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Abstract
While the understanding of average impacts of climate change on crop yields is improving, few
assessments have quantified expected impacts on yield distributions and the risk of yield failures.
Here we present the relative distribution as a method to assess how the risk of yield failure due to
heat and drought stress (measured in terms of return period between yields falling 15% below
previous five year Olympic average yield) responds to changes of the underlying yield distributions
under climate change. Relative distributions are used to capture differences in the entire yield
distribution between baseline and climate change scenarios, and to further decompose them into
changes in the location and shape of the distribution. The methodology is applied here for the case
of rainfed wheat and grain maize across Europe using an ensemble of crop models under three
climate change scenarios with simulations conducted at 25 km resolution. Under climate change,
maize generally displayed shorter return periods of yield failures (with changes under RCP 4.5
between−0.3 and 0 years compared to the baseline scenario) associated with a shift of the yield
distribution towards lower values and changes in shape of the distribution that further reduced the
frequency of high yields. This response was prominent in the areas characterized in the baseline
scenario by high yields and relatively long return periods of failure. Conversely, for wheat, yield
failures were projected to become less frequent under future scenarios (with changes in the return
period of−0.1 to+0.4 years under RCP 4.5) and were associated with a shift of the distribution
towards higher values and a change in shape increasing the frequency of extreme yields at both
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ends. Our study offers an approach to quantify the changes in yield distributions that drive
crop yield failures. Actual risk assessments additionally require models that capture the
variety of drivers determining crop yield variability and scenario climate input data that
samples the range of probable climate variation.

1. Introduction

Impacts of climate change on crops are already
observed across world regions (Ray et al 2019). In
the coming decades, the projected increase in drought
(Grillakis 2019, Trnka et al 2019, Xu et al 2019)
and heat extremes (Coumou and Robinson 2013,
Lelieveld et al 2016, Chatzopoulos et al 2020) and the
occurrence of compound events (Zscheischler et al
2018, Feng et al 2019, Toreti et al 2019, Ribeiro et al
2020) are expected to amplify existing risks to food
production (IPCC 2014). Increased climate variab-
ility may drive higher crop yield variability (Porter
and Semenov 2005) with potential implications both
for farmers (Kimura et al 2010) and global markets,
where price shocks induced by simultaneous yield
failures across regions may threaten food security
(Wheeler and Von Braun 2013, Challinor et al 2018).

With extremeweather events projected to increase
(Field 2012) and the recent years’ record yield fail-
ures across world regions, the demand to assess
impacts of extreme events and the risk of yield fail-
ure has increased (Wheeler and Von Braun 2013).
Understanding the drivers of risk of yield failure is
a precondition for developing adaptation strategies
for risk management, such as insurance solutions
against specific weather risks (EC 2018), planning
for investments in irrigation infrastructure (Zou et al
2013, FAO 2019) or tailored crop breeding (Tao
et al 2017, Kahiluoto et al 2019). With climate
change, the reliance on only historical yield distri-
butions of crop yields is challenged as interactions
between CO2 concentrations, temperatures and crop
water demand present challenges to extrapolating
historical data with statistical models (Lobell and
Asseng 2017). Such interactions are considered by
process based crop models, which dynamically sim-
ulate crop resource capture and yield formation in
response to environment and management drivers
under future climate scenarios (Ewert et al 2015).
However, they often fail to capture many of yield
reducing factors, such as soil constraints, pests, dis-
ease or extreme weather that shape yield distribu-
tion (Schewe et al 2019, Webber et al 2020b). Webber
et al (2018) presented a crop model ensemble ana-
lysis that allowed to distinguish the effects of drought
stress, heat stress andmeanwarming on crop yields in
Europe with climate change. Over all years, they pro-
jected increased yield losses due to drought for maize,
and that drought would drive yield losses for maize
and wheat in low yielding years. To date, the majority
of climate change impact studies have quantified how

average yields change, as this has important implica-
tions for global agricultural markets. However, study-
ing only average climate-yield relationship provides
limited insights into climate-driven risk that is more
closely related to changes in yield variability. A grow-
ing body of literature is focusing on the influence of
climate on yield variability (e.g. Kassie et al 2014, Ray
et al 2015, Leng 2017). Our study adds to this research
by trying to distinguish the differential impacts of cli-
mate change on upper and lower tail of the yield dis-
tribution (Malikov et al 2020).

Here, we demonstrate and explore a methodolo-
gical framework to assess the climate-driven changes
in risk of yield failure and in yield distributions.
The first objective of the framework was to quantify
changes in the return period of yield failure under
climate change. A second objective was to identify
the patterns of changes in the underlying yield dis-
tributions associated with the changes in risk of
yield failure. Relative distribution methods (Hand-
cock and Morris 1998) were used for represent-
ing distributional differences between yields under
baseline and climate change scenarios, to reveal pre-
cisely where and by how much the two distributions
differ, information which may be lost with paramet-
ric approaches. As a case study, we applied the frame-
work to an ensemble of process-based crop models
for rainfed maize and wheat in Europe for three rep-
resentative concentration pathway (RCP) scenarios
(Webber et al 2018), considering the combined effect
of heat and drought stress (without disentangling
these yield drivers).

2. Materials andmethods

2.1. Methodological framework
An overview of the methodological steps to evalu-
ate the changes in risk of yield failure and in the
underlying yield distributions under climate change
is presented in figure 1. First (figure 1(a)), simula-
tions results from an ensemble of crop and climate
models were processed (figure 1(a)) as described in
section 2.2. The second methodological step involved
grouping (figure 1(b); section 2.3) the simulation res-
ults into spatial clusters based on yields in the baseline
scenario and stress intensity. The clustering was per-
formed to provide discrete units for the subsequent
analysis and to provide large enough sample of data to
apply the relative distribution methods. In the third
step, yield failure under baseline climate (as defined
in section 2.4) and the relative change in return peri-
ods between successive yield failures under climate
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Figure 1. Schematic representation of the methodological framework to analyze the evolution of yield failure frequency. Input
data produced by simulation experiments (a) are used to define spatial clusters in the baseline scenario (b) and to assess changes
in yield failure frequency (c). Relative distribution methods (d) are applied to study changes in simulated yield distributions.
Solid and dashed arrows represent data and information flows, respectively.

change scenarios were quantified (figure 1(c); res-
ults presented in section 3.2). The next methodo-
logical step was the application of the relative dis-
tributions (figure 1(d); section 2.5) to assess which
aspects of the underlying yield distributions were
driving the changed yield failure frequencies. This is a
non-parametric framework that summarizes the dif-
ferences between two distributions (here crop yields
under baseline climate and climate change scenarios)
with a single curve, highlighting differences occur-
ring throughout the entire range of values (simu-
lated yields in this study). The relevant features of
the source dataset used as case study are described in
section 2.6.

2.2. Crop yield simulations and drivers
Data used in this analysis were time series of crop
yields simulated by an ensemble of crop and climate
models under potential (YPOT), heat-limited (YHL),
drought-limited (YWL), and drought-heat limited
(YWHL) conditions under baseline climate and cli-
mate change scenarios across a grid of simulation

units (see section 2.6). Under any growing condition,
30 year time series of yields were available in each
simulation unit and climate scenario for any com-
bination of crop × climate model. Heat and drought
limited yields were related to potential yields in the
baseline climate scenario to produce time series of
stress indices calculated according to equation (1):

StressIndex(i,t,m) = 1−
Ylim(i,t,m)

YPOT(i,t,m)
(1)

where StressIndex and correspond to HS (for heat
stress) or WS (for drought stress), Y lim either to YHL

(for heat stress) or YWL (for drought), i is the sim-
ulation unit, t the year and m either the crop model.
These indices represent the independent contribution
of heat and drought to the yield gap between YPOT

and YWHL. Stress indices range from 0 (indicating no
stress) to 1 (no yield at harvest due to the stress).

2.3. Spatial clustering
For each crop model, the average value of the time
series of YPOT, YWHL, HS and WS were used to
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characterize the typical production situation in each
simulation unit under baseline climate. Such indic-
ators were selected as the measures summarizing
the yield potential and main yield drivers accoun-
ted for by the models, i.e. potential yields determ-
ined by CO2 assimilation and conversion as mod-
ulated by solar radiation and temperature regimes
for a given variety (YPOT), the independent influ-
ence of water stress (WS) and heat stress (HS), and
finally, water-heat limited yields as the outcome of
both stressors (YWHL). For each of these measures,
the median across crop models was used to charac-
terize the ensemble response in each simulation unit
(equation (2)). Considering the spread across differ-
ent crop models, the median was preferred over the
average for its robustness against outliers

EEx =median

{(
1

n

n∑
t=1

xt

)
m

|m ∈ M

}
. (2)

where EEx is the ensemble estimate, t the year in
the time series, x is either YWHL, YPOT, WS or HS,
and m the models in the set of crop models M used
in this study. Simulation units were then clustered
using ensemble estimates of YWHL, YPOT, WS and
HS in the baseline scenario, identifying areas with
homogenous yields and drivers (i.e. simulation units
falling in the same category for the four ensemble
estimates). YWHL, YPOT and WS were classified based
on their range simulated across the study area as
low (lower quartile), medium (interquartile range) or
high (upper quartile); HS, due to less variation, was
divided into two classes only (low and medium-low).
Clustering was performed to provide an overview of
the emergent spatial patterns of yields and the yield
drivers in the baseline while generating large enough
samples of yield data for the application of relative
distribution methods (section 2.5).

2.4. Yield failures
A yield failure was counted when simulated yield was
lower than a threshold relative to theOlympic average
yield of the previous five-years (Webber et al 2020b),
i.e. the average yield obtained ignoring the highest
and lowest yields in the preceding five-year period.
Olympic averages, as commonly used by the insur-
ance industry and governments to define yield fail-
ures (EC 2017), were used to ensure the definition
of yield failures were not biased by the occurrence of
exceptionally good or bad yields in the recent past.
The definition of failure follows European guidelines
(EC 2017) that identify a natural or other disaster by
a production loss, which exceeds 30% of the aver-
age of production. Since a lower threshold for crop
failure may be more appropriate for risk analysis at
aggregate scales (Finger 2012, Heimfarth et al 2012,
Webber et al 2016, Ben-Ari et al 2018), we assumed
the threshold of 15% as a reference for the current

study. The frequency of yield failure in each simula-
tion unit and scenario was quantified as the average
return period (RF,) between successive failures. For
each simulation unit, crop, crop model and climate
scenario, RF was estimated using time series of YWHL

(thus accounting for the joint effects of drought and
heat) to count the number of occurrences of a fail-
ure. The model ensemble median of RF was used as a
risk indicator for each simulation unit under baseline
and climate change scenarios (independently for each
RCP). The ensemble estimates of RF were further
aggregated at the level of spatial clusters (equation
(3)) based on current production area (MIRCA2000;
Portmann et al 2010):

RFE(cl,s) =
n∑

i=1

RFE(i,cl,s) ×w(i,cl) (3)

where RFE is the ensemble estimate of the return
period of a failure, w the fraction of the production
area in the simulation unit relative to the total area
in the spatial cluster (cl), i the simulation unit within
the cluster, and s the climate scenario. To explore the
uncertainty across models, the ensemble median of
RF was calculated separately for (a) the pool of all the
crop and climate models, (b) individual crop mod-
els (median across climatemodels) and (c) individual
climate models (as the median across crop models).

2.5. Assessing distributional yield changes under
climate change
Changes in crop yields between baseline and climate
scenarios were quantified for YWHL at the level of
spatial clusters using the relative distribution meth-
ods, a set of non-parametric statistical approaches
developed by Handcock and Morris (1998, 1999).
The relative distribution methods compare two pop-
ulations (respectively ‘reference’ and ‘comparison’)
based on the fraction of the comparison distribution
that fall in each quantile of the reference one. This
allows to locate and identify the changes occurred
across the entire distribution between the two pop-
ulations. Differences are encoded by a single line,
i.e. the relative density. When there are no changes
between the two distributions, the relative density
equals to 1 for all quantiles. Values higher (lower)
than 1 indicate an increase (decrease) share of yields
in the comparison distribution at the level identi-
fied by the rth quantile of the reference distribu-
tion. Differences due to changes in location (mean
or median) can be isolated from those involving the
shape of the distribution and quantified by sum-
mary measures (for more details, see supplementary
S1 (available online at stacks.iop.org/ERL/16/104033/
mmedia)). In this study, yields in the baseline climate
and under climate change scenarios were taken as the
reference and comparison populations, respectively.
The analysis was conducted in R (R Core Team 2019)
using the package ‘reldist’ (Handcock 2016).
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Relative densities were evaluated within each spa-
tial cluster for all the combinations crop model× cli-
mate scenario by pooling YWHL from all simula-
tion units of the cluster. Current production areas
(MIRCA2000; Portmann et al 2010) within the sim-
ulation units were used as weights for both the ref-
erence and comparison population. Data limitation
prevented to evaluate the relative distribution at the
scale of the single simulation unit, where data were
not available for each quantile of the distribution.
The choice of clustering simulation units was a prag-
matic solution to reach the recommended minimum
sample size (100–1000 observations; Handcock and
Morris 1998), but constrained the resolution of the
analysis to an aggregate level. For any combination
of cluster × climate change scenario, the relative
density at each decile of the reference population
was calculated separately for (a) the pool of all the
crop and climate models, (b) individual crop mod-
els (median across climatemodels) and (c) individual
climate models (as the median across crop models).
This allowed to explore the uncertainty in the relat-
ive density due to crop and climate models. The main
patterns (types) of the changes in yield distributions
across the study area and the climate change scen-
arios were identified applying hierarchical clustering
(Suzuki et al 2019) to the ensemble estimates based
on all crop and climate models of relative density.

2.6. Data source
The data for the current analysis were retrieved from
Webber et al (2020a; doi: 10.4228/ZALF.DK.88). This
dataset consists of an ensemble of eight crop mod-
els accounting for the impact of drought and heat
stress on wheat and maize production (supplement-
ary S2). In the study by Webber et al (2018), drought
and heat stresses were quantified as the reduction of
crop yield resulting respectively from water deficit
during the crop cycle and periods of high temper-
ature experienced around flowering and/or seed set.
Gridded simulations (25 km horizontal resolution)
covering the land area across the EU-27 (8157 sim-
ulation units) were available in the source dataset
for baseline scenario (1981–2010) and future climate
scenarios (2040–2069) for three RCPs (RCP 2.6, 4.5
and 8.5). The climate projections were available for
five climate models (General Circulation Models,
GCMs) under two forcing scenarios RCP 4.5 and 8.5,
and two climate models under RCP 2.6. For each
simulation unit and climate scenario (i.e. the com-
bination of GCM × RCP), treatments were simu-
lated for potential, heat-limited, drought-limited and
drought-heat limited crop yields (supplementary S2).
Full irrigation was simulated for potential and heat
limited simulations, whereas under drought treat-
ments crops were rainfed. To simulate yields without
effects of heat stress (for potential and drought-
limited treatments), modelers either switched off heat
stress routines or set threshold temperature limits

very high such that no heat stress damage was sim-
ulated. In all simulations, soil water content was re-
initialized at sowing, and nitrogenwas not considered
as a limiting factor. Observed sowing, flowering and
harvest dates were taken from the Eurostat (Eurostat,
http://ec.europa.eu/eurostat/web/main) and then
aggregated to the level of 1 of 13 agro-environmental
zones across Europe (Metzger et al 2005) follow-
ing the procedure reported in Zhao et al (2015) and
Webber et al (2015). These phenology data were then
resampled to the level of the simulation unit and
used with simulation unit specific climate data in the
baseline conditions to calibrate crop phenology para-
meters. For the climate change scenarios, simulations
were available for baseline [CO2] (360 ppm) and elev-
ated [CO2] of 442 ppm (RCP 2.6), 499 ppm (RCP 4.5)
and 571 ppm (RCP 8.5). For the current analysis, we
used simulated heat stress with canopy temperature,
as this is considered more appropriate, although for
two models only simulations using air temperature
were available. For future scenarios, only simulations
with elevated [CO2] were considered. The current
analysis was restricted to rainfed cropping systems,
i.e. simulation units characterized by at least 500 ha
of rainfed area based on the MIRCA2000 global data
set on crop area (Portmann et al 2010).

3. Results

3.1. Spatial clusters under baseline climate
When considering the range of variation of YWHL,
YPOT, WS and HS, a total of 47 clusters were identi-
fied for maize and wheat, forming the basis of sub-
sequent analysis (figure 2). Some common features
arose between the two crops across Europe. Areas
where both YWHL and YPOT were in the high range
(i.e. clusters with ‘HH’ as the first two letters of the
cluster name in figure 2) were found in France for
maize (in theWest) and wheat (North-West and Cen-
ter). In wheat, such cluster reached areas scattered
throughout Italy and Spain. However, a major por-
tion of Spain, as well as part of the Mediterranean
basin, were characterized by areas with the highest
potential yields and intermediate to high levels of
drought stress, as illustrated by the larger extent of
clusters ‘LH’ (first two letters code) for both crops and
‘MH’ for wheat compared to ‘HH’ (figure 2). Con-
versely, large areas in Central and Northern Europe
displayed intermediate and high YWHL, and a smaller
difference between YWHL and YPOT due to a relatively
lower impact of drought. On the other hand, areas in
Northern Europe (Scandinavian countries for wheat
and mainly Denmark for maize) displayed low yields
both in potential and actual conditions (clusters ‘LL’
in figure 2), indicating thermal and solar radiation
regimes as main limiting factors for crop growth. In
both crops, the magnitude of heat stress was limited
when compared to drought stress.
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Figure 2. Spatial clusters of ensemble estimates of drought-heat limited yield (YWHL), potential yield (YPOT), drought stress (WS)
and heat stress (HS) for maize (a) and wheat (b). The grey area represents simulation units excluded from the current study.
Cluster names indicate the category of the four ensemble estimates in the simulation unit, ordered as follows: YWHL (first letter),
YPOT (second letter), WS (third letter), and HS (last letter). High (‘H’, upper quartile), medium (‘M’, interquartile) and low (‘L’,
lower quartile) categories are identified based on the range of variation of the ensemble estimates in the baseline scenario across
the study area. Panels (c) (maize) and d (wheat) report the ranges for YWHL and YPOT.

3.2. Yield failure frequency changes
The return period of failures from drought and heat
stress in the baseline climate scenario ranged from
about 2.1–3.6 years for maize, and between 2.5 and
3.6 years for wheat when aggregated for the spa-
tial clusters identified (figure 3, supplementary S3).
In both crops, ensemble estimates of return period
decreased while moving from clusters characterized
by higher yields and limited drought stress to the
ones with lower yields and greater stress. As a res-
ult, a North-South gradient was present, with South-
ern Europe mostly characterized by lower YWHL and
shorter yield failure return periods.

Under climate change scenarios, shorter return
periods for crop failure were observed for maize, as
opposed to the generally longer return periods for

wheat. Under limited climate forcing, wheat displayed
a mixed response, with shortening and increasing
return periods almost equally represented across the
study area. The magnitude of the change in return
period of a failure was RCP-dependent, especially
for wheat. (figures 4 and 5). Regardless the RCP
considered, failures that became more frequent were
more pronounced for maize in the areas character-
ized by the highest yields in the baseline scenario
(i.e. clusters H.YWHL-H.YPOT, H.YWHL-M.YPOT and
H.YWHL-L.YPOT in figure 2). A significant negative
relationship between baseline return period and its
change under all the RCP scenarios was observed for
maize (supplementary S4). For wheat, the high yield-
ing clusters in the baseline scenario were among the
areas thatmostly benefited from the increase in return
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Figure 3. Ensemble estimates of return period of a failure for maize (a) and wheat (b) in the baseline climate scenario across the
clusters identified. The grey area indicates simulation units excluded from the current study.

periods. A comparable increase in the return period
was observed, for wheat, also in the clusters charac-
terized by low yield and low potential in the baseline
scenario (i.e. L.YWHL-L.YPOT in figure 2), particu-
larly under RCPs 4.5 and 8.5 (figures 4(d) and (f)).
The response described for the ensemble of all crop
and climate models (figure 5(a)) was consistent with
the one from individual climate models (figure 5(c)).
The response from individual crop models, on the
other hand, was more uncertain and characterized by
less agreement in the sign of the change in return
period of yield failures among ensemble members
(figure 5(b)).

3.3. Relative distribution analysis
Our analysis highlighted diverging responses of the
yield distributions (YWHL) of maize and wheat to cli-
mate change (figure 6). Depending on the crop, the
relative density is greater than 1 at the opposite ends
of the distributions, depicting a general increase of
probability of low yields for maize (figure 6(a)) and
of high yields for wheat (figure 6(c)) under climate
change scenarios. Three main response types were
identified for each crop across the spatial clusters cov-
ering the study area. For maize, an increase in the fre-
quency of yields in the lowest deciles was projected
for all types, in particular for extreme low yields. The
regions least negatively affected by climate change

(corresponding to ‘low-neg’ type in figure 6(a)) dis-
played relative densities between 1 and 1.3 for yield
levels below themedian baseline yield level. An almost
symmetric decrease in the relative densities for high
yields was observed. The other two types identi-
fied for maize (i.e. ‘mid-neg’ and ‘hi-neg’, increas-
ingly affected by climate change) followed a similar
pattern, but with more dramatic variations at the
extremes (figure 6(a)). For all the types, the over-
all relative distribution resulted from the combined
effects of a location (mean) shift toward lower val-
ues and a change in shape that reduced the frequency
of extreme values at both ends of the distribution.
The changes in shape partially mitigated the loca-
tion effect for low yields while further reducing the
occurrence of yields in the highest deciles (supple-
mentary S5). While moving from areas less negat-
ively affected by climate change (type ‘low-neg’) to
areas displaying relative distributions of type ‘mid-
neg’ and ‘hi-neg’, the contribution of location changes
to the overall relative distribution increased while
the shape effect decreased (figure 6(b)). The relat-
ive distributions from individual crop and climate
models were consistent with those outlined by the
ensemblemedian formaize. Crop and climatemodels
contributed to a similar extent to uncertainty, which
was more marked at the lowest and highest deciles
(figures 7(a)–(c)).
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Figure 4. Ensemble estimates of changes in return period of a failure for maize ((a), (c), (e)) and wheat ((b), (d), (f)) under
different climate change scenario ((a), (b): RCP 2.6; (c), (d): RCP 4.5; (e), (f): RCP 8.5) across the clusters identified. In each
cluster, delta return period is the difference between return period of yield failure under climate change and baseline scenarios.
The grey area indicates simulation units excluded from the current study.

For maize, the three types of relative distribu-
tions had a different extent and spatial allocation
across Europe depending on the RCP (figure 8). The
least negative response of yield distribution to climate

change (‘low-neg’) was prominent under RCP 2.6
(covering about 70% of the total rainfed area), with
medium and high impact responses relegated to a
transect crossing Central Europe (with a coverage of
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Figure 5. Range of variation of the change in return period of yield failure across the clusters identified and for the different
climate scenarios (RCP) considered. In each cluster, delta return period is the difference between return period of yield failure
under climate change and baseline scenarios. In the three panels, the deltas are calculated respectively for the ensemble of all crop
and climate models (a), individual crop models (b) and individual climate models (c).

Figure 6. Types of relative distributions of maize ((a), (b)) and wheat ((c), (d)) yields between baseline (reference population) and
climate change (comparison population) scenarios, based on the ensemble median of crop and climate models. The labels
identify the magnitude and direction of the impact of climate change. For maize, the impact is increasingly negative for types
‘low-neg’, ‘mid-neg’ and ‘hi-neg’. For wheat, the impact is increasingly positive for types ‘low-pos’, ‘mid-pos’ and ‘hi-pos’. The
overall relative distribution ((a), (c)) is decomposed into location and shape components ((b), (d)).
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Figure 7. Range of relative distributions for individual crop models (orange shade) and climate models (violet shade). Solid lines
identify the interquartile range, whereas shaded areas extend to 1.5 times the interquartile range. Panels report the main types of
relative distributions for maize (a)–(c) and wheat (d)–(f) ordered according to the magnitude and direction of the impact of
climate change. For maize, the impact is increasingly negative for types ‘low-neg’, ‘mid-neg’ and ‘hi-neg’. For wheat, the impact is
increasingly positive for types ‘low-pos’, ‘mid-pos’ and ‘hi-pos’.

24% and 6%, respectively; figure 8(a)). Under higher
forcing scenarios, high impact responses covered the
majority of the land area used for rainfed maize
production (figures 8(c) and (e)). The‘mid-neg’ and
‘high-neg’ responses covered 38% and 30% of the
total rainfed area in Europe under RCP 4.5. The
respective values for RCP 8.5 were 46% and 23%.
A ‘low-neg’ response generally occurred in areas
characterized in the baseline scenario by more fre-
quent yield failures and medium to low drought-
heat limited yields, whereas ‘mid-neg’ and ‘high-neg’
responses were associated with more favorable con-
ditions in the baseline (longer return periods for
yield failure and higher drought-heat limited yield).
Under higher forcing scenarios (RCPs 4.5 and 8.5),
the ‘mid-neg’ and ‘high-neg’ responses extended into
less favorable areas. Regardless the climate scen-
ario, ‘low-neg’ response was associated with a lim-
ited shortening of the return period of yield failures,
whereas higher impact responseswere associatedwith
increased shortening of the return period for a yield
failure (supplementary S6).

Relative distributions of wheat yields showed dis-
tinct responses compared to maize. Under RCP 4.5,
the probability of high yields (r ⩾ 0.8) increased,
whereas the probability of lower yields decreased.
Three response types were identified based on the
magnitude of such changes (figure 6(c)). A response
‘hi-pos’ identified areas where crop yields benefited

the most from climate change, with a relative density
of yields in the top decile just above 2.5 and a decrease
(with relative density of about 0.6) in yields in the low
end of the distribution. The other types displayed rel-
ative densities in the top decile around 1.7 (‘mid-pos’)
and 1.3 (‘low-pos’), and almost no changes in the
probability of extreme low yields for ‘low-pos’. For all
the response types, distributional differences resulted
from a shift in the mean towards higher values com-
bined with a change of shape that tended to increase
frequency of extreme values at both ends (supple-
mentary S5). For ‘high-pos’ response, the influence
of the location effect dominated the overall distri-
butional differences, whereas for the other types a
more balanced contribution of location and shape
changes was observed (figure 6(d)). The uncertain-
ties in the relative distributions were less marked
for wheat than for maize, with differences among
crop models playing a major role (figures 7(d)–(f)).
A ‘low-pos’ response was the most widely represen-
ted under RCP 2.6 (98% of the total rainfed area;
figure 8(b)) andRCP 4.5 (79%; figure 8(d)), outlining
a widespread mild positive impact of climate change
on simulatedwheat yields. Under higher forcing scen-
arios, the extent of ‘mid-pos’ response increased (21%
and 67% of the area under RCP 4.5 and 8.5, respect-
ively; figures 8(d) and (f)). A ‘high-pos’ response to
climate change was observed almost only under RCP
8.5 (figure 8(f)), where it covered about 13% of the
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Figure 8. Spatial distribution of the types of relative distribution identified under for maize ((a), (c), (e) respectively for RCP 2.6,
4.5 and 8.5) and wheat ((b), (d), (f) respectively for RCP 2.6, 4.5 and 8.5). Total rainfed area is aggregated for each type. The grey
area indicates simulation units excluded from the current study. The labels identify the magnitude and direction of the impact of
climate change. For maize, the impact is increasingly negative for types ‘low-neg’, ‘mid-neg’ and ‘hi-neg’. For wheat, the impact is
increasingly positive for types ‘low-pos’, ‘mid-pos’ and ‘hi-pos’.
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land area, mainly in Central and Northern Europe.
Under RCP 4.5, a ‘low-pos’ response wasmainly asso-
ciated with the spatial clusters displaying the highest
yields in the baseline scenario, whereas a ‘mid-pos’
response was mainly related to clusters with medium
and low yield levels in the baseline. Such association
not apparent under RCP 2.6 and 8.5. In contrast with
maize, wheat did not display—across RCPs—a con-
sistent relation between response type and the mag-
nitude of the change of the return period for a yield
failure (supplementary S6).

4. Discussion

4.1. Significance and implications
Climate change is expected to increase yield variab-
ility and the risk of crop yield failures, represent-
ing a significant challenge to food security (Wheeler
and Von Braun 2013). While crop modeling has
provided insights into the expected changes in aver-
age yield levels with future climate change (Challinor
et al 2014, Deryng et al 2014, Rosenzweig et al 2014,
Schleussner et al 2018, Webber et al 2018), few stud-
ies have considered the projected shift of yield distri-
butions and implications for yield failure frequencies
(e.g. Challinor et al 2010,Webber et al 2016, Faye et al
2018). This is particularly relevant formany currently
low income world regions at low latitudes where large
negative climate impacts are projected (Rosenzweig
et al 2014). In these regions, climate risk is linked
to the extent and persistence of rural poverty, with
shocks eroding productive assets of smallholder farm-
ers, limiting investments in agriculture and the adop-
tion of improved technologies (Hansen et al 2019). As
climate-induced yield variability often increases with
intensification (Faye et al 2018, Müller et al 2018),
climate risk is likely to further constrain decisions to
intensify production (Hansen et al 2019, Benami et al
2021). In the context of an increased climate-driven
uncertainty, understanding what drives the changes
along the yield distributions (and the implications
for yield failures) will contribute to the design of
improved adaptation measures, targeting the stabil-
ity of crop yields (e.g. investments in irrigation infra-
structure or crop breeding) and of farmers’ income
(e.g. subsidizing insurance products).

In this context, here we presented an approach
to quantify how yield distributions and the associ-
ated risk of yield failures change using an ensemble
of crop and climate models. We demonstrated the
approach for Europe, where we could take advant-
age of an existing dataset for the case of two import-
ant cereal crops. We present and discuss the results
as a demonstration of the methodology, illustrating
the types of information that can be provided, includ-
ing a quantification of the uncertainties. For this test
case, our results highlighted a general increase in risk
of yield failure for maize under climate change across
Europe, particularly marked in areas characterized in

the baseline scenario by relatively high yields and a
low risk of failure. The increase of the risk of yield
failures was associated with a shift of the yield distri-
bution towards lower values and changes in shape of
the distribution that further reduced the frequency of
high yields. The adaptation potential deriving from
the adoption of later maturity hybrids appeared in
this case limited, as drought stress already intensified
despite the shorter crop cycle (Webber et al 2018).
The demonstration case illustrated a different picture
for wheat: the risk of yield failure generally declined
under future scenarios, accompanied by a shift of
the distribution towards higher values and a change
in shape increasing the frequency of extreme val-
ues at both ends of the distribution. The differen-
tial patterns of risk of failure emerging for maize and
wheat may inform adaptation strategies related to the
regional allocation of crops (Bindi and Olesen 2011,
Zimmermann et al 2017). The availability of simu-
lation results from different crop and climate mod-
els provides the opportunity of quantifying themodel
uncertainties in the definition of the spatial clusters,
in the changes in risk of yield failure and in the rel-
ative distributions. In the case study, the exploration
of uncertainties revealed that while the relative distri-
butions projected by different crop and climate mod-
els were consistent, uncertainties from crop models
could hamper the identification of the sign of changes
in the risk of yield failures.

While our intention is to demonstrate the risk
assessment method, our results are consistent with
studies looking at the drivers of yield change across
Europe. The shift of wheat yield distributions towards
higher values was explained by the fertilization
effect of increased atmospheric CO2 concentrations
(Webber et al 2018). The CO2 effect may also explain
the discrepancy between the projected changes in
wheat yields and the large negative impacts on wheat
throughout Europe outlined by statistical models
(e.g. Moore and Lobell 2014, Gammans et al 2017).
When removing this effect, the different methods
produced similar estimates of climate change impact
on wheat yields (Liu et al 2016). In our case study,
removing the CO2 effect led to an increased frequency
of low yields for wheat, particularly in the lowest
deciles (results not shown).

4.2. Relative distributions: opportunities and
challenges
Though empirical modeling of the yield probabil-
ity distribution has been performed for economic
analysis (Tack et al 2012, Malikov et al 2020,
Ramsey 2020), the majority of studies assessing cli-
mate change impact studies have focused on themean
effects of climate change, providing relatively lim-
ited insight into the distributional heterogeneity in
climate change effects. In this study, climate change
impacts were assessed for yield distributions using the
relative distribution method. In turn, changes in the
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frequency of yield failure were related to changes in
the distribution of yields.

The relative distribution method is suited to the
analysis of changing risk under climate change, where
different aspects of the yield distributions may be
affected (e.g. as a result of shifts inmean and increased
probability of extreme values).Moreover, as the shape
of the yield distribution can be skewed and interact
significantly with management factors (Day 1965),
traditional parametric methods for the representa-
tion of yield distributions may introduce bias in the
analysis of crop yields (Rötter et al 1997). The absence
of parametric assumptions, conversely, makes relat-
ive distribution ideal for the analysis of crop yields.
While relative distributions can quantify differences
occurring at any quantile of the yield distribution,
the method also allow to summarize differences into
two basic components, i.e. changes in location (mean
or median) and in shape (a general concept com-
prising higher moments of the distribution). Com-
bined with the analyses of drivers of changes in crop
yields (Webber et al 2018), this could quantify the
influence of climate drivers on specific changes in
yield distribution critical for yield failure, highlight-
ing the causes of the risk associated with the cul-
tivation of a crop in vulnerable areas. In this study,
we focused on the joint contribution of drought and
heat stress under elevated atmospheric CO2 concen-
trations. However, the relative distribution could be
applied to different production levels (e.g. potential,
drought limited, heat limited, drought-heat limited,
with and without elevated CO2 concentrations) to
gain insights in the effect of various drivers and their
interaction along the entire yield distribution under
climate change.

A main challenge in applying relative distribu-
tions to the analysis of crop yields is the need of large
enough datasets to provide reliable estimates of the
changes occurring along the entire yield distribution.
To this end, in our study data from different simula-
tion units had to be pooled, limiting the resolution
of the analysis as adaptation studies must clearly be
based on data at a higher spatial resolution. Never-
theless, our intention with the study was to provide
a proof of concept for the use of relative distribu-
tions, showing their relevance for policy and insur-
ance by outlining the broad patterns of changes in
risk of yield failure under climate change. While not
ideal due to potentially confounding effects of spatial
and temporal variability, our method to define relat-
ively homogeneous clusters with respect to yield level
and drivers and the fact that, within each cluster, spa-
tial variability had a similar influence on the reference
and comparison distributions limits such problem in
our study, focused on assessing how the importance
of heat, CO2 and drought influence heat and water
limited yields. Such shortcomings could be avoided
by using a different set of climate data as input for

the crop models. In this study, a single climate series
(30 years) was used as baseline for the generation
of future scenarios. A larger sampling of input data
series (e.g. produced by weather generators) would
make the spatial clustering unnecessary for apply-
ing the relative distributions, that could be evaluated
at a disaggregate level. Ideal sets of climate data for
the purpose would be the super-ensembles developed
by the HAPPI project (www.happimip.org/about/),
which provides bias corrected climate model outputs
with a focus on global warming impacts of 1.5 ◦C and
2 ◦C increase above pre-industrial level. These data
series are specifically developed for their use as input
to impact models, enabling an analysis of the relat-
ive risks of low-probability extreme weather events
(Mitchell et al 2017).

4.3. Limitations of the study
The study relies on the accuracy of crop models’
estimates of yield distributions. Crop models are
constructed to consider relevant yield determining
factors and often further calibrated to display a con-
sistent response to variables that are not explicitly
captured in the modeled processes. Studies conduc-
ted at field scale generally make use of extensive val-
idation to ensure cropmodels can explain a large por-
tion of the observed yield variability. For applications
at larger scales (e.g. regional and global studies), val-
idation with observed data is limited by the use of
aggregated yield statistics as reference values (Müller
et al 2017, Guarin et al 2020) and by the uncertain-
ties in crop management. Here, the analysis of yield
anomalies across NUTS2 districts revealed a tendency
of the models to overestimate baseline risk of fail-
ure across Europe (supplementary S7). This is par-
tially expected for large scale simulations, since the
specification of management, soil and varieties at an
aggregate level may underrepresent the heterogen-
eity of the real systems that acts to buffer the effects
of shocks. On the other hand, important drivers of
relatively localized low yield levels related to excess-
ive rainfall (e.g. delayed operations, poor emergence,
waterlogging, disease, nitrogen leaching or harvest
losses), frost damage or lodging are difficult to con-
sider in crop models simulations intended for large
area application (Ewert et al 2015). As a result, simu-
lated yields when these conditions prevail is likely to
be overestimated, leading in turn to an overestima-
tion of yield variability driven by heat and drought
stress. In fact, as many crop models applied in large
area studies capture only weather conditions related
to temperature and drought as drivers of interannual
yield variability, missing other weather and manage-
ment factors which act to lower yields in good years,
the end result is that simulated yield variability is
often overestimated. Finally, some models that did
not leverage canopy temperature might have under-
performed in the simulation of heat stress. However,
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we opted to keep these models in the ensemble to be
comparable to the study ofWebber et al (2018). These
authors reported that effects on phenology, CO2 fer-
tilization and drought stress had a comparatively lar-
ger effect on yield changes, justifying keeping other
models to capture more process uncertainty.

The evaluation of yield failure at farm level
remains challenging, since the finest scale allowed by
input data (25 km resolution) provides information
at an aggregate level. Due to the underlying variabil-
ity of soil and weather conditions, as well as farmers’
management practices, yield variability at the farm
level can be significantly different than at aggregate
level (Finger 2012), introducing a bias in yield risk
analysis that needs to be considered in the design of
adaptation measures at the aggregate level (Heim-
farth et al 2012). Scaling also questions the appro-
priate threshold for assessing yield failure. A com-
mon threshold at farm level is 30% for crop failure,
but the reduction of yield variability with aggregation
calls for the application of a lower threshold. Quanti-
fying the scaling errors associated with the choice of
the threshold requires yield data at the farm level that
were not available. However, Webber et al (2020b)
observed that the threshold had very small effect on
the identification of the years with the most wide-
spread occurrence of failures for different crops in
Germany. In this study, a relatively low threshold
(15%) combined with the tendency of the models to
overestimate the frequency of yield failures (supple-
mentary S7) probably explains the high frequency of
failures observed across climate scenarios.

5. Conclusions

Thiswork aimed at providing amethodology to assess
how climate changemay translate into changes in risk
of yield failures. Given the role of yield distributions
in shaping the risk profile, the analysis of relative dis-
tributions was a cornerstone of the present work. The
relative distribution methods, widely used in social
sciences, were applied here for the first time in crop
modeling. Relative distributions were used to study
the changes occurring across the entire yield distri-
bution under climate change, providing insights that
are missed by common analyses of average shifts in
crop yields. As a case study, we applied the method
to assess changing patterns of the risk of yield failure
expected across Europe for maize and wheat under
three climate change scenarios, using published res-
ults from an ensemble of crop models. The method
as applied revealed diverging patterns of changes in
yield distribution under climate change for the two
crops, associated with opposite responses in terms of
risk of yield failure. For maize, a shift of the yield dis-
tribution towards lower yields and changes in shape
of the distribution that reduced the frequency of high
yields determined an increased frequency of yield

failure under climate change. Such pattern emerged
especially in areas characterized by higher yields and
lower frequency of yield failure, and it became wide-
spread across Europe under higher radiative forcing
scenarios. For wheat, yield failures generally declined
under future scenarios, with a shift of the distribu-
tion towards higher yields and a change in shape
increasing the frequency of extreme yields favored
by increased CO2 concentrations. Our test exercise
revealed a number of challenges to be overcome in the
future applications of the method. As the relative dis-
tributions require a larger number of yields per loca-
tion than were available in the 30 year times series per
simulation unit, we performed a clustering to increase
our sample size, constraining the scale of the analysis
to an aggregate level. Finally, for reliable risk assess-
ments, modeling efforts need to be made to repres-
ent the effects of multiple stresses determining yield
failures.
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