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Genomic Prediction of Arsenic Tolerance and Grain Yield in Rice: 
Contribution of Trait-Specific Markers and Multi-Environment 
Models

Nourollah AHMADI1, 2, Tuong-Vi CAO1, 2, Julien FROUIN1, 2, Gareth J. NORTON3, Adam H. PRICE3 
(1Institute of Genetic Improvement and Adaptation of Mediterranean and Tropical Plants, French Agricultural Research and 
International Cooperation Organization, Montpellier F-34398, France; 2University of Montpellier, National Research Institute for 
Agriculture, Food and Environment, French Agricultural Research and International Cooperation Organization, Montpellier 
SupAgro, Montpellier 34090, France; 3School of Biological Sciences, University of Aberdeen, Aberdeen AB24 3UU, Scotland) 

Abstract: Many rice-growing areas are affected by high concentrations of arsenic (As). Rice varieties that 
prevent As uptake and/or accumulation can mitigate As threats to human health. Genomic selection is 
known to facilitate rapid selection of superior genotypes for complex traits. We explored the predictive 
ability (PA) of genomic prediction with single-environment models, accounting or not for trait-specific 
markers, multi-environment models, and multi-trait and multi-environment models, using the genotypic 
(1600K SNPs) and phenotypic (grain As content, grain yield and days to flowering) data of the Bengal 
and Assam Aus Panel. Under the base-line single-environment model, PA of up to 0.707 and 0.654 was 
obtained for grain yield and grain As content, respectively; the three prediction methods (Bayesian Lasso, 
genomic best linear unbiased prediction and reproducing kernel Hilbert spaces) were considered to 
perform similarly, and marker selection based on linkage disequilibrium allowed to reduce the number of 
SNP to 17K, without negative effect on PA of genomic predictions. Single-environment models giving 
distinct weight to trait-specific markers in the genomic relationship matrix outperformed the base-line 
models up to 32%. Multi-environment models, accounting for genotype × environment interactions, and 
multi-trait and multi-environment models outperformed the base-line models by up to 47% and 61%, 
respectively. Among the multi-trait and multi-environment models, the Bayesian multi-output regressor 
stacking function obtained the highest predictive ability (0.831 for grain As) with much higher efficiency for 
computing time. These findings pave the way for breeding for As-tolerance in the progenies of biparental 
crosses involving members of the Bengal and Assam Aus Panel. Genomic prediction can also be applied 
to breeding for other complex traits under multiple environments. 
Key words: genomic prediction model; genomic selection; complex trait; arsenic tolerance; rice; predictive 
ability 

 
High concentration of arsenic (As) in rice grains is an 
important problem in many rice-growing areas (Zavala 
and Duxbury, 2008; Brammer and Ravenscroft, 2009; 
Stroud et al, 2011). One of the effective ways of 
limiting the potential threats to human health is the 
development of As tolerant rice varieties that limit As 

uptake and/or translocation to the grains. O. sativa 
species is endowed with a large genetic diversity for 
As accumulation in the grains when grown under high 
concentrations of As (Dasgupta et al, 2004; Rahman et al, 
2007; Norton et al, 2009, 2012a; Frouin et al, 2019). 
Several quantitative trait loci (QTLs) controlling the 
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accumulation of As in rice grains (AsG) were mapped 
using recombinant inbred lines (Norton et al, 2010, 
2012b; Kuramata et al, 2013; Zhang et al, 2014). 
Likewise, a large number of loci associated with AsG 
were detected with genome-wide association analysis 
(GWAS) (Norton et al, 2014, 2019; Frouin et al, 2019). 
Unfortunately, to our knowledge, these findings have 
not been translated into marker-assisted breeding for 
As-tolerance in rice so far, probably because of the 
large number of QTLs involved and their rather small 
individual effect. For instance, Norton et al (2019) 
detected 74 QTLs for AsG with individual effect not 
exceeding 9.9%. 

Using a diversity panel of 228 accessions as 
training set and 95 elite lines as candidate set, Frouin 
et al (2019) analyzed the predictive ability (PA) of 
QTLs for AsG detected by GWAS and the PA of 
genomic prediction. Only 8% of the QTLs detected by 
GWAS in the training set can be validated in the 
candidate set, while the PA of genomic prediction for 
AsG across populations reaches 0.496, indicating that 
genomic selection (GS) is the most effective 
molecular breeding option for the improvement of 
As-tolerance in rice. A reasonably high PA of the 
genomic estimate of breeding value (GEBV) was 
obtained in maize (Bernardo and Yu, 2007), wheat 
(Bassi et al, 2015) and oats (Asoro, 2011). In rice, 
moderate to high PA of GEBV is achieved for a large 
set of traits, using different types of references and 
breeding populations (Ahmadi et al, 2020). For 
instance, Ben Hassen et al (2017) reported the 
feasibility of accurate GEBV for the progenies of 
biparental crosses in rice. Ben Hassen et al (2018) 
reported the higher PA of the multi-environment 
model, which allows to breed rice simultaneously for 
productivity and for adaptation to the target abiotic 
stress when applied to data from managed G × E 
experiments (E being different levels of a given 
abiotic stress). Accounting for trait-specific markers 
improves the PA of GS in rice (Bhandari et al, 2019). 

This study aimed at evaluating the effectiveness of 
the above-mentioned options of genomic prediction 
for the improvement of As-tolerance in rice. Using the 
publically available large genotypic data and phenotypic 
data for the Bengal and Assam Aus Panel (BAAP) 
(Norton et al, 2018), we explored the PA of genomic 
prediction for AsG, with single-environment (SE) 
models, the performances of multi-environment models, 
and multi-trait and multi-environment genomic prediction 
models.  

RESULTS 

SE genomic prediction 

PA of genomic predictions in the 144 cross validation 
experiments involved four levels of linkage 
disequilibrium (LD) threshold (0.25, 0.50, 0.75 and 
1.00). Three prediction methods [Bayesian Lasso (BL), 
genomic best linear unbiased prediction (GBLUP) and 
reproducing kernel Hilbert spaces (RKHS)] and three 
phenotypic traits [days to flowering (DTF), AsG and 
grain yield (GY)] were observed under two irrigation 
systems, continued flooding (CF) and alternate 
wetting and drying (AWD) over two years, and PA 
ranged from 0.434 to 0.708, with an overall average of 
0.563 (Fig. 1 and Table S1). Analysis of the sources of 
variation of PA revealed that among the factors 
considered, LD threshold and phenotypic traits had 
highly significant effects. The effects of trait × LD 
and trait × irrigation-system interactions were also 
highly significant (Table S2). The least significant 
difference (LSD) test showed that whatever the trait, 
the average PA of genomic prediction with LD 
threshold of 0.25 was systematically lower than that 
with the other three LD thresholds. Likewise, 
whatever the trait, the average PA with r2  0.75 was 
either equal or significantly higher than that with the 
other LD thresholds, including r2  1. Average PA for 
GY was always significantly higher than that for DTF 
and AsG. Trait × LD interaction was the highest for 
AsG and GY. The highest trait × irrigation-system 
interaction was observed for AsG.  

Given the systematically high PA obtained with the 
genotypic dataset selected with LD threshold of 0.75, 
we decided to use this dataset (17 449 SNPs) for the 
further analysis. 

Genomic prediction accounting for trait-specific 
markers  

The 72 cross validation experiments, involving six 
weight levels of trait-specific markers (G'0, G'nw, G'0.25, 
G'0.50, G'0.75, G'1.00) and three phenotypic traits 
observed under four environments during two years, 
yielded PA of genomic prediction ranging from 0.480 
to 0.792. The overall mean PA was 0.671 (Fig. 2 and 
Table S3). Analysis of the variation sources for PA 
revealed that the effects of trait-specific relationship 
matrix and phenotypic trait were highly significant 
(Table S4). Tukey’s honest significant difference (HSD) 
test showed that inclusion of trait specific markers 
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without specific weight did not significantly increase 
the PA of genomic prediction. Average PA for G'0 and 
G'nw treatments were 0.573 and 0.584, respectively 
(Table S4). HSD test also showed that all G'nw genomic 
relationship matrix (GRMs) led systematically to 

significantly lower PA than GRMs with weighted 
trait-specific markers (average PA ranging from 0.708 
to 0.725). Whatever the environment and the trait, the 
G'0.50 GRM systematically had the highest average PA 
(0.725) among the four weighted G'w. Likewise, 

Fig. 1. Predictive ability of genomic prediction in cross validation experiments for arsenic content in grains (AsG), grain yield (GY) and days
to flowering (DTF) observed under alternate watering and drying (AWD) and continued flooding (CF) irrigation systems over two years.  
BL, Bayesian Lasso; GBLUP, Genomic best linear unbiased prediction; RKHS, Reproducing kernel Hilbert spaces. 
Data are presented as Mean ± SD (n = 100). 

Fig. 2. Effects of presence and weight of 64 trait-specific markers on predictive ability of genomic prediction for arsenic content in grains
(AsG), grain yield (GY) and days to flowering (DTF) observed in four environments.  
AWD1 and AWD2, Alternate watering and drying in Year 1 and Year 2, respectively; CF1 and CF2, Continued flooding in Year 1 and Year 2,
respectively. 0, Establishment of the trait-specific Genomic relationship matrix G' with 17K SNP; nw, Establishment of genomic relationship matrix
with 17K SNP + 64 trait-specific markers; 0.25, 0.50, 0.75 and 1.00, Establishment of genomic relationship matrix with 17K SNP + 64 trait-specific
markers with a weight of 0.25, 0.50, 0.75 and 1.00, respectively. 
Data are presented as Mean ± SD (n = 100). 
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whatever the environment and the trait, the G'1.00 had, 
almost systematically, the lowest average PA (0.708) 
among the four treatments with weighted specific 
markers. Among the three traits, DTF was the most 
sensitive to trait specific markers. Compared to G'0 
treatment, the average increase of PA for the four 
GRMs accounting for trait specific markers was 32% 
for DTF, 19% for AsG and 28% for GY. 

Predictive ability of genomic prediction using 
multi-environment models 

The 72 cross validation experiments involving three 
levels of models [SE, multi-environment with cross- 
validation strategy 1 (ME-CV1) and ME-CV2] and 
two prediction methods (GBLUP and RKHS) yielded 
PA of genomic prediction ranging from 0.482 to 0.812. 
The overall mean PA was 0.629 (Fig. 3 and Table S5). 
Analysis of the variation sources for PA revealed 
highly significant effects for model and trait factors 
(Table S6). Several interactions of order two, 
including trait × model, and of order three, including 
trait × model × method, were also significant. The 
multi-environment model with the ME-CV2 cross 
validation strategy significantly outperformed SE 
model with an average gain of PA of 0.182 and 0.161 
for DTF, under AWD and CF, respectively. The gain 
of PA was 0.195 and 0.214 for AsG, and 0.164 and 

0.150 for GY under AWD and CF, respectively. On 
the other hand, the PA obtained with ME-CV1 was 
not significantly higher than that obtained with SE 
model. Similar to the trend observed with SE model, 
the average PA for GY under one of the two ME 
models was often higher than that for DTF and AsG. 
The significant effect of trait × model interaction 
reflected the ability of ME-CV1 to achieve 
significantly higher PA than SE model for GY, which 
was not the case for DTF and GY. The trait × model × 
method interaction reflected that, under GBLUP 
method, the ME-CV1 mostly achieved the most 
discriminant PA among the three traits, while under 
RKHS method, the most discriminant PA was 
achieved by ME-CV2 (Table S6).  

To investigate the possible benefit of a larger 
number of environments, we implemented the ME-CV2 
under GBLUP, while considering each combination of 
irrigation system and year of experiment as one 
environment. This provided four environments and 
allowed predicting traits in each of the four 
environments while accounting for marker effects in 
the three remaining environments. Effect of environments 
on PA was significantly positive (Table S7) but 
modest, always below 10% (Table S5). Effects of E × 
T interaction were also highly significant. For instance, 
average PA for AsG using four environments was 9% 

Fig. 3. Predictive ability of genomic prediction experiment with single environment (SE), and multi-environment (ME) models obtained with
the genomic best linear unbiased prediction (GBLUP) and reproducing kernel Hilbert spaces (RKHS) statistical methods, for arsenic content
in grains (AsG), grain yield (GY) and days to flowering (DTF). 
ME models are implemented with two cross-validation strategies CV1 and CV2. Alternate watering and drying is shown in orange and continued
flooding in blue. Data are presented as Mean ± SD (n = 100). 
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under CF and -3% under AWD. 
To investigate the possible benefit of accounting for 

trait-specific marker in a multi-environment model, 
we compared the PA of ME-CV2 under GBLUP using 
a genomic relationship matrix computed with the 17K 
SNP plus 64 trait-specific markers, the latter either 
with non-specific weight or with a weight of 0.5 (G'0 or 
G'0.50). The effect of trait-specific markers on PA was 
4% on average and always below 10% (Table S5), which 
was significantly positive (Table S8), but very modest. 

PA of genomic prediction using multi-trait & 
multi-environment models 

Whatever the number of environments, genetic 
correlations between traits were very low and negative 
between DTF and GY, almost nil between DTF and 
AsG, very low between AsG and GY (Table 1). The 
residual correlation between traits was also low, but 
could reach 80% of the corresponding genetic 
correlation between traits. In contrast, correlations 
between environments were high and always above 
0.600 (Table 2). Joint analysis of the two years’ data 
markedly improved the correlation between the AWD 

and CF environments, but not between traits (Tables 1 
and 2). 

Results after fitting of the Bayesian multi-trait and 
multi-environment (BMTME) model for the three 
traits are summarized in Fig. S1. Correlation between 
the observed and the predicted values are high, 0.980 
for DTF, 0.985 for AsG and 0.950 for GY. Results of 
evaluation of PA of BMTME model are summarized 
in Fig. 4 and Table S9. Under the four environments, 
the PA ranged between 0.259 and 0.654 for different 
combinations of traits and environments. The overall 
average PA was 0.466. Across the four environments, 
the largest average PA was 0.514 for DTF, 0.370 for 
AsG and 0.654 for GY. PA was lower option under 
the two environments than under the four environments, 
with an average decrease of 10%.  

PA of the BMORS (Bayesian multi-output regressor 
stacking) functions under the four environments 
ranged between 0.688 and 0.839 for different 
combinations of traits and environments (Table S9). 
The overall average PA was 0.779. Across the four 
environments, the largest PA was 0.839 for DTF, 
0.831 for AsG and 0.785 for GY. The PA achieved 
with the BMORS function were slightly lower under 

Table 1. Genetic correlation between days to flowering (DTF),
arsenic content in grains (AsG) and grain yield (GY). 

Environment Trait Genetic correlation  
Residual genetic

correlation 
AsG GY AsG GY 

Year 1 & Year 2 DTF 0.000 -0.157 -0.061 -0.051 
AsG  0.144  -0.083 

Year 1 DTF 0.027 0.005 -0.023 -0.023 
AsG  0.057  -0.036 

Year 2 DTF -0.018 -0.119 0.012 -0.087 
AsG  0.126  0.094 

Table 2. Genetic correlation between alternate wetting and drying 
(AWD) and continued flooding (CF) irrigation systems. 

Irrigation system AWD2 CF1 CF2 

AWD1 0.642 0.673 (0.504) 0.607 (0.461) 
AWD2  0.706 0.814 

CF1   0.639 
AWD1 and AWD2, Alternate watering and drying in Year 1 and Year 2, 
respectively; CF1 and CF2, Continued flooding in Year 1 and Year 2, 
respectively. Values in the parentheses are data for each year. 

Fig. 4. Predictive ability of genomic prediction experiment with three multi-trait and multi-environment prediction models.  
SE, Single environment; BMTME, Bayesian multi-trait and multi-environment; BMORS, Bayesian multi-output regressor stacking; BMORS_Env,
BMORS that allow predicting whole environments using the remaining environments as training. Four environments are considered: alternate
watering and drying (AWD1 and AWD2) and continued flooding (CF1 and CF2). AsG, Arsenic in grains; GY, Grain yield; DTF, Days to flowering.
Data are presented as Mean ± SD (n = 100). 
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the two environments than under the four environments, 
with an average decrease of 4%. Implementation of 
BMORS_Env function that allows predicting the traits 
in each environment, using the remaining environments 
as training, did not improve the function’s PA but 
increased the standard deviation associated to each PA 
(Table S9). The overall average PA was 0.744. Across 
the four environments, the largest PA was 0.835 for 
DTF, 0.792 for AsG and 0.791 for GY. Overall, the 
BMORS function produced significantly higher PA 
than the BMTME model and the single-environment 
models (Table S10). 

DISCUSSION

Marker density and use of trait-specific markers 

Analysis of the effect of four levels of marker density 
on the PA of three single-environment genomic 
prediction models confirmed the superfluity of very 
dense genotyping when the LD extent is large. Indeed, 
simulation studies (Habier et al, 2009; Zhong et al, 
2009) and empirical studies in various plant species 
including rice (ben Hassen et al, 2017; Bhandari et al, 
2019) have shown very little, if any, effect of marker 
densities, as long as the distance between adjacent 
markers remains below the extent of LD. Given the 
size of the rice genome (430 Mb), the theoretical 
minimum number of markers needed would be 3K 
evenly distributed SNPs. However, the 4K SNPs 
dataset (LD threshold of 0.25) led, systematically, to 
lower PA than the ones with higher numbers of SNPs. 
This is probably due to the uneven distribution of the 
SNPs, and the local variation of LD along each 
chromosome. The 17K dataset (LD threshold of 0.75) 
provided PA equal to the one observed with the 
1600K dataset. Its SNP density compensated for the 
unevenness of their distribution and for the possible 
low local LD in each chromosome. 

Whatever the size of the genotypic dataset and the 
phenotypic trait considered, PA obtained with the 
three prediction methods (BL, GBLUP and RKHS) 
was not significantly different. Given the fact that 
several QTLs of rather large effect (up to 5% for DTF, 
10% for AsG and 25% for GY) were detected in the 
BAAP population (Norton et al, 2018, 2019), BL 
method should perform better than GBLUP and 
RKHS. This is probably due to the strong linkage of 
each QTL of rather large effect with a large number of 
SNPs, taking off the shrinkage edge of BL method. 
Indeed, the total numbers of SNP associated with DTF, 
AsG and GY were of 3 515 SNPs, 2 720 SNPs and 

nearly 1 500, respectively (Norton et al, 2018, 2019). 
Exploitation of the results of recent GWAS (Norton 

et al, 2018, 2019), via genomic prediction using 
trait-specific GRM under GBLUP method, was 
awarded with PA gains ranging from 19% to 32%. 
Similar gains of PA were reported in dairy cattle for 
milk yield (Zhang et al, 2014) and in rice for traits 
related to drought tolerance (Bhandari et al, 2019). 
Using GRM built with markers identified through 
GWAS in Holstein-Friesian bulls, Veerkamp et al 
(2016) reported no increase in the accuracy of 
genomic predictions compared to GRM built with a 
large set of markers including trait-specific SNPs or 
not. They attributed the finding to the small size of the 
effective population and the associated long extent of 
LD. On the other hand, in their study, the share of 
total phenotypic variance explained by the trait- 
specific markers did not exceed 19% and they did not 
attribute a specific weight to those markers. In our 
study, the share of total variance explained by the 
trait-specific markers was much higher. For instance, 
for AsG, the three most important QTLs (represented 
by 8 SNPs out of the 64 AsG-specific SNPs) each 
explained 10% to 18% of the total variations. It is also 
noteworthy that the simple inclusion of the 
trait-specific SNPs in the genotypic dataset did not 
improve the PA of genomic predictions. Attribution of 
a distinct weight is necessary. We empirically opted 
for four levels of trait-specific weight and, at each 
level, attributed the same weight to each of the 64 
trait-specific SNPs, regardless of the effect of the 
underlying QTLs. The highest PA for the three triats, 
for the time trains, was achieved with the trait-specific 
weight of 0.50. Attribution of weight to trait-specific 
markers can probably be fine-tuned, by considering 
the effect of each QTL.  

Accounting for G × E interactions and for 
correlation between traits  

The multi-environment models with the ME-CV2 
cross validation strategy provided PA gains ranging 
between 18% and 47% according to traits and 
environments. Cuevas et al (2016, 2017) reported 
similar higher PA of multi-environment models, 
compared to single-environment models, using data 
from multi-local and multi-year trials of maize and 
wheat. In rice, Ben Hassen et al (2017) reported PA 
gains of up to 30% by using multi-environment models 
compared to their single-environment counterparts. 
Likewise, Bhandari et al (2019) reported PA gains of 
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up to 32% with the RKHS multi-environment models 
using rice DTF and GY data from three managed 
drought experiments. In the present study, the two 
multi-environment models (GBLUP and RKHS) 
provided similar substantial gains of PA, despite the 
fact that under the M × E model implemented with 
GBLUP, the environmental covariance is forced to be 
positive and constant across pairs of environments. 
This is probably because correlations between the 
AWD and CF environments were positive for the 
three traits over the two years. For instance, in the 
case of AsG, the correlation between AWD and CF 
was 0.709 and 0.754 in Year 1 and Year 2, respectively. 
When the correlation between environments is 
negligible or negative, the G × E model cannot 
explain the interaction because the sample correlation 
is estimated through variance components that are, by 
definition, all positive or zero. Therefore, the G × E 
model’s prediction accuracy is similar to that of the 
single-environment model because the variance of the 
marker main effects tends to be small and positive. 
Then, negative correlations between environments are 
not used to improve the predictions. 

PA of the multi-trait and multi-environment model 
(BMTME), which includes a three-way interaction 
term (T × G × E) and accounts for correlation between 
traits, was almost systematically lower than the PA of 
its single-trait and single-environment counterpart. It 
was also lower than the PA of the multi-environment 
models GBLUP and RKHS. This is most probably due 
to the very low correlation (always below 0.150) 
between the three traits considered, and the fact that 
our data did not comply with the hypothesis of 
unstructured variance-covariance matrix for both 
genetic and residual covariance matrix between traits. 
The significantly higher PA, obtained when the model 
was fitted with the more tightly correlated traits AsG 
and As in shoot, underline the determining effect of 
the level of correlation between traits. Similar results 
were reported by the developers of the BMTME 
model (Montesinos-López et al, 2016), who obtained 
the highest PA when correlation between traits was 
above 0.5, in both real and simulated data. 

Whatever the trait and the environment, the BMORS 
function significantly outperformed its BMTME and 
its single-trait and single-environment models’ 
counterparts implemented with GBLUP method. This 
is probably because the first stage models of BMORS 
are simply univariate multi- environment GBLUP that 
do not use information on correlation between traits, 
and the second stage models, though based on 

hypotheses of correlation between traits, does not 
directly involve a variance- covariance matrix. Instead, 
it involves an additional training stage where, for 
each trait, a meta-model is trained with an expanded 
training set, composed of the input vectors of the first 
stage, augmented by the estimates of the values of 
their target variables for all traits, in the first stage 
models (Spyromitros-Xioufis et al, 2016). 

Implication for breeding for complex traits  

In this study, we found that (I) contrary to widespread 
idea, more markers is not always better for GS, and the 
number should be adjusted to LD within the population; 
(II) combining the QTL models of infinitesimal effects 
and large effects (i.e. accounting for trait-specific 
markers) provided better predictions than each of the 
two models implemented separately; (III) prediction 
models that account for G × E interactions and/or for 
correlation between traits achieve higher PA than the 
conventional single-trait and single-environment models. 
The three findings applied to both complex traits such 
as GY and AsG with moderate heritability, and to 
DTF, a trait of less complex genetic architecture and 
high heritability. These findings were based on cross- 
validation experiments within a diversity panel. Ben 
Hassen et al (2017) have reported that reasonably high 
PA of GEBV could be achieved in rice for the progenies 
of biparental crosses with a reference population 
composed of a diversity panel that includes the parental 
lines of those crosses. Thus, our findings would apply, 
at least, to progeny of crosses between accessions of 
the BAAP panel for the improvement of grain yield 
and lowering of grain arsenic in the rice Aus group. 
Furthermore, it applies to all crop-breeding programs 
that have multi-trait and multi-environment targets.  

METHODS

Plant materials 

A total of 220 accessions belonging to the Aus genetic group of 
O. sativa were extracted from the Aus diversity panel of 266 
accessions developed by Norton et al (2018) according to the 
phenotypes (Table S11).  

Phenotypic data 

Phenotypic data were produced in Mymensingh, Bangladesh 
during the dry seasons of 2013 (Year 1) and 2014 (Year 2). 
Each year, two water management systems, AWD and CF, 
were conducted. The target traits included DTF, GY and AsG.  

Details of the phenotyping procedures are provided in 
Norton et al (2017b, 2018). Briefly, in each trial, the 
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experimental design was a randomised complete block with 
four replicate blocks. The individual plot was composed of one 
4 m-long row. At maturity, grains and shoots of each accession 
were hand-harvested from the six central hills of each row. 

Methods for the measurement of AsG are described in 
Norton et al (2007a, 2019). The dried grain powder were 
digested using nitric acid and hydrogen peroxide and total As 
content was measured by inductively coupled plasma-mass 
spectroscopy (ICP-MS). Trace element grade reagents were 
used for all digests, and certified reference material [Oriental 
basma tobacco leaves (INCT-OBTL-5)] and rice flour (NIST 
1568b) were used for quality control. All samples and 
standards contained 10 μg/L indium as the internal standard. 

Genotypic data and marker selection for genomic prediction 

Genotypic data were extracted from the BAAP SNP database, 
containing 2 053 863 SNPs (Norton et al, 2018). Using Gigwa 
software (Sempéré et al, 2019), the BAAP database was filtered 
for minor allele frequency (MAF > 5%), heterozygosity (H < 
5%) and absence of missing data. The filtering yielded 1 603 611 
SNPs hereafter referred to as 1600K SNP dataset. BAAP 
database is available as a project called BAAP at the SNP-Seek 
database (http://snp-seek.irri.org/).  

Using the 1600K SNP dataset, two types of smaller datasets 
were extracted with the aim of identifying the threshold of 
marker density below which the accuracy of GEBV declines, 
and analysing the effect of accounting for trait-specific markers 
on the performances of genomic predictions.  

Four markers’ density levels, corresponding to four LD 
thresholds (0.25, 0.50, 0.75 and 1.00), were considered. The 
1600K SNP, corresponding to the threshold of 1, was filtered 
for the remaining three LD thresholds based on the following 
procedure. First, the 192 trait-specific SNPs were discarded. 
Then, for each chromosome, the complete pairwise r² matrix 
was computed. Then, single loci or cluster of loci with pairwise 
LD with other loci below the threshold was identified. All such 
individuals were kept, and for each cluster, one locus with the 
highest MAF was randomly selected. This procedure yielded 
17 449, 11 677 and 4 255 SNPs for the LD thresholds of 0.75, 
0.50 and 0.25, respectively.  

Selection of trait specific markers was based on GWAS 
results reported by Norton et al (2018) for DTF and GY, and by 
Norton et al (2019) for AsG. For DTF, 2 3 SNPs were selected 
along each of the 24 chromosomic segments with ‘notable 
association’ detected in one of the two years of field 
experiment; the total number of DTF-specific SNP was 64. For 
GY, two SNPs were selected at the two extremities of each of 
the 32 chromosomic segments with ‘notable association’ 
detected in at least one of the two years of field experiment, 
under at least one of the two water management systems. For 
AsG, 64 SNPs were selected out of the 74 most significant 
SNPs (P < 0.0001) detected in at least one of the two years of 
experiment and at least under one of the two water 
management systems; the remaining 10 most significant SNP 

were not present in the 1600K SNP dataset. The 192 trait- 
specific markers are provided in Table S12. 

Methods for genomic prediction  

Single environment models  
Two kernel regression models (GBLUP and RKHS) and a 
penalised regression model (the Bayesian least absolute angle 
and selection operator) were used to predict GEBV. Under 
GBLUP (VanRaden, 2008), the genetic effects were considered 
as strictly additive and the model was fitted using the GRM as 
kernel matrix in the Gaussian process implemented. RKHS, 
which dose not rely on formal hypotheses on the type of 
genetic effects (Gianola and van Kaam, 2008), was fitted using 
the squared-Euclidean distance matrix between accessions 
(derived from matrix of marker genotypes) as kernel matrix; 
the bandwidth parameter was equal to 0.5. BL model 
(Tibshirani, 1996; Park and Casella, 2008), which hypothesizes 
most markers have no any effect, applies a strong shrinkage of 
estimates of marker effects toward zero for markers with small 
effects. The prior density of marker effects has a Gaussian 
distribution and, unlike non-Bayesian LASSO, BL imposes no 
limitation on the number of non-zero regression coefficients. 
The model was fitted with a formulation where the prior on the 
regularization parameter  is expressed as a  distribution that 
allows expressing vague preferences over a wide range of  
values. 

Prediction model using trait-specific genomic relationship matrix 
Trait-specific GRM (G') were constructed following the 
method proposed by Zhang et al (2014). Briefly, it consists in (i) 
building the standard GRM of Van Raden (2008) (G), with the 
set of markers that are assumed to have identical small effects 
not specific to the phenotypic trait considered. (ii) For each trait, 
building a specific relationship matrix (S), using markers 
known for their rather large effect on the trait, while specifying 
the effect wi of each of those markers. (iii) Finally, building for 
each trait the weighted GRM as: 

G'w = W × S + (1 – W) × G 
where w is the overall weight for trait-specific markers w  

[0, 1]. In this study, the G matrix was built with the 17 449 
SNPs dataset (LD threshold of 0.75). For each trait, four G'W 
GRM were computed, corresponding to w values of 0.25, 0.50, 
0.75 and 1.00, while each of the corresponding 64 trait-specific 
SNPs were given an equal weight, i.e., 0.25, 0.50, 0.75 or 1.00. 
The four weighted trait-specific GRMs (G'0.25, G'0.50, G'0.75, G'1.00) 
were used as kernel in the Gaussian process of implementation 
of GBLUP in a Bayesian framework. PA of genomic prediction 
obtained with the four G'w was compared to the ones obtained 
with the standard G matrix computed with 17 449 SNP alone 
(G'0 = G, i.e. w = 0), and with a second G matrix computed 
with 17 449 SNPs plus the 64 trait-specific SNPs while they 
were not given specific weight (G'nw).  

Multi-environment models 
Multi-environment models, used to predict the GEBV with data 



276                                                                         Rice Science, Vol. 28, No. 3, 2021

from AWD and CF irrigation systems, are the above-described 
GBLUP and RKHS endowed with extensions to include the 
environmental effects. The extended GBLUP model 
(Lopez-Cruz et al, 2015) separates the effects of each marker 
into a main effect for all the environments and an effect 
specific to each environment. The extended RKHS model 
(Cuevas et al, 2017) hypothesizes correlated performances of 
accessions in different environments and models the genetic 
correlation between environments with a matrix of order m × m, 
m being the number of environments. 

Multi-trait and multi-environment models  
To predict GEBV with data from AWD and CF environments 
while taking into account the correlation between traits and 
trait × genotype × environment interaction, we used BMTME 
developed by Montesinos-López et al (2016), and BMORS 
function described in Montesinos-López et al (2019). BMTME 
can be considered as a Bayesian GBLUP for multiple traits and 
multiple environments using a linear mixed model that includes 
T × E interaction termed as a fixed effect, and T × G interaction 
and T × G × E interaction termed as random effects, assuming 
independence between environments. BMORS function does 
not specify the T × E interactions in a variance-covariance 
matrix. Instead, using the multi-target regression approach 
(Spyromitros-Xioufis et al, 2016), it relies on a meta-model. 
First, for each trait, a multi-environment GBLUP model is 
implemented. Then, a meta-model is implemented to scale the 
predictions of the first-step model. Each meta-model is 
implemented with a mixed model where the covariates 
represent the scaled predictions of each trait obtained with the 
GBLUP model of first-step analysis. The scaling of each 
prediction is performed by subtracting its mean and dividing it 
by its corresponding standard deviation.  

Computing predictive ability of genomic prediction  

Genomic prediction with single environment models was 
performed using phenotypic data from each combination of 
irrigation system and year of field experiment, hereafter 
referred to as AWD1, AWD2, CF1 and CF2. The cross- 
validation scheme used 80% of the accessions (176 accessions) 
as the training set and the remaining 20% (44 accessions) as the 
validation set.  

Multi-environment models were fitted separately for data 
from Year 1 and Year 2. In each case, PA was computed with 
two cross-validation schemes. Under the first scheme (CV1), 
individuals serving as training set were all endowed with 
phenotypic data from the two environments while phenotypic 
data were lacking for all the individuals included in the 
validation set. Under the second scheme (CV2), however, 
individuals in both the two sets were endowed with at least one 
phenotypic data in at least one environment.  

BMTME model and the BMORS function were fitted first 
with data from Year 1 and Year 2 separately, then with data 
from the two years jointly. Cross validations were performed 
with only the CV2 method.  

For all models, cross-validation consisted in one hundred 
replicates of the random partitioning of accessions into training 
and validation sets. For each partition, the Pearson correlation 
coefficient between the predicted and the observed phenotypes 
in the validation set was computed. Then, PA of genomic 
prediction was computed as the average of the 100 replicates of 
the correlation coefficients. The standard error associated to 
each PA was also calculated. For the multi-environment models, 
the correlation was calculated within each environment. The 
same partitions were used under both GBLUP and RKHS 
models to compute the PA for DTF, AsG and GY. All models 
were fitted with 25 000 iterations for the Gibbs sampler and 
5 000 burn-ins. In the case of BMTME, which requires very long 
computing time, the cross-validation was performed with 5 000 
iterations and 1 500 burn-ins. 

Variance of the computed PA was partitioned into different 
sources through ANOVA after transformation of the correlation 
coefficient data into a Z-statistic [Z = 0.5[ln(1 + r) – ln(1 – r)]]. 
The Z-statistic was transformed back to r variable after ANOVA. 

Implementation of the models 

The single environment models and the multi-environment 
were implemented in the R-3.4.2 environment with the R 
packages BGLR 1.0.5 (Pérez and de los Campos, 2014). The 
multi-trait and multi-environment models BMTME and 
BMORS were implemented in the R-3.6.1 environment with 
the R package BMTME (Montesinos-López et al, 2019). The 
analyses were supported by the CIRAD-UMR AGAP HPC 
Data Centre of the South Green Bioinformatics platform 
(http://www.southgreen.fr/). 

SUPPLEMENTAL DATA 

The following materials are available in the online version of 
this article at http://www.sciencedirect.com/journal/rice-science; 
http://www.ricescience.org. 
Fig. S1. Graphic representation of the predicted values of three 

phenotypic traits by Bayesian multi-trait and multi- 
environment model against their observed values. 

Table S1. Predictive ability of genomic prediction with single 
environment models.  

Table S2. ANOVA on predictive ability of genomic prediction 
with single environment models. 

Table S3. Predictive ability of genomic prediction models 
accounting for trait-specific markers. 

Table S4. ANOVA on predictive ability of genomic prediction 
with different weight given to trait specific markers. 

Table S5. Predictive ability of single-environment and multi- 
environment prediction models. 

Table S6. ANOVA on predictive ability of genomic prediction 
with single environment and multi-environment models. 

Table S7. ANOVA on predictive ability of genomic prediction 
of multi-environment models. 

Table S8. ANOVA on predictive ability of genomic prediction 
with multi-environment models and trait specific markers. 
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Table S9. Predictive ability of genomic prediction with multi- 
trait and multi-environment models. 

Table S10. ANOVA on predictive ability of genomic prediction 
with multi-trait & multi-environment models.  

Table S11. Phenotypic data of 220 accessions of the Bengal 
and Assam Aus diversity panel. 

Table S12. SNPs associated with the most significant QTLs for 
the three traits identified by genome-wide association analyses. 
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