptive immune system of 
vertebrates, where the host resists through recognition of the parasite and infections occur when the 
parasite mismatches the host (Kidner & Moritz, 2013; Thrall et al., 2016). The IMA model was defined in 
the context of multi-allelic series of resistance and pathogenicity genes. Mechanistically very similar to the 
GFG model, it assumes that recognition between host and parasite genotypes is highly specific. The 
corresponding host-parasite matrix is therefore similar to the matching-allele model but with “0” and “1” 
grades replaced by “1” and “0” grades, respectively (Fig. 1F). Hence, a modular pattern is the expected 
result when immunity levels (instead of the degree of pathogenicity) are indicated in the matrix. 

The distinguishing feature of the genetic models described above is that they describe qualitative 
binary interactions, where each host-parasite pair is characterized by its compatibility or non-compatibility. 
Models that describe quantitative host-parasite interactions are rare and their adequacy to represent 
empirical data have not been extensively tested (Lambrechts, 2010; Boots et al., 2014; Wang et al., 2018). 
Analysis of quantitative plant immunity has mostly been confined to the framework of quantitative 
genetics and QTL (quantitative trait loci) mapping. These methods usually assume that resistance is 
determined by the additive effect of QTLs. More complex effects (dominance, epistasis) are rarely 
considered (Gallois et al., 2018). Furthermore, there are few studies of quantitative genetics and QTL 
mapping of parasite pathogenicity traits, especially in the case of plant parasites (Wang et al., 2018). Most 
importantly, these few analyses were conducted either with a set of hosts confronted to a single parasite 
or with a set of parasites confronted to a single host. In any case, there is a clear need for new models 
describing quantitative host-parasite interactions while properly accounting for the variability of both 
partners (Lambrechts, 2010; Bartoli & Roux, 2017). Moreover, previous work has shown that the outcome 
of analysis of matrix structure is markedly impacted when quantitative interactions are considered. 
Quantitative data are especially influencing the significance of nestedness (Staniczenko et al., 2013). 

These considerations motivated us to conduct a comprehensive analysis of the nestedness and 
modularity of interaction matrices to deepen our knowledge in the specialization between plants and 
diverse parasites using quantitative data. The objectives of this work are (i) to assess the performance of 
available algorithms to identify nested and modular patterns in matrices of quantitative data and (ii) to 
determine if these patterns are specific to each pathosystem or show a general trend. In addition, our work 
provides a new perspective and insight into appropriate genetic and evolutionary models for representing 
quantitative plant-parasite interactions and for outcomes for plant resistance management. 
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The number of matrix cells varied from 49 to 1470 (median 180). For most pathosystems, we analyzed 
several matrices corresponding to either different pathogenicity traits, different plant-parasite sets or 
different experiments. In order to meet the requirements of methods that allow the estimation of 
nestedness and modularity of matrices, the pathogenicity traits in each matrix were standardized into 
integer values ranging from 0 (minimal plant resistance and/or maximal parasite pathogenicity) to 9 
(maximal plant infection and/or minimal parasite pathogenicity). We then tested for the occurrence of 
nestedness and modularity. For significance assessment, the nestedness/modularity scores of the matrices 
derived from experimental data were compared to those of simulated null-model matrices that are not 
expected to possess any nested or modular pattern (Supplementary Tables S1 to S18 in Supplementary 
Methods 2). Nestedness (or modularity) is significant if the actual matrix is more nested (or modular) than 
at least 95% of the matrices simulated under a given null model (black numbers on grey background in 
Tables 2 and 3 and in Supplementary Tables S19 and S20). As there are many possible null models and 
because their choice is crucial to conclude about the significance of nestedness or modularity, we analyzed 
the performance of the two available nestedness algorithms and of seven modularity algorithms in 
combination with different null models by estimating their type I and type II error rates through a 
simulation approach. A brief description of null models is provided in the Materials and Methods section. 
Details of null models and method performance analysis are provided in Supplementary Methods 2 and 
Supplementary Tables S1 to S18). 

Ubiquitous nestedness in quantitative plant-parasite interactions.  
First, we evaluated the performance of two algorithms, WINE and wNODF (Galeano et al., 2009; 

Almeida-Neto and Ulrich 2011), to estimate the nestedness of the 32 matrices. Simulations revealed that 
statistical significance with both null models C1 and R1 (or C2 and R2) provided the lowest false positive 
rates for nestedness (named null models CR1 or CR2; Supplementary Methods 2; Supplementary Tables S1 
and S2). Moreover, the rates of false positive nestedness were similar for WINE and wNODF with null 
models CR1 or CR2. In contrast, a higher power was observed for WINE than wNODF for all null models 
(Supplementary Tables S5 and S6). Consequently, for the actual matrices, we focused mainly on the results 
of the WINE algorithm (Table 2).With the WINE algorithm, nestedness values were quite high in general 
(from 0.46 to 1.04; mean 0.77 on a scale varying from 0 to ≈1). The huge majority of the matrices (30/32; 
94%) showed significant nestedness (p-values ≤ 0.05) with null models C1, R1, C2 and R2 (Table 2). Only 
matrices 21 and 32 were not significantly nested with either null model C1, R1, C2 or R2.  

Fewer matrices showed significant nestedness with the wNODF algorithm (Supplementary Table S19), 
which is consistent with the lower statistical power of wNODF compared to WINE. 

Investigation of the biological significance of nestedness.  

Adequacy of an additive linear regression model for pathogenicity matrices 
The high and significant nestedness observed among most of the analysed matrices suggests that an 

additive model combining pathogenicity QTLs in the parasites and resistance QTLs in the hosts, but omitting 
QTL x QTL interactions between hosts and parasites, would fit well with the data (Fig. 1G). We evaluated 
the performance of the linear regression model: ‘pathogenicity’ ~ ‘parasite strain’ + ‘plant accession’, with 
no interaction term, on the datasets. For each plant accession-pathogen strain pair, the mean 
pathogenicity value was considered for the ‘pathogenicity’ variable. The ‘parasite strain’ and ‘plant 
accession’ effects were highly significant (p-value < 0.0012), except for matrices 21 and 32 which were the 
only ones not significantly nested according to the WINE method (Table 2). Omitting these two matrices, 
the unbiased estimate of the part of variance explained by the ‘parasite strain’ and ‘plant accession’ effects 

(²; Kirk 1982) varied from 0.40 to 0.98 (mean 0.69) (Table 1), which lends support to the suggested genetic 

model. Only one ² value was below 0.50 (matrix 7). Moreover, the ² values of the linear regression 
model were significantly correlated with the nestedness scores obtained with the WINE algorithm 
(Pearson’s r = 0.74; p-value = 1.5e-06) across the 32 matrices. They were only marginally correlated with 
the nestedness scores of the wNODF algorithm (r = 0.31; p-value = 0.087). 

To confirm these results, we estimated the part of phenotypic variance explained by the ‘parasite × 
plant’ interaction effects for the different matrices using the linear regression model: ‘pathogenicity’ ~ 
‘parasite strain’ + ‘plant accession’ + ‘parasite strain × plant accession’. To disentangle the interaction effect 
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from the uncontrolled environmental and experimental variance, several independent phenotypic values 
should be available for each plant-parasite genotype pair. Such values are not available for all published 
data and for some of our experimental data. Consequently, we obtained estimates of the parasite × plant 
interaction for 26 of the 32 matrices and Soltis et al. (2019) provided an estimate for a 27th matrix 
(Supplementary Table S20). For five of these matrices (1, 2, 9, 12 and 13), the parasite × plant interaction 
was not significant (Supplementary Table S20 and Soltis et al., 2019). In the 24 significantly-nested matrices 

among the 26 analyzed, the plant-parasite interaction term explained on average ² = 17.5% (minimum 
0%; maximum 41%) of the phenotypic variance, relatively to the total phenotypic variance that could be 

collectively explained by the plant, the parasite and the plant-parasite effects. The average ² was 18.9% 
for the 27 analyzed matrices. 

Finally, for matrices 5, 10, 11 and 16, for which no estimate of the plant-parasite interaction effect 
could be obtained, the plant and parasite effects alone explained 81%, 92%, 93% and 98% of the phenotypic 
variance, respectively (Table 1). Hence, a minor interaction effect, if any, is also expected for these latter 
four matrices. For a single significantly-nested matrix (number 7), the plant and parasite effects alone 
explained a minor part of the phenotypic variance (40%; Table 1) and we were unable to obtain an estimate 
of the plant-parasite interaction effect. 

Collectively, these results support the fact that the parasite × plant interaction determines a minor part, 
if any, of the variation of quantitative pathogenicity traits. 

 

Figure 2. Overview of the 32 analyzed plant-parasite matrices (Table 1). Different plant accessions 
and parasite strains correspond to different columns and rows, respectively. White to black shades in 
each cell correspond to an increasing gradient of pathogenicity or infectivity (corresponding to 0 to 9 

values in the analysed matrices) for a given plant and parasite pair. Rows and columns were ordered by 
increasing marginal totals, revealing the nested patterns. Colored numbers (red or green) correspond to 
significant nestedness (WINE algorithm) (Table 2). Green numbers correspond to significant modularity 

(spinglass algorithm), while numbers between parentheses correspond to significant modularity 
(spinglass algorithm) detected in reverse matrices. 
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Table 2: Analysis of nestnedness of plant-parasite interaction matrices with the WINE method. 

Matrix 
number 

Nestedness 
scorea 

Null modelb 

B N C1 R1 S C2 R2 

1 0.78 0c 0 0 0 0 0 0 
2 0.81 0.01 0 0 0 0 0 0 
3 0.82 0 0 0 0 0 0 0 
4 0.82 0 0 0 0 0 0 0 
5 0.83 0 0 0 0 0 0 0 
6 0.70 0.12 0 0 0 0 0 0 
7 0.60 0.49 0 0 0 0 0 0 
8 0.58 0.01 0 0 0 0 0 0 
9 0.46 0 0 0 0 0 0 0 

10 1.01 0 0 0 0 0 0 0 
11 1.04 0 0 0 0 0 0 0 
12 0.69 0 0 0 0 0 0 0 
13 0.73 0 0 0 0 0 0 0 
14 0.76 0 0 0 0 0 0 0 
15 0.68 0.12 0 0 0 0 0 0 
16 0.84 0 0 0 0 0 0 0 
17 0.84 0 0 0 0 0 0 0 
18 0.93 0 0 0 0 0 0 0 
19 0.79 0 0 0 0 0 0 0 
20 0.80 0 0 0 0 0 0 0 
21 0.75 0.90 0 0.07 0 0 0.46 0 
22 0.91 0 0 0 0 0 0 0 
23 0.75 0 0 0 0 0 0 0.04 
24 0.68 0.12 0 0 0.01 0 0 0.02 
25 0.82 0.01 0 0 0 0 0 0 
26 0.86 0 0 0 0 0 0 0 
27 0.69 0.37 0 0 0 0 0 0 
28 0.63 0.46 0 0.01 0 0 0 0 
29 0.78 0.01 0 0 0 0 0 0 
30 0.84 0.03 0 0 0 0 0 0 
31 0.77 0 0 0 0 0 0 0.01 
32 0.52 0.31 0.06 0 0.36 0.06 0.01 0.71 

a Mean of 100 estimates. 
b See Supplementary Methods 2 for details of the null models. 

c Nestedness significance: the probability value (p-value) indicates the frequency of null-model matrices showing a strictly 
higher nestedness score than that of the actual matrix. P-values ≤ 0.05 (significant nestedness) are in bold on grey cells and 

p-values > 0.95 (significant anti-nestedness) are in white on black cells. 

Evaluating potential trade-offs: Host range breadth vs. pathogenicity in parasites and scope vs. efficiency 
of resistance in host plants 

The ubiquitous nestedness detected suggests a positive correlation between the host range breadth, 
i.e. the percentage of host accessions that a parasite can efficiently infect, and the pathogenicity level of 
the parasite. Similarly, a positive correlation is expected between the scope of the resistance and the 
resistance efficiency of the plants. Given the continuous distribution of the quantitative pathogenicity 
traits, we defined arbitrary pathogenicity thresholds to distinguish host and non-host accessions for a given 
parasite strain, and to distinguish parasite strains included or not included in the scope of the resistance of 
a given plant accession. Nine thresholds were defined, varying from 10% to 90% of the maximal 
pathogenicity value in the whole matrix by increments of 10%, and allowed estimating the percentage of 
plant accessions included in the host range of each parasite strain (i.e. the host range breadth) and the 
percentage of parasite strains included in the scope of resistance of each plant accession. The mean 
Pearson’s coefficient of correlation (r) between host range breadth and pathogenicity varied from 0.20 to 
0.38 across the different threshold values (mean 0.31). Depending on the threshold, from 23.1% (6/26 
matrices) to 40.6% (13/32) (mean 31.9%) of the matrices showed significantly positive r values, whereas 
from 0 (0/11) to 9.7% (3/31) (mean 4.8%) of the matrices showed significantly negative r values (Fig. 3; 
Supplementary Table S21). Note that the coefficient of correlation could not be calculated for several 
matrices for some of the thresholds because of the lack of pathogenicity values above (for correlation 
between host range breadth and pathogenicity) or below (for correlation between resistance scope and 
efficiency) that threshold. The mean r between resistance scope and efficiency varied from 0.18 to 0.59 
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across the different threshold values (mean 0.39). Depending on the threshold, from 25.0% (6/24) to 48.4% 
(15/31) (mean 36.6%) of the matrices showed significantly positive r values, whereas from 0 (0/32) to 9.4% 
(3/32) (mean 3.0%) of the matrices showed significantly negative r values (Fig. 3). 

Rare cases of modularity in quantitative plant-parasite interactions.  
As for nestedness, thanks to a simulation approach we could evaluate the performance of four of the 

modularity algorithms: edge betweenness (Newman & Girvan, 2004), fast greedy (Clauset et al., 2004), 
louvain (Blondel et al., 2008) and spinglass (Newman & Girvan, 2004; Reichardt & Bornholdt, 2006; Traag 
& Bruggeman, 2009) (Supplementary Methods S2). By maximizing a modularity score, these algorithms 
estimate the optimal number of modules and the distribution of plant and parasite genotypes in the 
modules. In terms of type I error rate, the spinglass method was by far the most efficient for all null models 
(Supplementary Tables S7 to S10). For the other three methods, the type I error rate varied greatly depen- 

 

Figure 3. Distributions of Pearson’s coefficients of correlation (r) between parasites host range 
breadth and pathogenicity (left) or between plant resistance efficiency and scope (right) across the 32 
analysed matrices for different thresholds separating hosts and non-hosts (or parasites included or not 

included in the resistance scope). Each threshold corresponds to a percentage of the maximal 
pathogenicity value in each matrix (only results obtained with thresholds corresponding to 30%, 50% and 
70% of the maximal pathogenicity value are shown; results were similar for other thresholds). In blue and 

red: significantly negative or positive r values (p-value < 0.05). For some thresholds and some matrices, 
the coefficient of correlation could not be calculated because too few pathogenicity data remained. 
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ding on the null models, S, C2, R2 and CR2 being the most efficient. The spinglass method had also the 
lowest false positive rate to detect anti-modularity, i.e. a situation where a matrix is less modular than at 
least 95% of the matrices simulated under a given null model (Supplementary Tables S11 to S14). 
Consequently, we focused on the spinglass method to detect modularity in the 32 actual matrices (Table 
3). 

Modularity scores were low overall, with a maximum of 0.130 and a mean of 0.077, on a scale varying 
from 0 to 1 (Table 3). Six matrices (numbers 5, 6, 10, 11, 14 and 17b) were significantly modular with a 
majority of null models (Table 3), though their modularity scores were low (≤ 0.102). Depending on the 
matrix, spinglass defined an optimal number of two or three modules, which provided the maximal 
modularity score (Table 3; Fig. 4). In addition, matrices 8 and 22 were only significantly modular with one 
null model. 

The edge betweenness, fast greedy and louvain methods did not allow to detect consistently significant 
modularity in any matrix (Supplementary Table S22). 

The spinglass algorithm showed also that matrix 7 was significantly anti-modular with null models N, 
C1 and R1 (Table 3). The edge betweenness, fast greedy and louvain methods detected significant anti-
modularity in most matrices with most null models (Supplementary Table S22) but suffered high rates of 
false positive anti-modularity for many null models (Supplementary Methods 2; Supplementary Tables S11 
to S13). 

Investigation of the biological significance of modularity.  
We examined the relevance of the detected modules for the six matrices showing significant 

modularity with most null models with spinglass (Table 2) by analysing whether the plant and parasite 
genotypes belonging to each module shared common properties (common resistance gene or QTL for 
plants; common pathogenicity factor for parasites; common origin for plants or parasites). 

For matrix 5 (Puccinia hordei-barley), two modules were detected (Fig. 4). The first one grouped the 
five accessions with resistance QTLs Rphq3 and Rphq11, showing delayed infection with most isolates of 
the second module, and one accession carrying QTLs Rphq1, Rphq2 and Rphq3, showing delayed infection 
with almost all isolates (González et al., 2012). The second module contained four accessions with either 
no resistance QTL or QTL Rphq18, that were quickly infected by almost all isolates. The country of origin or 
date of collection of the isolates did not explain their distribution in the two modules (Marcel et al., 2008). 

For matrix 6 (Venturia inaequalis-apple), three modules were detected. The first one grouped the eight 
accessions carrying QTL T1 and the four V. inaequalis isolates collected on apple trees carrying T1 (Laloi et 
al., 2017). The two other modules grouped (i) the remaining accessions that were either carrying no 
resistance QTL or QTLs F11 or F17 that have only a low effect on disease reduction and (ii) isolates collected 
on these accessions. One of these modules grouped a single isolate and a single accession. Infections were 
on average high within all modules and low between any pair of modules. 

Two modules were also detected for matrix 14 (Zymoseptoria tritici-bread wheat). These modules could 
be partially explained by the interaction between the resistance gene Stb6 (Saintenac et al., 2018), that 
confers a high level of resistance in the absence of a hypersensitive response, and the pathogen avirulence 
gene AvrStb6 (Zhong et al., 2017). Six of the eight cultivars in the first module carry Stb6, while at least six 
of the seven cultivars in the second module do not carry Stb6. Moreover, the 44 fungal isolates structuring 
the first module are pathogenic on Stb6 while the 54 isolates from the second module are either pathogenic 
or not pathogenic on Stb6. 

Concerning matrices 10, 11 (Podosphaera xanthii-melon) and 17b (Phytophthora capsici-pepper), three 
modules were detected but there was no evidence of similarity in the genetic composition of accessions, 
the presence of particular resistance genes or QTLs or the origin of isolates belonging to a same module. 

Modularity of reverse matrices.  
To test the occurrence of IMA patterns (Fig. 1F), we also analyzed the modularity of the 32 matrices 

transformed such that “0” grade corresponds to the maximal plant susceptibility and “1” to “9” grades 
correspond to the range of increasing plant resistance (hereafter “reverse matrices”). Using the spinglass 
algorithm, four matrices (numbers 10, 11, 14 and 15) showed significant but low modularity (≤0.078) with 
either null models C1 and R1 or C2 and R2. Depending on the matrix, spinglass defined an optimal number 
of two to five modules (Fig. 5). 
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Table 3: Analysis of modularity of plant-parasite interaction matrices with the spinglass method. 

Matrix 
number 

Modularity 
scorea 

Number of 
modulesb 

Null modelb 
B N C1 R1 S C2 R2 

1 0.058 - 0.69d 0.76 0.79 0.71 0.93 0.89 0.93 
2 0.070 - 0.86 1 1 0.84 1 1 0.92 
3 0.084 - 0.32 0.68 0.38 0.42 0.36 0.20 0.22 
4 0.095 - 0.95 1 1 0.97 0.99 0.98 0.89 
5 0.070 2 0 0 0 0 0 0 0 
6 0.102 3 0 0 0 0 0 0 0 
7 0.079 - 0.97 1 1 1 0.99 0.96 0.95 
8 0.069 - 0.07 0.53 0.35 0.05 0.70 0.66 0.34 
9e 0.069 - 0.96 1 1 0.97 0.89 0.97 0.86 
10 0.077 3 0 0.07 0 0.03 0.01 0.05 0.04 
11 0.086 3 0 0 0 0 0 0 0 
12 0.057 - 0.98 0.98 0.99 0.96 1 0.99 0.91 
13 0.072 - 0.08 0.27 0.23 0.06 0.73 0.43 0.38 
14 0.062 2 0 0 0 0 0 0.01 0 
15e 0.079 - 0.06 0.61 0.14 0.68 0.13 0.08 0.39 
16 0.078 - 0.20 0.39 0.32 0.37 0.66 0.41 0.86 

17bf 0.097 3 0.05 0.25 0.15 0.06 0.05 0.01 0.02 
18 0.097 - 0.77 0.98 0.97 0.93 0.95 0.71 0.97 
19 0.051 - 1 1 1 1 1 1 1 
20 0.040 - 1 1 1 1 1 1 1 
21 0.092 - 0.44 0.97 0.59 1 0.99 0.56 0.98 
22 0.083 - 0.15 NAg 0.06 0.44 NAg 0.02 0.30 
23e 0.072 - 0.41 0.39 0.27 0.36 0.65 0.57 0.54 
24 0.063 - 0.30 0.52 0.58 0.27 0.81 0.77 0.53 
25 0.091 - 0.75 0.99 0.78 0.99 0.75 0.58 0.45 
26e 0.045 - 0.79 0.91 0.86 0.90 1 0.99 1 
27 0.130 - 0.73 0.83 0.74 0.85 0.76 0.74 0.89 
28 0.090 - 0.96 0.98 0.98 1 0.91 1 0.98 
29e 0.078 - 0.89 0.79 0.91 0.79 0.93 1 0.89 
30 0.095 - 0.49 0.80 0.82 0.56 0.59 0.58 0.49 
31 0.061 - 0.98 1 0.98 1 1 1 0.99 
32 0.065 - 1 0.99 1 0.99 0.97 0.97 0.99 

a Maximum of 100 estimates. 
b The optimal number of modules determined by spinglass is indicated only for matrices significantly modular with a 

majority of null models (Fig. 4). 
c See Supplementary Methods 2 for details of the null models. 

d Modularity significance: the probability value (p-value) indicates the frequency of null-model matrices showing a strictly 
higher modularity score than that of the actual matrix. P-values ≤ 0.05 (significant modularity) are in bold on grey cells. 
Significant anti-modularity, when ≤ 5% of null-model matrices show a strictly lower modularity degree than that of the 

actual matrix, are indicated in white on black cells. Note that some of the indicated p-values are ≥ 0.95 but do not 
correspond to significant anti-modularity because the modularity degrees of the actual matrix and of some null-model 

matrices are identical. 
e Rows and/or columns entirely made of zero-valued cells were removed since the spinglass method cannot estimate the 

modularity under such circumstances (unconnected graphs). 
f Matrix 17b is identical to matrix 17 except that columns entirely made of zero-valued cells and redundant columns were 

removed. 
g NA: not available; many null-model matrices had rows and/or columns entirely made of zero-valued cells and the 

spinglass method could not estimate their modularity. 

The modules identified in reverse matrices 14 and 15 using the spinglass algorithm were biologically 
more meaningfull than the two modules previously identified for matrix 14. Matrices 14 and 15 correspond 
to two different phenotypic traits measured in the same plant-parasite interactions (i.e. necrosis and 
sporulation, respectively). Interestingly, modules identified in the two matrices were similar but not 
identical since five modules were identified in matrix 14 and four modules were identified in matrix 15. 
This may reflect differences in the genetic determinism of the two phenotypic traits measured or 
differences in the mechanisms of various Stb resistance genes. For matrix 14, three modules correspond 
to the presence of resistance genes Stb7 (one cultivar), Stb9 (three cultivars) and Stb6 (four cultivars), one 
module to cultivars carrying various Stb genes (three cultivars), and one module to susceptible (or partially 
resistant) cultivars (four cultivars). For matrix 15, the modules corresponding to the presence of Stb6 and 
Stb9 are also identified (with an additional cultivar in the Stb6 module), the module corresponding to 
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susceptible cultivars as well (with two additional cultivars), and the cultivar Salamouni carrying Stb13 and 
Stb14 forms the fourth module. As above, there was no evidence of similarity in the composition of 
accessions and isolates belonging to the same module for reverse matrices 10 and 11. 

 

Figure 4. Overview of the six plant-parasite matrices showing significant modularity with the spinglass 
algorithm (Table 3). Rows and columns were ordered by modules, delimited by red lines. See legend of 

Fig. 2 for the representation of matrices. 

 

Figure 5. Overview of the four plant-parasite matrices showing significant modularity with the 
spinglass algorithm when matrices were transformed such that 0 values correspond to the maximal plant 

susceptibility and 9 values to the maximal plant resistance (but note that the matrices are represented 
such that 0 to 9 values correspond to a plant resistance to susceptibility gradient, as in the original 

matrices). Rows and columns were ordered by modules, delimited by red lines. See legend of Fig. 2 for 
the representation of matrices. 
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Overall, considering both the initial and reverse matrices, our analysis revealed that only a minority of 
the matrices (7/32; 22%) were significantly modular. When several matrices were analyzed for the same 
pathosystem, some discrepancies could be observed between matrices. For nestedness, matrix 21 was not 
significantly nested, whereas matrix 22 was. Similarly, among matrices 27 to 32, only matrix 32 was not 
significantly nested. Similar observations could be made for modularity analyses. These differences could 
be due to the specific pathogenicity trait that vary between matrices and/or to the statistical power to 
detect the nested or modular structures in these matrices. 

Discussion 

There is nothing more fundamental to the concepts in Plant Pathology as a science and to the practical 
strategies used for managing plant health than the host range of a parasite and the scope of resistance of 
a plant (Morris & Moury, 2019). Based on the patterns in matrices of plant-parasite interactions, we can 
conceive and test hypotheses about the molecular and evolutionary processes that underlie plant-parasite 
interactions, develop robust diagnostic tools, design breeding programs and strategies for deploying 
resistant cultivars, and construct models to anticipate disease emergence. Given the complexity of the 
mechanisms involved in disease, it would be reasonable to assume that the particularities of each 
pathosystem would be an impediment to identifying universal principles that can guide these efforts. 
However, here we have used network-based analyses to reveal the quasi-universal principle that the 
structure of quantitative matrices of plant-parasite interactions is nested. Indeed, evidence of nestedness 
was found in 94% (30/32) of the matrices that we analyzed. Our results were based on statistically robust 
analyses of quantitative assessments of compatible interactions between hosts and parasites for large 
interaction matrices involving from 49 to 1470 (median 180) host-parasite combinations. Quantitative data 
are key to the accuracy and genericity of these analytical methods. Indeed, in a study of 52 published 
matrices containing data on plant-pollinator, plant-seed disperser and parasitoid-host interactions, 
Staniczenko et al. (2013) found evidence of nestedness in only 3% of matrices including quantitative data, 
whereas the same matrices considered in a binary manner showed evidence of nestedness in 98% of cases. 

Network analyses can also be strongly affected by the choice of null models (Gotelli & Graves, 1996). 
This is why we conducted a thorough evaluation of the performance of several null models with simulations 
(Supplementary Methods 2). The null models should keep, as much as possible, everything identical to the 
actual matrix apart from the pattern of interest, nestedness or modularity. Many null models have 
unacceptably loose constraints. For example, null models that do not force row or column marginal sums 
to be constant create distributions of taxa that do not match those usually observed, leading to falsely 
positive nestedness (Brualdi & Sanderson, 1999; Joppa et al., 2010). Accordingly, high rates of false 
positives were observed with null models N and S in our simulations (Supplementary Tables S1 and S2). 
Since parasites typically differ greatly in the number of hosts they exploit and the efficiency with which 
they exploit them, we did not want null models to detect significant nestedness when the heterogeneity 
of infection was shuffled randomly among hosts, as was frequently observed for null models N and S with 
test matrices M1R to M5R (Supplementary Tables S1 and S2). Null models R1 and R2 that force row 
marginal sums to be constant avoided this problem (Supplementary Tables S1 and S2). The same was true 
for the scope and efficiency of resistance that differ greatly between plant accessions. In that case, the C1 
and C2 null models efficiently avoided an excess of falsely positive nestedness due to the hererogeneity of 
resistance (because C1 and C2 are equivalent to R1 and R2 when the rows and columns of the matrix are 
exchanged, which leaves the nestedness scores unchanged; data not shown). Overall, to account for both 
plant resistance and parasite infection heterogeneities, we found that the CR1 (or CR2) null model, that 
combines null models C1 and R1 (or C2 and R2, respectively), is the most efficient as it showed acceptable 
type I error rates (Supplementary Methods 2). Null model B, based on Patefield’s (1981) algorithm, 
maintains both the row and column marginal sums of the actual matrix. However, it does not maintain the 
connectance (i.e. number of non-zero-valued cells of the matrix), which has a strong impact on the 
estimation of nestedness. Consequently, the type I error rates associated with null model B were frequently 
higher than those obtained with models CR1 or CR2. Moreover, using quantitative instead of binary data 
contributed to lowering the nestedness false positive rate (Staniczenko et al., 2013; Dormann et al., 2017). 

Overall, we obtained strong and consistent evidence of nestedness for almost all matrices (except 
matrices 21 and 32), whatever the parasite type, the plant species or the pathogenicity trait measured. In 
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this analysis, we analysed essentially crop plant systems. The same kind of nested structure could be 
expected in wild plant-parasite systems, since quantitative interactions are probably more frequent in 
natural pathosystems compared to crop plants, where major-effect resistance genes have been primarily 
bred (Boots et al., 2014). Nestedness was linked to two important features of quantitative plant-parasite 
matrices: (i) low level of statistical interactions between plant and parasite genotypes in terms of infection 
intensity and (ii) lack of trade-offs between host range and pathogenicity among parasite strains and 
between efficiency and scope of the resistance among plant accessions. 

The low level of plant-parasite statistical interaction is supported by the fact that an additive linear 
model - containing only a plant accession effect and a parasite strain effect with no interaction term - 

explained a high proportion of the phenotypic variance, ² varying from 0.40 to 0.98 across matrices (mean 
= 0.69) (Table 1). In addition, we could estimate the plant-parasite interaction effect for 27 of the 32 
matrices (Supplementary Table S20). The interaction was not significant for five matrices and it explained, 
on average, only 11.8% of the total trait variance or only 18.9% of the variance that could be explained 
collectively by the plant, the parasite and their interaction effects. 

This result is compatible with a genetic model where pathogenicity in the parasite and resistance in the 
host plant are determined by a varying number of QTLs, but the statistical interaction between effects of 
QTLs from the parasite and QTLs from the host is rare and/or of small magnitude (Table 1; Supplementary 
Table S20; Fig. 1G). In other words, plants and parasites differ by their QTL assemblage (i.e. QTL numbers 
and/or effects) but plant resistance QTLs have similar effects towards all parasite strains and, reciprocally, 
parasite pathogenicity QTLs have similar effects towards all plant genotypes. This model is similar to the 
one proposed in Fig. 1A by Boots et al. (2014), who explored its consequences in terms of host-parasite 
coevolution. Quantitative models usually used to analyse empirical data on plant-parasite interactions are 
quite simplistic, e.g. assuming or not a statistical interaction between plant and parasite genotypes 
(Parlevliet, 1977). Models that are more complex have been proposed in the frame of theoretical modelling 
(e.g. Sasaki, 2000; Fenton et al., 2009; Fenton et al., 2012; Boots et al., 2014) but their relevance to 
represent biological data was not evaluated. Importantly, we do not argue that evidence of nestedness 
supports a single genetic model of plant-parasite interaction. Instead, we suggest that an additive linear 
model with a plant accession and a parasite strain effects is the simplest model that accounts for the 
empirical data but other models could be suitable, like the modified GFG models of Sasaki (2000), Fenton 
et al. (2009) or Boots et al. (2014). A future challenge, requiring more in-depth genetic studies, would be 
to evaluate the adequacy of these different models to represent empirical plant-parasite interactions. New 
analytical methods can provide a better understanding and quantification of host-parasite genetic 
interactions, such as the host-parasite joint genome-wide association analysis recently developed by Wang 
et al. (2018). Applied to the Arabidopsis thaliana–Xanthomonas arboricola pathosystem, this model 
showed that 44%, 2% and 5% of the phenotypic variance could be explained respectively by the parasite 
strain, the host accession and the parasite-host interaction. As in our results, only a small parasite-host 
interaction effect was detected. 

Models of host-parasite interaction, including a few quantitative ones, were extensively used in 
theoretical modelling to analyse their consequences in terms of host-parasite coevolution, a situation that 
is more appropriate to wild pathosystems than to crops, where the host plants are not allowed to evolve 
freely but are chosen by growers. One widely explored question is how the host and parasite diversities 
are maintained along time. In the case of GFG models or quantitative models with no host-parasite 
interactions, costs to resistance in the hosts and infectivity in the parasite are critical to the static 
polymorphism and to the set up of coevolutionary dynamics in host and parasite populations (Sasaki, 2000; 
Brown & Tellier, 2011; Fenton et al., 2012; Boots et al., 2014). However, we did not observe costs to the 
scope of resistance in the plants or to the host range breadth in the parasites in the present study, but 
instead globally positive relationships with resistance strength and parasite pathogenicity, respectively (see 
below). 

The lack of trade-offs in plants or parasites is supported by the fact that we observed a majority of 
positive, rather than negative correlations (i.e. trade-offs), between the infectivity and the breadth of host 
range of parasites on the one hand and, especially, between the efficiency and scope of the resistance of 
plants on the other hand (Fig. 3). Few studies have examined the relationships between the scope and 
efficiency of plant resistance. In contrast with our results, Barrett et al. (2015) hypothesized evolutionary 
trade-offs between resistance efficiency and scope because quantitative resistance had a broader scope 
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compared to qualitative resistance in the Linum marginale – Melampsora lini interactions. The difference 
between our studies could be that we focussed on quantitative resistance and included few qualitative 
resistance genes in our dataset (or these were overcome by most parasite strains). The positive correlation 
between parasite infectivity and host range breadth contrasts with qualitative host-parasite interactions 
and especially the GFG model, where the expansion of the host range of parasites is associated with a cost 
in fitness during infection of the previous hosts. Such so-called “virulence costs” have been experimentally 
measured in many plant-parasite systems, including viruses (Jenner et al., 2002; Desbiez et al., 2003; Janzac 
et al., 2010; Poulicard et al., 2010; Fraile et al., 2011; Ishibashi et al., 2012; Khatabi et al., 2013), fungi (Bahri 
et al., 2009; Huang et al., 2010; Caffier et al., 2010; Bruns et al., 2014), oomycetes (Montarry et al., 2010), 
bacteria (Vera Cruz et al., 2000; Leach et al., 2001; Wichmann & Bergelson, 2004) or nematodes 
(Castagnone-Sereno et al., 2007), and could explain why universal pathogenicity is not fixed in pathogen 
populations (Tellier & Brown, 2011). For quantitative plant resistance, few studies have estimated the 
occurrence of pathogenicity costs. Montarry et al. (2012) showed a cost for PVY to adapt to a quantitative 
pepper resistance when inoculated to a susceptible pepper genotype, whereas Delmas et al. (2016) 
showed, on the opposite, that there was no fitness cost associated with the adaptation of Plasmopara 
viticola to partially resistant grapevine varieties. Fournet et al. (2016) even highlighted that nematode 
populations that had adapted to potato quantitative resistance were more pathogenic on a susceptible 
potato genotype than were naïve nematode populations. The present study focused mostly on interactions 
between plants and parasites at the intraspecific level, but other studies have revealed a similar trend 
when strains of a given parasite species are confronted with numerous plant species. For example, a 
positive correlation was observed between species host range and pathogenicity for Pseudomonas 
syringae (Morris et al., 2000; 2019). For this bacterium, the most pathogenic strains were also the most 
ubiquitous in the environment, suggesting also an absence of trade-off between host range and dispersal 
capability or survival in the environment (Morris et al., 2010). 

In contrast to nestedness, we obtained little evidence of modularity among the matrices that we 
analysed. Modularity scores were low for all matrices. In only seven matrices, representing either infection 
or resistance scores (i.e. reverse matrices), did we detect significant modularity with a majority of null 
models (Tables 3 and 4; Fig. 4 and 5). For four of these matrices (matrices 5, 6, 14 and 15), modularity was 
linked to the presence of particular resistance genes or QTLs in the plant accessions and, for the parasite 
strains, to the presence of particular avirulence genes or to a common origin in terms of host genotype. 
For the remaining matrices (10, 11 and 17b), no common property could be found for plant accessions and 
parasite strains belonging to the same module. The lack of modularity of infection matrices and of reverse 
matrices suggests that the MA and IMA genetic models are either inadequate to represent the structure 
of quantitative plant-parasite interactions or explain only marginally their structure (Fig. 1E,F). 

Conclusion 

The ubiquitous nested patterns observed in quantitative plant-parasite interaction matrices have 
important implications for our understanding and management of plant diseases. They can help infer the 
underlying genetic bases of quantitative aspects of disease manifestation and their evolution. Our results 
are compatible with an additive model comprising a plant resistance effect, a parasite pathogenicity effect 
and no (or little) plant-parasite interaction effect. Given the relatively small number of pathosystems (15) 
analysed here, it is not yet possible to assess if these patterns differ according to the parasite type (viruses, 
bacteria etc…; obligate or facultative), the plant type (perennial or annual; crops or wild). Obtaining 
experimental data from additional cross-inoculation experiments and analysing the structure of the 
resulting matrices could help answer these questions. 

A major enigma that we highlight is the apparent lack of trade-off between pathogenicity and host 
range breadth among strains of a parasite, which has important implications on the efficiency of plant 
resistance management through cultivar rotation, mixtures or mosaics. Indeed, these strategies rely at 
least in part on a counter-selection of the most pathogenic parasite strains by a diversification of plant 
cultivars (Brown, 2015). The efficiency of these strategies would certainly be reduced in absence of costs 
of adaptation to plant resistance. Therefore, in absence of such costs, the efficiency of the rotation, 
mixtures or mosaic strategies would rather depend on barrier effects, i.e. effects of plants that hamper the 
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dispersal of parasites in agricultural landscapes through their architecture or through repellent volatile 
organic compounds. 

Material and Methods 

Datasets.  
To be able to analyse plant-parasite interaction networks, we selected published or unpublished 

datasets containing at least 6 plant accessions and 6 parasite strains. A brief description of these datasets 
is provided in Table 1. A more exhaustive description of these datasets (characteristics of plant accessions, 
parasite strains and phenotyping procedures) is provided in Supplementary Methods 1. 

Network analyses.  
The nestedness and modularity of the different matrices were estimated, and their statistical 

significance tested respectively with the ‘bipartite’ and ‘igraph’ packages of the R software version 3.5.1 
(http://cran.r-project.org/). These analyses were initially developed for the study of social, then of 
ecological, networks (or equivalently matrices) containing counts of links between individuals or between 
interacting species. Hence, to perform these analyses, the matrices should only contain integer values. 
Moreover, some nestedness or modularity algorithms cannot run in the absence of zero-valued matrix cells 
or in the presence of an excess of zero-valued cells leading to an unconnected network. 

Consequently, the first step consisted in transforming the actual matrices accordingly. In all matrices, 
pathogenicity trait values were transformed into integers from 0 to 9. For this, ten intervals with equal 
sizes and spanning the range of the pathogenicity trait values of the actual matrix were defined. The bounds 
of these intervals are [Pmin + (Pmax – Pmin)*i/10 , Pmin + (Pmax – Pmin)*(i + 1)/10], with i being an integer in the 
[0,9] interval and Pmax and Pmin being the maximal and minimal pathogenicity trait values in the whole 
matrix, respectively. Then, depending on its inclusion in a given pathogenicity trait value interval defined 
as above, each matrix value was transformed into the corresponding i integer value. When necessary, the 
matrix was modified in order that “0” and “9” grades correspond to the minimal and maximal pathogenicity 
classes, respectively, and not the opposite. A continuous distribution of the pathogenicity grades was 
observed in 30 of 32 matrices (Fig. 2). However, for matrices 17b and 22 that contained a large number of 
zero-values cells, phenotypic values were log-transformed to spread out the data more evenly among the 
ten phenotypic classes. As these log-transformed matrices produced similar results as the actual matrices 
in terms of significance of nestedness and modularity, only the latter are shown. In most of these 
transformed matrices, the 0 values correspond to an absence (or almost absence) of infection, of 
symptoms or to a lack of effect on plant health, and the 9 values correspond (or are close) to the maximal 
possible pathogenicity values. 

To test if the matrices could fit with the inverse-matching-allele model (Fig. 1), we also analyzed the 
“reverse matrices”, where 0 and 9 correspond to the minimal and maximal plant resistance classes, 
respectively. Methods to estimate nestedness and modularity are detailed in Weitz et al. (2013). Whereas 
many algorithms can measure the nestedness of matrices containing binary data (0 and 1), only two 
algorithms were available for matrices containing quantitative numeric data: the weighted nestedness 
metric based on overlap and decreasing filling (wNODF algorithm) (Almeida-Neto et al., 2008) and the 
weighted-interaction nestedness estimator (WINE algorithm) (Galeano et al., 2009). In the R software, the 
‘nested’ and ‘wine’ functions were used to estimate the wNODF and WINE scores, respectively. Because 
none of the module detection algorithms developed to date provide consistently optimal results in all 
matrices (Aldecoa & Marín, 2013), we used seven different algorithms implemented into the R software 
for modularity analyses: the edge betweenness (Newman & Girvan, 2004), fast greedy (Clauset et al., 2004), 
label prop (Raghavan et al., 2007), leading eigenvector (Newman, 2006), louvain (Blondel et al., 2008), 
spinglass (Newman & Girvan, 2004; Reichardt & Bornholdt, 2006; Traag & Bruggeman, 2009) and walktrap 
(Pons & Latapy, 2006) algorithms (see Supplementary Methods 2 for details). 

To help the interpretation of results, we used simulations (which provided test matrices) to compare 
the performances (type I and type II error rates) of the nestedness and modularity algorithms 
(Supplementary Methods 2; Supplementary Tables S1 to S18). To determine the statistical significance of 
the patterns (nestedness or modularity) of the plant-parasite interaction matrices, the actual or test 
matrices were compared to matrices generated under seven different null models (Supplementary 
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Methods 2). All null-model matrices possess the same dimensions as the actual or test matrix to which they 
are compared. They differ by the constraints applied for their generation. Under the N null model, matrices 
are randomly generated ensuring that the total sum of the cells and the number of zero-valued cells are 
the same as in the actual matrix. Thus, neither the marginal sums of rows or columns, nor the positions of 
zero-valued cells are constrained. The C1 and R1 null models are generated in the same manner but column 
by column and row by row, respectively. Under the B null model, matrices with identical column and row 
marginal sums as the actual matrix are generated using Patefield's (1981) algorithm. This is the only null 
model where the number of zero-valued cells can differ from that of the actual matrix. Under the S null 
model, the cell values are shuffled in the matrix, with no constraints on row or column marginal sums. 
Finally, under the C2 and R2 null models, the cell values are shuffled column by column and row by row, 
respectively. We also considered simultaneously the C1 and R1 (or C2 and R2) null models, providing null 
models CR1 and CR2 in evaluation of test matrices. In summary, these null models comprise the most 
commonly used in nestedness or modularity analyses and span a large diversity of constraints, N and S 
being the least constrained, B being the most constrained and the others in between. 

Two modularity algorithms (walktrap and label prop) provided modularity estimates of 0 (or near 0) for 
almost all actual matrices and associated null models. Moreover, almost all simulations also provided 
modularity estimates of 0 with these algorithms, hampering the evaluation of type I and type II error rates 
(Supplementary Methods 2). We could also not evaluate the performance of the leading eigenvector 
algorithm because it did not converge towards a modularity estimate in many simulated matrices. 
Consequently, these three algorithms were not considered for further analyses. 

Linear model analyses.  
Using the R software, we analysed two different linear models to evaluate the contribution of the plant-

parasite interaction to the pathogenicity trait variance in the matrix data. 
Using the mean pathogenicity value for each plant-parasite genotype pair, we analysed the following 

model: ‘pathogenicity’ ~ ‘parasite strain’ + ‘plant accession’ that does not include any interaction term. 
Using independent individual pathogenicity values for each plant-parasite genotype pair, we analysed the 
following model: ‘pathogenicity’ ~ ‘parasite strain’ + ‘plant accession’ + ‘parasite strain × plant accession’. 
The latter model could be applied only to 26 of the 32 matrices. For matrices 1 to 4 with the latter model, 
the linear model was applied after taking into account a significant effect of the experimenters who 
performed the measures of the lesion sizes (residues of the linear model ‘pathogenicity’ ~ ‘experimenter’). 
For most datasets, the model hypotheses (normality of residues, homoscedasticity) were not satisfied. 

Consequently, we focused on the model fit (², the unbiased estimators of the parts of variance explained 
by the parasite strain, the plant accession and/or their interaction) rather than on the statistical significance 
levels or on the comparison of mean pathogenicity values between effect levels. 

Acknowledgements 

Marie-Claire Kerlan and Lionel Renault are acknowledged for there help to produce matrix number 25 
and Anne Massire, Ghislaine Nemouchi, Thérèse Phaly, Bruno Savio and Patrick Signoret for their assistance 
to produce matrix number 17. We thank Amine Slim from the National Gene Bank of Tunisia (NGBT) for 
providing seeds of the durum wheat landrace “Mahmoudi Joumine” used to build the matrices 12 and 13, 
and we thank Aurélie Ducasse and Johann Confais for their help in acquiring phenotypic data on the wheat-
Zymoseptoria tritici pathosystem found in matrices 14 and 15. We thank Isabelle Demeaux (INRAE, SAVE) 
for providing technical assistance with the downy mildew/grapevine pathosystem. Anne Quillévéré-
Hamard, Gwenola Le Roy and Christophe Le May are acknowledged for having co-supervised, managed 
and/or significantly contributed to the production of matrices 19 and 20. We thank Loup Rimbaud and 
Emmanuel Szadkowski (INRAE, PACA) for their comments on an earlier version of the manuscript and 
Michel Pitrat (INRAE, PACA) for his help for analyses of matrices 10 and 11. We thank the staff of the INRAE 
CRB-Leg (https://www6.paca.inrae.fr/gafl/CRB-Legumes) who maintained the pepper and melon 
germplasm collections of the GAFL research unit, and of the INRAE experimental facilities of the Plant 
Pathology research unit (https://doi.org/10.15454/8DGF-QF70), the GAFL experimental unit and the 
PHENOTIC core facility in Angers (https://doi.org/10.15454/U2BWFJ) who ensured the production of the 

18 Benoît Moury et al.

Peer Community Journal, Vol. 1 (2021), article e44 https://doi.org/10.24072/pcjournal.51

https://doi.org/10.24072/pcjournal.51


plants and maintenance of plant-growth facilities that allowed us to do this work. We thank the staff of the 
INRAE experimental facilities of IGEPP for having provided and managed equipment for the experiments. 

A previous version of this article has been peer-reviewed and recommended by Peer Community In 
Evolutionary Biology (https://doi.org/10.24072/pci.evolbiol.100132). 

Funding 

The research was supported by the French National Research Agency (ANR) programs BIOADAPT (grant 
no. ANR-12-ADAP-0009-04), ArchiV (grant no. ANR-18-CE32-0004-01), CEDRE (grant no. ANR-05-PADD-05) 
and PeaMUST (grant no. ANR-11-BTBR-0002), the PROGRAILIVE project (grant RBRE160116CR0530019) 
funded by the Bretagne region, France and European FEADER grants, the fundings of the Institut Carnot 
PLANT2PRO and the Comité Interprofessionnel des Vins de Bordeaux (CIVB), the INRAE departments 
“Santé des Plantes et Environnement” (project APÔGÉ and PhD thesis of Safa Ben Krima) and “Génétique 
et Amélioration des Plantes”, the INRAE métaprogramme SMaCH (Sustainable Management of Crop 
Health), the French Ministry of Agriculture and Food for projects "Recherche et mise au point de méthodes 
pour évaluer des résistances variétales durables à des agents pathogènes" (CTPS project C2008-29), 
"Nouvelles sources de résistance à Aphis gossypii chez le melon" (CTPS project C06/02) and 
"Caractérisation de la virulence de Podosphaera xanthii, agent causal de l’oïdium du melon, et 
développement d’un système de codification des races" (CTPS project C-2012-10). UMR1290 BIOGER 
benefits from the support of Saclay Plant Sciences-SPS (ANR-17-EUR-0007). 

Conflict of interest disclosure 

The authors declare that they have no financial conflict of interest with the content of this article. 
Benoît Moury and Frédéric Fabre are recommenders for Peer Community In Evolutionary Biology. 

Data, script and code availability 

Data are available online: http://doi.org/10.5281/zenodo.5167270 Scripts and codes are available 
online: http://doi.org/10.5281/zenodo.5167270 

Supplementary information 

Supplementary Methods 1 and 2 (including Supplementary Tables S1 to S18 and Supplementary Figures 
S1 and S2) and Supplementary Tables S19 to S22 are available online: 
https://doi.org/10.1101/2021.03.03.433745 

References 

Aldecoa R, Marín I (2013) Exploring the limits of community detection strategies in complex networks. 
Scientific Reports, 3, 2216. https://doi.org/10.1038/srep02216 

Almeida-Neto M, Guimarães P, Guimarães PR, Loyola RD, Ulrich W (2008) A consistent metric for 
nestedness analysis in ecological systems: reconciling concept and measurement. Oikos, 117, 1227–
1239. https://doi.org/10.1111/j.0030-1299.2008.16644.x 

Almeida-Neto M, Ulrich W (2011) A straightforward computational approach for measuring nestedness 
using quantitative matrices. Environmental Modelling & Software, 26, 173–178. 
https://doi.org/10.1016/j.envsoft.2010.08.003 

Bahri B, Kaltz O, Leconte M, de Vallavieille-Pope C, Enjalbert J (2009) Tracking costs of virulence in natural 
populations of the wheat pathogen, Puccinia striiformis f.sp.tritici. BMC Evolutionary Biology, 9, 26. 
https://doi.org/10.1186/1471-2148-9-26 

Barrett LG, Encinas-Viso F, Burdon JJ, Thrall PH (2015) Specialization for resistance in wild host-pathogen 
interaction networks. Frontiers in Plant Science, 6. https://doi.org/10.3389/fpls.2015.00761 

Benoît Moury et al. 19

Peer Community Journal, Vol. 1 (2021), article e44 https://doi.org/10.24072/pcjournal.51

https://doi.org/10.24072/pci.evolbiol.100132
http://doi.org/10.5281/zenodo.5167270
http://doi.org/10.5281/zenodo.5167270
https://doi.org/10.1101/2021.03.03.433745
https://doi.org/10.1038/srep02216
https://doi.org/10.1111/j.0030-1299.2008.16644.x
https://doi.org/10.1016/j.envsoft.2010.08.003
https://doi.org/10.1186/1471-2148-9-26
https://doi.org/10.3389/fpls.2015.00761
https://doi.org/10.24072/pcjournal.51


Bartoli C, Roux F (2017) Genome-Wide Association Studies In Plant Pathosystems: Toward an Ecological 
Genomics Approach. Frontiers in Plant Science, 8, 763. https://doi.org/10.3389/fpls.2017.00763 

Bascompte J, Jordano P, Melian CJ, Olesen JM (2003) The nested assembly of plant-animal mutualistic 
networks. Proceedings of the National Academy of Sciences, 100, 9383–9387. 
https://doi.org/10.1073/pnas.1633576100 

Benabdelkader M, Guechi A, M eacute zaache Aichour S (2015) Susceptibility of Algerian pepper cultivars 
(Capsicum annuum L) to Phytophthora capsici strains from different geographic areas. African Journal 
of Biotechnology, 14, 3011–3018. https://doi.org/10.5897/AJB2015.14853 

Blondel VD, Guillaume J-L, Lambiotte R, Lefebvre E (2008) Fast unfolding of communities in large networks. 
Journal of Statistical Mechanics: Theory and Experiment, 2008, P10008. https://doi.org/10.1088/1742-
5468/2008/10/P10008 

Boissot N, Thomas S, Chovelon V, Lecoq H (2016) NBS-LRR-mediated resistance triggered by aphids: viruses 
do not adapt; aphids adapt via different mechanisms. BMC Plant Biology, 16, 25. 
https://doi.org/10.1186/s12870-016-0708-5 

Boots M, White A, Best A, Bowers R (2014) How specificity and epidemiology drive the coevolution of static 
trait diversity in hosts and parasites. Evolution, 68, 1594–1606. https://doi.org/10.1111/evo.12393 

Brown JKM (2015) Durable Resistance of Crops to Disease: A Darwinian Perspective. Annual Review of 
Phytopathology, 53, 513–539. https://doi.org/10.1146/annurev-phyto-102313-045914 

Brown JKM, Tellier A (2011) Plant-Parasite Coevolution: Bridging the Gap between Genetics and Ecology. 
Annual Review of Phytopathology, 49, 345–367. https://doi.org/10.1146/annurev-phyto-072910-
095301 

Brualdi RA, Sanderson JG (1999) Nested species subsets, gaps, and discrepancy. Oecologia, 119, 256–264. 
https://doi.org/10.1007/s004420050784 

Bruns E, Carson ML, May G (2014) The Jack of all trades is master of none: A pathogen’s ability to infect a 
greater number of host genotypes comes at a cost of delayed reproduction. Evolution, 68, 2453–2466. 
https://doi.org/10.1111/evo.12461 

Caffier V, Didelot F, Pumo B, Causeur D, Durel CE, Parisi L (2010) Aggressiveness of eight Venturia inaequalis 
isolates virulent or avirulent to the major resistance gene Rvi6 on a non-Rvi6 apple cultivar: 
Aggressiveness of Venturia inaequalis. Plant Pathology, 59, 1072–1080. 
https://doi.org/10.1111/j.1365-3059.2010.02345.x 

Caffier V, Lasserre-Zuber P, Giraud M, Lascostes M, Stievenard R, Lemarquand A, van de Weg E, Expert P, 
Denancé C, Didelot F, Le Cam B, Durel C-E (2014) Erosion of quantitative host resistance in the apple 
×Venturia inaequalis pathosystem. Infection, Genetics and Evolution, 27, 481–489. 
https://doi.org/10.1016/j.meegid.2014.02.003 

Caffier V, Le Cam B, Al Rifaï M, Bellanger M-N, Comby M, Denancé C, Didelot F, Expert P, Kerdraon T, 
Lemarquand A, Ravon E, Durel C-E (2016) Slow erosion of a quantitative apple resistance to Venturia 
inaequalis based on an isolate-specific Quantitative Trait Locus. Infection, Genetics and Evolution, 44, 
541–548. https://doi.org/10.1016/j.meegid.2016.07.016 

Castagnone-Sereno P, Bongiovanni M, Wajnberg E (2007) Selection and parasite evolution: a reproductive 
fitness cost associated with virulence in the parthenogenetic nematode Meloidogyne incognita. 
Evolutionary Ecology, 21, 259–270. https://doi.org/10.1007/s10682-006-9003-5 

Clauset A, Newman MEJ, Moore C (2004) Finding community structure in very large networks. Physical 
Review E, 70, 066111. https://doi.org/10.1103/PhysRevE.70.066111 

Delmas CEL, Fabre F, Jolivet J, Mazet ID, Richart Cervera S, Delière L, Delmotte F (2016) Adaptation of a 
plant pathogen to partial host resistance: selection for greater aggressiveness in grapevine downy 
mildew. Evolutionary Applications, 9, 709–725. https://doi.org/10.1111/eva.12368 

Desbiez C, Gal-On A, Girard M, Wipf-Scheibel C, Lecoq H (2003) Increase in Zucchini yellow mosaic virus 
Symptom Severity in Tolerant Zucchini Cultivars Is Related to a Point Mutation in P3 Protein and Is 
Associated with a Loss of Relative Fitness on Susceptible Plants. Phytopathology, 93, 1478–1484. 
https://doi.org/10.1094/PHYTO.2003.93.12.1478 

Dormann CF, Fründ J, Schaefer HM (2017) Identifying Causes of Patterns in Ecological Networks: 
Opportunities and Limitations. Annual Review of Ecology, Evolution, and Systematics, 48, 559–584. 
https://doi.org/10.1146/annurev-ecolsys-110316-022928 

20 Benoît Moury et al.

Peer Community Journal, Vol. 1 (2021), article e44 https://doi.org/10.24072/pcjournal.51

https://doi.org/10.3389/fpls.2017.00763
https://doi.org/10.1073/pnas.1633576100
https://doi.org/10.5897/AJB2015.14853
https://doi.org/10.1088/1742-5468/2008/10/P10008
https://doi.org/10.1088/1742-5468/2008/10/P10008
https://doi.org/10.1186/s12870-016-0708-5
https://doi.org/10.1111/evo.12393
https://doi.org/10.1146/annurev-phyto-102313-045914
https://doi.org/10.1146/annurev-phyto-072910-095301
https://doi.org/10.1146/annurev-phyto-072910-095301
https://doi.org/10.1007/s004420050784
https://doi.org/10.1111/evo.12461
https://doi.org/10.1111/j.1365-3059.2010.02345.x
https://doi.org/10.1016/j.meegid.2014.02.003
https://doi.org/10.1016/j.meegid.2016.07.016
https://doi.org/10.1007/s10682-006-9003-5
https://doi.org/10.1103/PhysRevE.70.066111
https://doi.org/10.1111/eva.12368
https://doi.org/10.1094/PHYTO.2003.93.12.1478
https://doi.org/10.1146/annurev-ecolsys-110316-022928
https://doi.org/10.24072/pcjournal.51


Dybdahl MF, Jenkins CE, Nuismer SL (2014) Identifying the Molecular Basis of Host-Parasite Coevolution: 
Merging Models and Mechanisms. The American Naturalist, 184, 1–13. 
https://doi.org/10.1086/676591 

Feng W, Takemoto K (2015) Heterogeneity in ecological mutualistic networks dominantly determines 
community stability. Scientific Reports, 4, 5912. https://doi.org/10.1038/srep05912 

Fenton A, Antonovics J, Brockhurst MA (2009) Inverse‐Gene‐for‐Gene Infection Genetics and 
Coevolutionary Dynamics. The American Naturalist, 174, E230–E242. https://doi.org/10.1086/645087 

Fenton A, Antonovics J, Brockhurst MA (2012) Two-step infection processes can lead to coevolution 
between functionally independent infection and resistance pathways: Coevolution under multistep 
infection processes. Evolution, 66, 2030–2041. https://doi.org/10.1111/j.1558-5646.2012.01578.x 

Flor HH (1956) The Complementary Genic Systems in Flax and Flax Rust. In: Advances in Genetics, pp. 29–
54. Elsevier. https://doi.org/10.1016/S0065-2660(08)60498-8 

Flores CO, Meyer JR, Valverde S, Farr L, Weitz JS (2011) Statistical structure of host-phage interactions. 
Proceedings of the National Academy of Sciences, 108, E288–E297. 
https://doi.org/10.1073/pnas.1101595108 

Flores CO, Valverde S, Weitz JS (2013) Multi-scale structure and geographic drivers of cross-infection within 
marine bacteria and phages. The ISME Journal, 7, 520–532. https://doi.org/10.1038/ismej.2012.135 

Fournet S, Eoche-Bosy D, Renault L, Hamelin FM, Montarry J (2016) Adaptation to resistant hosts increases 
fitness on susceptible hosts in the plant parasitic nematode Globodera pallida. Ecology and Evolution, 
6, 2559–2568. https://doi.org/10.1002/ece3.2079 

Fraile A, Pagan I, Anastasio G, Saez E, Garcia-Arenal F (2011) Rapid Genetic Diversification and High Fitness 
Penalties Associated with Pathogenicity Evolution in a Plant Virus. Molecular Biology and Evolution, 28, 
1425–1437. https://doi.org/10.1093/molbev/msq327 

Galeano J, Pastor JM, Iriondo JM (2009) Weighted-Interaction Nestedness Estimator (WINE): A new 
estimator to calculate over frequency matrices. Environmental Modelling & Software, 24, 1342–1346. 
https://doi.org/10.1016/j.envsoft.2009.05.014 

Gallet R, Fontaine C, Bonnot F, Milazzo J, Tertois C, Adreit H, Ravigné V, Fournier E, Tharreau D (2016) 
Evolution of Compatibility Range in the Rice− Magnaporthe oryzae System: An Uneven Distribution of 
R Genes Between Rice Subspecies. Phytopathology, 106, 348–354. https://doi.org/10.1094/PHYTO-07-
15-0169-R 

Gallois J-L, Moury B, German-Retana S (2018) Role of the Genetic Background in Resistance to Plant Viruses. 
International Journal of Molecular Sciences, 19, 2856. https://doi.org/10.3390/ijms19102856 

Gautier C, Fournet S, Piriou C, Renault L, Yvin J, Nguema‐Ona E, Grenier E, Montarry J (2020) Plant–parasite 
coevolution: A weak signature of local adaptation between Peruvian Globodera pallida populations and 
wild potatoes. Ecology and Evolution, 10, 4156–4163. https://doi.org/10.1002/ece3.6248 

González AM, Marcel TC, Niks RE (2012) Evidence for a Minor Gene–for–Minor Gene Interaction Explaining 
Nonhypersensitive Polygenic Partial Disease Resistance. Phytopathology, 102, 1086–1093. 
https://doi.org/10.1094/PHYTO-03-12-0056-R 

Gotelli NJ, Graves GR (1996) Null models in ecology. Smithsonian Institution Press, Washington D.C. 
Grosberg RK, Hart MW (2000) Mate Selection and the Evolution of Highly Polymorphic Self/Nonself 

Recognition Genes. Science, 289, 2111–2114. https://doi.org/10.1126/science.289.5487.2111 
Huang Y-J, Balesdent M-H, Li Z-Q, Evans N, Rouxel T, Fitt BDL (2010) Fitness cost of virulence differs 

between the AvrLm1 and AvrLm4 loci in Leptosphaeria maculans (phoma stem canker of oilseed rape). 
European Journal of Plant Pathology, 126, 279–291. https://doi.org/10.1007/s10658-009-9539-7 

Ishibashi K, Mawatari N, Miyashita S, Kishino H, Meshi T, Ishikawa M (2012) Coevolution and Hierarchical 
Interactions of Tomato mosaic virus and the Resistance Gene Tm-1. PLoS Pathogens, 8, e1002975. 
https://doi.org/10.1371/journal.ppat.1002975 

Janzac B, Montarry J, Palloix A, Navaud O, Moury B (2010) A Point Mutation in the Polymerase of Potato 
virus Y Confers Virulence Toward the Pvr4 Resistance of Pepper and a High Competitiveness Cost in 
Susceptible Cultivar. Molecular Plant-Microbe Interactions, 23, 823–830. 
https://doi.org/10.1094/MPMI-23-6-0823 

Jenner CE, Wang X, Ponz F, Walsh JA (2002) A fitness cost for Turnip mosaic virus to overcome host 
resistance. Virus Research, 86, 1–6. https://doi.org/10.1016/S0168-1702(02)00031-X 

Benoît Moury et al. 21

Peer Community Journal, Vol. 1 (2021), article e44 https://doi.org/10.24072/pcjournal.51

https://doi.org/10.1086/676591
https://doi.org/10.1038/srep05912
https://doi.org/10.1086/645087
https://doi.org/10.1111/j.1558-5646.2012.01578.x
https://doi.org/10.1016/S0065-2660%2808%2960498-8
https://doi.org/10.1073/pnas.1101595108
https://doi.org/10.1038/ismej.2012.135
https://doi.org/10.1002/ece3.2079
https://doi.org/10.1093/molbev/msq327
https://doi.org/10.1016/j.envsoft.2009.05.014
https://doi.org/10.1094/PHYTO-07-15-0169-R
https://doi.org/10.1094/PHYTO-07-15-0169-R
https://doi.org/10.3390/ijms19102856
https://doi.org/10.1002/ece3.6248
https://doi.org/10.1094/PHYTO-03-12-0056-R
https://doi.org/10.1126/science.289.5487.2111
https://doi.org/10.1007/s10658-009-9539-7
https://doi.org/10.1371/journal.ppat.1002975
https://doi.org/10.1094/MPMI-23-6-0823
https://doi.org/10.1016/S0168-1702%2802%2900031-X
https://doi.org/10.24072/pcjournal.51


Jonhson S, Domínguez-García V, Muñoz MA (2013) Factors Determining Nestedness in Complex Networks. 
PLoS ONE, 8, e74025. https://doi.org/10.1371/journal.pone.0074025 

Joppa LN, Bascompte J, Montoya JM, Solé RV, Sanderson J, Pimm SL (2009) Reciprocal specialization in 
ecological networks. Ecology Letters, 12, 961–969. https://doi.org/10.1111/j.1461-0248.2009.01341.x 

Khatabi B, Wen R-H, Hajimorad MR (2013) Fitness penalty in susceptible host is associated with virulence 
of Soybean mosaic virus on Rsv1 -genotype soybean: a consequence of perturbation of HC-Pro and not 
P3: Fitness cost to SMV for virulence on Rsv1 soybean. Molecular Plant Pathology, 14, 885–897. 
https://doi.org/10.1111/mpp.12054 

Kidner J, Moritz RAF (2013) The Red Queen Process does not Select for High Recombination Rates in 
Haplodiploid Hosts. Evolutionary Biology, 40, 377–384. https://doi.org/10.1007/s11692-012-9221-4 

Kirk RE (1982) Experimental design: Procedures for the behavioral sciences (2nd ed.). Belmont, CA. 
Laloi G, Vergne E, Durel CE, Le Cam B, Caffier V (2017) Efficiency of pyramiding of three quantitative 

resistance loci to apple scab. Plant Pathology, 66, 412–422. https://doi.org/10.1111/ppa.12581 
Lambrechts L (2010) Dissecting the Genetic Architecture of Host–Pathogen Specificity. PLoS Pathogens, 6, 

e1001019. https://doi.org/10.1371/journal.ppat.1001019 
Leach JE, Vera Cruz CM, Bai J, Leung H (2001) Pathogen fitness penalty as a predictor of durability of disease 

resistance genes. Annual Review of Phytopathology, 39, 187–224. 
https://doi.org/10.1146/annurev.phyto.39.1.187 

Marcel TC, Gorguet B, Ta MT, Kohutova Z, Vels A, Niks RE (2008) Isolate specificity of quantitative trait loci 
for partial resistance of barley to Puccinia hordei confirmed in mapping populations and near‐isogenic 
lines. New Phytologist, 177, 743–755. https://doi.org/10.1111/j.1469-8137.2007.02298.x 

Montarry J, Cartier E, Jacquemond M, Palloix A, Moury B (2012) Virus adaptation to quantitative plant 
resistance: erosion or breakdown? Journal of Evolutionary Biology, 25, 2242–2252. 
https://doi.org/10.1111/j.1420-9101.2012.02600.x 

Montarry J, Hamelin FM, Glais I, Corbi R, Andrivon D (2010) Fitness costs associated with unnecessary 
virulence factors and life history traits: evolutionary insights from the potato late blight pathogen 
Phytophthora infestans. BMC Evolutionary Biology, 10, 283. https://doi.org/10.1186/1471-2148-10-
283 

Morris CE, Glaux C, Latour X, Gardan L, Samson R, Pitrat M (2000) The Relationship of Host Range, 
Physiology, and Genotype to Virulence on Cantaloupe in Pseudomonas syringae from Cantaloupe Blight 
Epidemics in France. Phytopathology, 90, 636–646. https://doi.org/10.1094/PHYTO.2000.90.6.636 

Morris CE, Lamichhane JR, Nikolić I, Stanković S, Moury B (2019) The overlapping continuum of host range 
among strains in the Pseudomonas syringae complex. Phytopathology Research, 1, 4. 
https://doi.org/10.1186/s42483-018-0010-6 

Morris CE, Moury B (2019) Revisiting the Concept of Host Range of Plant Pathogens. Annual Review of 
Phytopathology, 57, 63–90. https://doi.org/10.1146/annurev-phyto-082718-100034 

Morris CE, Sands DC, Vanneste JL, Montarry J, Oakley B, Guilbaud C, Glaux C (2010) Inferring the 
Evolutionary History of the Plant Pathogen Pseudomonas syringae from Its Biogeography in Headwaters 
of Rivers in North America, Europe, and New Zealand. mBio, 1. https://doi.org/10.1128/mBio.00107-
10 

Newman MEJ (2006) Finding community structure in networks using the eigenvectors of matrices. Physical 
Review E, 74, 036104. https://doi.org/10.1103/PhysRevE.74.036104 

Newman MEJ, Girvan M (2004) Finding and evaluating community structure in networks. Physical Review 
E, 69, 026113. https://doi.org/10.1103/PhysRevE.69.026113 

Parlevliet JE (1977) Evidence of Differential Interaction in the Polygenic Hordeum vulgare-Puccinia hordei 
Relation during Epidemic Development. Phytopathology, 77, 776. https://doi.org/10.1094/Phyto-67-
776 

Patefield WM (1981) Algorithm AS 159: An Efficient Method of Generating Random R × C Tables with Given 
Row and Column Totals. Applied Statistics, 30, 91. https://doi.org/10.2307/2346669 

Patterson BD, Atmar W (1986) Nested subsets and the structure of insular mammalian faunas and 
archipelagos. Biological Journal of the Linnean Society, 28, 65–82. https://doi.org/10.1111/j.1095-
8312.1986.tb01749.x 

22 Benoît Moury et al.

Peer Community Journal, Vol. 1 (2021), article e44 https://doi.org/10.24072/pcjournal.51

https://doi.org/10.1371/journal.pone.0074025
https://doi.org/10.1111/j.1461-0248.2009.01341.x
https://doi.org/10.1111/mpp.12054
https://doi.org/10.1007/s11692-012-9221-4
https://doi.org/10.1111/ppa.12581
https://doi.org/10.1371/journal.ppat.1001019
https://doi.org/10.1146/annurev.phyto.39.1.187
https://doi.org/10.1111/j.1469-8137.2007.02298.x
https://doi.org/10.1111/j.1420-9101.2012.02600.x
https://doi.org/10.1186/1471-2148-10-283
https://doi.org/10.1186/1471-2148-10-283
https://doi.org/10.1094/PHYTO.2000.90.6.636
https://doi.org/10.1186/s42483-018-0010-6
https://doi.org/10.1146/annurev-phyto-082718-100034
https://doi.org/10.1128/mBio.00107-10
https://doi.org/10.1128/mBio.00107-10
https://doi.org/10.1103/PhysRevE.74.036104
https://doi.org/10.1103/PhysRevE.69.026113
https://doi.org/10.1094/Phyto-67-776
https://doi.org/10.1094/Phyto-67-776
https://doi.org/10.2307/2346669
https://doi.org/10.1111/j.1095-8312.1986.tb01749.x
https://doi.org/10.1111/j.1095-8312.1986.tb01749.x
https://doi.org/10.24072/pcjournal.51


Peters Haugrud AR, Zhang Z, Richards JK, Friesen TL, Faris JD (2019) Genetics of Variable Disease Expression 
Conferred by Inverse Gene-For-Gene Interactions in the Wheat- Parastagonospora nodorum 
Pathosystem. Plant Physiology, 180, 420–434. https://doi.org/10.1104/pp.19.00149 

Pons P, Latapy M (2006) Computing Communities in Large Networks Using Random Walks. Journal of Graph 
Algorithms and Applications, 10, 191–218. https://doi.org/10.7155/jgaa.00124 

Poulicard N, Pinel-Galzi A, Hebrard E, Fargette D (2010) Why Rice yellow mottle virus , a rapidly evolving 
RNA plant virus, is not efficient at breaking rymv1-2 resistance. Molecular Plant Pathology, 11, 145–
154. https://doi.org/10.1111/j.1364-3703.2009.00582.x 

Quillévéré-Hamard A, Le Roy G, Lesné A, Le May C, Pilet-Nayel M-L (2021) Aggressiveness of Diverse French 
Aphanomyces euteiches Isolates on Pea Near Isogenic Lines Differing in Resistance Quantitative Trait 
Loci. Phytopathology, 111, 695–702. https://doi.org/10.1094/PHYTO-04-20-0147-R 

Quillévéré-Hamard A, Le Roy G, Moussart A, Baranger A, Andrivon D, Pilet-Nayel M-L, Le May C (2018) 
Genetic and Pathogenicity Diversity of Aphanomyces euteiches Populations From Pea-Growing Regions 
in France. Frontiers in Plant Science, 9, 1673. https://doi.org/10.3389/fpls.2018.01673 

Raghavan UN, Albert R, Kumara S (2007) Near linear time algorithm to detect community structures in 
large-scale networks. Physical Review E, 76, 036106. https://doi.org/10.1103/PhysRevE.76.036106 

Reichardt J, Bornholdt S (2006) Statistical mechanics of community detection. Physical Review E, 74, 
016110. https://doi.org/10.1103/PhysRevE.74.016110 

Sacristán S, García‐Arenal F (2008) The evolution of virulence and pathogenicity in plant pathogen 
populations. Molecular Plant Pathology, 9, 369–384. https://doi.org/10.1111/j.1364-
3703.2007.00460.x 

Saintenac C, Lee W-S, Cambon F, Rudd JJ, King RC, Marande W, Powers SJ, Bergès H, Phillips AL, Uauy C, 
Hammond-Kosack KE, Langin T, Kanyuka K (2018) Wheat receptor-kinase-like protein Stb6 controls 
gene-for-gene resistance to fungal pathogen Zymoseptoria tritici. Nature Genetics, 50, 368–374. 
https://doi.org/10.1038/s41588-018-0051-x 

Sasaki A (2000) Host-parasite coevolution in a multilocus gene-for-gene system. Proceedings of the Royal 
Society of London. Series B: Biological Sciences, 267, 2183–2188. 
https://doi.org/10.1098/rspb.2000.1267 

Soltis NE, Atwell S, Shi G, Fordyce R, Gwinner R, Gao D, Shafi A, Kliebenstein DJ (2019) Interactions of 
Tomato and Botrytis cinerea Genetic Diversity: Parsing the Contributions of Host Differentiation, 
Domestication, and Pathogen Variation. The Plant Cell, 31, 502–519. 
https://doi.org/10.1105/tpc.18.00857 

Staniczenko PPA, Kopp JC, Allesina S (2013) The ghost of nestedness in ecological networks. Nature 
Communications, 4, 1391. https://doi.org/10.1038/ncomms2422 

Suweis S, Simini F, Banavar JR, Maritan A (2013) Emergence of structural and dynamical properties of 
ecological mutualistic networks. Nature, 500, 449–452. https://doi.org/10.1038/nature12438 

Tellier A, Brown JK (2011) Spatial heterogeneity, frequency-dependent selection and polymorphism in 
host-parasite interactions. BMC Evolutionary Biology, 11, 319. https://doi.org/10.1186/1471-2148-11-
319 

Thrall PH, Barrett LG, Dodds PN, Burdon JJ (2016) Epidemiological and Evolutionary Outcomes in Gene-for-
Gene and Matching Allele Models. Frontiers in Plant Science, 6. 
https://doi.org/10.3389/fpls.2015.01084 

Traag VA, Bruggeman J (2009) Community detection in networks with positive and negative links. Physical 
Review E, 80, 036115. https://doi.org/10.1103/PhysRevE.80.036115 

Valverde S, Elena SF, Solé R (2017) Spatially induced nestedness in a neutral model of phage-bacteria 
networks. Virus Evolution, 3. https://doi.org/10.1093/ve/vex021 

Valverde S, Piñero J, Corominas-Murtra B, Montoya J, Joppa L, Solé R (2018) The architecture of mutualistic 
networks as an evolutionary spandrel. Nature Ecology & Evolution, 2, 94–99. 
https://doi.org/10.1038/s41559-017-0383-4 

Vera Cruz CM, Bai J, Ona I, Leung H, Nelson RJ, Mew T-W, Leach JE (2000) Predicting durability of a disease 
resistance gene based on an assessment of the fitness loss and epidemiological consequences of 
avirulence gene mutation. Proceedings of the National Academy of Sciences, 97, 13500–13505. 
https://doi.org/10.1073/pnas.250271997 

Benoît Moury et al. 23

Peer Community Journal, Vol. 1 (2021), article e44 https://doi.org/10.24072/pcjournal.51

https://doi.org/10.1104/pp.19.00149
https://doi.org/10.7155/jgaa.00124
https://doi.org/10.1111/j.1364-3703.2009.00582.x
https://doi.org/10.1094/PHYTO-04-20-0147-R
https://doi.org/10.3389/fpls.2018.01673
https://doi.org/10.1103/PhysRevE.76.036106
https://doi.org/10.1103/PhysRevE.74.016110
https://doi.org/10.1111/j.1364-3703.2007.00460.x
https://doi.org/10.1111/j.1364-3703.2007.00460.x
https://doi.org/10.1038/s41588-018-0051-x
https://doi.org/10.1098/rspb.2000.1267
https://doi.org/10.1105/tpc.18.00857
https://doi.org/10.1038/ncomms2422
https://doi.org/10.1038/nature12438
https://doi.org/10.1186/1471-2148-11-319
https://doi.org/10.1186/1471-2148-11-319
https://doi.org/10.3389/fpls.2015.01084
https://doi.org/10.1103/PhysRevE.80.036115
https://doi.org/10.1093/ve/vex021
https://doi.org/10.1038/s41559-017-0383-4
https://doi.org/10.1073/pnas.250271997
https://doi.org/10.24072/pcjournal.51


Wang M, Roux F, Bartoli C, Huard-Chauveau C, Meyer C, Lee H, Roby D, McPeek MS, Bergelson J (2018) 
Two-way mixed-effects methods for joint association analysis using both host and pathogen genomes. 
Proceedings of the National Academy of Sciences, 115, E5440–E5449. 
https://doi.org/10.1073/pnas.1710980115 

Weitz JS, Poisot T, Meyer JR, Flores CO, Valverde S, Sullivan MB, Hochberg ME (2013) Phage–bacteria 
infection networks. Trends in Microbiology, 21, 82–91. https://doi.org/10.1016/j.tim.2012.11.003 

Wichmann G, Bergelson J (2004) Effector Genes of Xanthomonas axonopodis pv. vesicatoria Promote 
Transmission and Enhance Other Fitness Traits in the Field. Genetics, 166, 693–706. 
https://doi.org/10.1093/genetics/166.2.693 

Zhong Z, Marcel TC, Hartmann FE, Ma X, Plissonneau C, Zala M, Ducasse A, Confais J, Compain J, Lapalu N, 
Amselem J, McDonald BA, Croll D, Palma‐Guerrero J (2017) A small secreted protein in Zymoseptoria 
tritici is responsible for avirulence on wheat cultivars carrying the Stb6 resistance gene. New 
Phytologist, 214, 619–631. https://doi.org/10.1111/nph.14434 

24 Benoît Moury et al.

Peer Community Journal, Vol. 1 (2021), article e44 https://doi.org/10.24072/pcjournal.51

https://doi.org/10.1073/pnas.1710980115
https://doi.org/10.1016/j.tim.2012.11.003
https://doi.org/10.1093/genetics/166.2.693
https://doi.org/10.1111/nph.14434
https://doi.org/10.24072/pcjournal.51

