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Digital mapping of the soil thickness of loess deposits over a calcareous bedrock in central France

Soil thickness (ST) plays an important role in regulating soil processes, vegetation growth and land suitability. Therefore, it has been listed as one of twelve basic soil properties to be delivered in GlobalSoilMap project. However, ST prediction has been reported with poor performance in previous studies. Our case study is located in the intensive agriculture Beauce area, central France. In this region, the ST mainly depends on the thickness of loess (TOL) deposits over a calcareous bedrock.

We attempted to test the TOL prediction by coupling a large soil dataset (10978 sampling sites) and 117 environmental covariates. After variable selection by recursive feature elimination, quantile regression forests (QRF) was employed for spatial modelling, as it was able to directly provide the 90% prediction intervals (PIs).

Averaging a total of 50 models, generated by repeated stratified random sampling, showed a substantial model performance with mean R 2 of 0.33, RMSE of 30.48 cm and bias of -1.20 cm. The prediction interval coverage percentage showed that 86.70% of the validation samples fall within the predefined 90% PIs, which also indicated the prediction uncertainty produced by QRF was reasonable. The relative variable importance indicated the importance of airborne gamma-ray radiometric data and Sentinel 2 products in TOL prediction. The produced TOL map with 90% PIs makes sense from a soil science and physiographic point of view. The final product can guide evidence-based decision making for agricultural land management, especially for irrigation in our case study.

Introduction

Soil thickness (ST) is an important soil property due to its influence as a controlling factor of numerous surface and subsurface soil processes. Through its influence on the plant rootable depth [START_REF] Leenaars | Mapping rootable depth and root zone plant-available water holding capacity of the soil of sub-Saharan Africa[END_REF], ST is a major controlling factor of vegetation growth and land suitability, and is a key variable to estimate available water capacity (AWC). As a consequence, ST has been retained as a mandatory soil attribute to be delivered in GlobalSoilMap products (Arrouays et al., 2014). Previously, some attempts have been made to map ST at national, continental or global levels (e.g., [START_REF] Grundy | Soil and landscape grid of Australia[END_REF][START_REF] Lacoste | Evaluating large-extent spatial modeling approaches: A case study for soil depth for France[END_REF]Mulder et al., 2016;[START_REF] Hengl | SoilGrids250m: Global gridded soil information based on machine learning[END_REF][START_REF] Chen | Probability mapping of soil thickness by random survival forest at a national scale[END_REF]. [START_REF] Grundy | Soil and landscape grid of Australia[END_REF] mapped ST in Australia using about 300,000 points of observations and environmental covariates as inputs for a Cubist model. [START_REF] Lacoste | Evaluating large-extent spatial modeling approaches: A case study for soil depth for France[END_REF] tested three digital soil mapping (DSM) approaches, based on regression tree modelling, gradient boosting modelling, and multi-resolution kriging for a dataset of ca 14,000 observations in France. [START_REF] Hengl | SoilGrids250m: Global gridded soil information based on machine learning[END_REF] mapped ST at a global scale. Predictions were based on ca. 150,000 soil profiles used for training and a stack of 158 covariates which were used to fit an ensemble of machine learning methods-random forest and gradient boosting and/or multinomial logistic regression. [START_REF] Mulder | GlobalSoilMap France: High-resolution spatial modelling the soils of France up to two meter depth[END_REF] used Cubist predictions for mainland France using ca 16,000 observation points and a set of 20 spatially exhaustive covariates. [START_REF] Chen | Probability mapping of soil thickness by random survival forest at a national scale[END_REF] further demonstrated how right-censored data can be accounted for in the ST modelling of mainland France. Using random survival forest, the probability of exceeding a given depth was modelled using freely available spatial data representing the main soil-forming factors. However, most of these results gave rather poor prediction performances compared to other soil properties such as soil organic carbon or clay content and pH (e.g., [START_REF] Mulder | GlobalSoilMap France: High-resolution spatial modelling the soils of France up to two meter depth[END_REF][START_REF] Hengl | SoilGrids250m: Global gridded soil information based on machine learning[END_REF]. In many cases, ST prediction proved to be hampered either 1) by the lack of data measurements [START_REF] Leenaars | Mapping rootable depth and root zone plant-available water holding capacity of the soil of sub-Saharan Africa[END_REF] or 2) by the fact that the collected ST data is often right-censored data (i.e. the observed ST is less than true ST, [START_REF] Chen | Probability mapping of soil thickness by random survival forest at a national scale[END_REF], or 3) because ST has a high short-range spatial variability in specific pedological contexts (e.g., [START_REF] Bourennane | Improving the kriging of a soil variable using slope gradient as external drift[END_REF][START_REF] Lacoste | Evaluating large-extent spatial modeling approaches: A case study for soil depth for France[END_REF].

Moreover, most of the examples taken from the literature were produced using digital soil mapping (DSM, McBratney et al., 2003) and in some cases, one may expect that no relevant covariate was available to improve the performance of the predictions.

For example, while topography-related covariates such as elevation or slope often explain large part of the variability of soils in a given areas, these covariates might not improve the performance of predictions in flat areas.

Mapping ST enables several applications among which are agronomy and agricultural practices (plant rootable depth, drainage, irrigation), crop growth modelling, geotechnical engineering, water balance modelling at catchment to global scale, and Quaternary science studies.

The Beauce area, located in central France is a limestone plateau irregularly covered with Quaternary loessic silt [START_REF] Macaire | Etude sédimentologique des formations superficielles sur le tracé de l'autoroute A10 entre Artenay et Meung sur Loire[END_REF][START_REF] Lorain | La géologie du calcaire de Beauce[END_REF][START_REF] Ménillet | Etude pétrographique et sédimentologique des calcaires d'Etampes et de Beauce. Formations dulcaquicoles du Stampien supérieur à l'Aquitanien dans le[END_REF].

Soil classification varies from Luvisols to Calcic and Calcaric Cambisols. The region is rather flat, and has a noticeable proportion of rather thin soils. Intensive agriculture in this region often utilizes irrigation and most of the surface area is occupied by cereal crops (mainly maize and wheat) and sugar beet. Also, the Beauce area is home of the largest aquifer of France in the underlying calcareous rock. Upper horizons were affected by peri-glacial winds that redistributed loess deposits [START_REF] Macaire | Etude sédimentologique des formations superficielles sur le tracé de l'autoroute A10 entre Artenay et Meung sur Loire[END_REF][START_REF] Bourennane | Improving the kriging of a soil variable using slope gradient as external drift[END_REF], resulting in a rather homogeneous particle-size distribution of the fine earth (i.e., silt, clay, and sand). Therefore, most of the soils consist now of silt, silt loam or silty clay loam layers derived from this aeolian deposit developed on a lacustrine limestone substrate. In general, the illuviation process occurred when the thickness of loess was the largest, resulting in less clayey topsoil textures.

The available water capacity (AWC) is the maximum amount of available water that can be stored for crop growth, therefore it is an important soil information for agricultural management. Therefore, the thickness of loess (TOL) deposit is also one of the primary factors influencing the calculation of the soil AWC. Although [START_REF] Tetegan | The effect of soil stoniness on the estimation of water retention[END_REF] demonstrated that the percentage of rock fragments was also one of the controlling factors of AWC in this region. Overall, in this region, irrigation management is of upmost importance in order to maintain crop yields, while preserving the underlying water table and water quality. Knowing the TOL is essential for determining a water balance and for piloting irrigation management. In terms of agronomy and environment, the TOL is a determining factor [START_REF] Nicoullaud | Etude de l'enracinement du blé tendre d'hiver et du maïs dans les sols argilo-limoneux de Petite Beauce[END_REF][START_REF] Ould-Mohamed | Estimating long-term drainage at a regional scale using a deterministic model[END_REF]. Therefore, the TOL should be known accurately and cheaply over the study area. Several traditional soil maps have been produced in this region, with scales ranging from 1:50,000 to 1:250,000, resulting in a various density of point scale soil information.

The objective of this study is to assess to which extent using this legacy data and environmental covariates (from existing geological maps, digital elevation model derivatives, airborne gamma-ray radiometry, and remote sensing data) in a DSM model allows to reach acceptable performances for TOL prediction. In this study, we decided to model the TOL up to a depth of 120 cm using Quantile Regression Forests (QRF) because the TOL was deemed useful for agricultural practices. Maize cropping is especially of interest because it is known for its high water requirement [START_REF] Doorenbos | Yield response to water[END_REF] and thus typically requires the largest amounts of irrigation.

The average rooting depth of maize is equal to 120 cm (British Standards Institution, 1988;[START_REF] Tetegan | The effect of soil stoniness on the estimation of water retention[END_REF]. Therefore, we only mapped the TOL up to a depth of 120 cm, as there is no difference of soil water management between soils with a TOL deeper than 120 cm and soils with a TOL of 120 cm.

Material and methods

Study area

This study was conducted in the Beauce area located at the middle Loire catchment, central France (Figure 1). It covers a total area of 4835 km 2 , of which agriculture is the dominant land use (88.5%, [START_REF] Inglada | Operational high resolution land cover map production at the country scale using satellite image time series[END_REF]. It has a continental-oceanic climate with a mean annual temperature of 11.5°C and a mean annual rainfall of 700 mm [START_REF] Paroissien | Populating soil maps with legacy data from a soil testing databases[END_REF]. Most of the soils in this study area are developed from periglacial loess deposits which covered a limestone bedrock. Cambisol (48.3%) and Luvisol (25.6%) are the major soil groups observed in this region (IUSS Working Group WRB, 2006). At the southern border of the Beauce region, some other soil groups (not developed from loess) are observed.

Soil data

We used available soil data from the French Soil Inventory Program (IGCS). The thickness of loess derived horizons (TOL) was determined by several criteria: 1) digging soil pits down to the calcareous material and 2) by auger borings. The presence of small rock fragments could in some case lead to an underestimation of TOL done by augering. Therefore, if a TOL of 120 cm was not reached, two other augerings were made randomly 0.5 m apart from the first one and the maximum TOL reached was recorded. TOL should have a texture of silt, silt loam or silty clay loam [START_REF] Bertran | A map of Pleistocene aeolian deposits in Western Europe, with special emphasis on France[END_REF][START_REF] Borderie | La couverture loessique d'Eure-et-Loir (France): Potentiel pédo-sedimentaire et organisation spatiale[END_REF]. The deeper the TOL the more the illuviation processes are pronounced and the lighter the topsoil texture.

In total, 10978 sites were used in this study to map the TOL up to a depth of 120 cm. The TOL for sites with a TOL deeper than 120 cm (n=14) was set to 120 cm before modelling to eliminate the effect of extreme values in modelling.

Environmental covariates

The environmental covariates used in this study and their data sources are listed in Table 1. These covariates provide information on the environmental factors assumingly controlling TOL, based on the Scorpan conceptual model [START_REF] Mcbratney | On digital soil mapping[END_REF]. For illustrative purposes, several covariates are shown in Figure 2.

Relief

The Digital Elevation Model of mainland France was derived from BD TOPO 3 of the French National Geographical Institute [START_REF] Ign | BD ALTI ® Version 2.0 -Descriptif de Contenu[END_REF], at 25 m resolution. SAGA GIS [START_REF] Conrad | System for Automated Geoscientific Analyses (SAGA) v. 2.1.4[END_REF] was used to calculate its derivatives (relief factors), including channel network base level (CNBL), multiresolution index of valley bottom flatness (MrVBF), plan curvature (PlC), profile curvature (PrC), slope (Sl), slope position (SlP), slope length (SlL), terrain wetness index (TWI), valley depth (VD), and vertical distance to channel network (VDCN). As the relief factor at neighbouring locations is able to provide additional useful information in modelling soil patterns [START_REF] Mcbratney | On digital soil mapping[END_REF], some previous studies investigated the potential of incorporating local neighbourhood information into the training pixels, using convolution filtering operations (e.g., [START_REF] Grinand | Extrapolating regional soil landscapes from an existing soil map: sampling intensity, validation procedures, and integration of spatial context[END_REF][START_REF] Loiseau | Satellite data integration for soil clay content modelling at a national scale[END_REF].

Filtering can be achieved by passing a moving window over the variable to calculate a value of the processing cell (central pixel) using the values of its neighbouring cells.

In this study, we used mean convolution circular windows to calculate the focal means for these relief factors with radius at 200, 500 and 1000 m [START_REF] Grinand | Extrapolating regional soil landscapes from an existing soil map: sampling intensity, validation procedures, and integration of spatial context[END_REF], which resulted in three raster layers derived from each original relief factor (25 m).

Soil

The soil type information were extracted from the French national soil type map at 1:1 M scale [START_REF] King | Development of a soil geographic database from the Soil Map of the European Communities[END_REF]. The soil types in this study area were mainly Cambisols and Luvisols. However, some Podzols, Gleysols, Fluvisols, Arenosols and Vertisols were rarely present, mainly at the southern border of the region.

Parent material

The map of parent material was extracted from the French national parent material map [START_REF] King | Development of a soil geographic database from the Soil Map of the European Communities[END_REF]. Undifferentiated alluvial deposits, calcareous rocks, clayey materials, sandy materials and loamy materials are the main parent materials in the study area. Note that the loamy materials are nearly always located over underlying calcareous rocks.

The gamma radiometric data, including Potassium (K), Thorium (Th) and Uranium (U), and total count (TC), was derived from an airborne high-resolution magnetic and radiometric survey over the Région Centre, flown by Terraquest Ltd, Canada, under the supervision of BRGM between 2008 and 2009 [START_REF] Martelet | Airborne gamma-ray spectrometry: potential for regolith-soil mapping and characterization[END_REF]. The line-spacing of the survey was 1 km and, along the flight lines the footprint of each gamma radiometric measurement was an ellipse of 150 × 250 m 2 ; accordingly the data were interpolated on 250 m grids using a standard minimum curvature interpolation.

Organisms

A land use map was extracted from the French land use map, which was produced from Sentinel 2 data at 10 m resolution, for year 2016 [START_REF] Inglada | Operational high resolution land cover map production at the country scale using satellite image time series[END_REF]. This land use map was aggregated to 25 m resolution by majority sampling and the proportions (0~100%) of the nine main land-use classes within each 25×25 m pixel (which contained 6 10×10 pixels) were also included as covariates.

The monthly normalized difference vegetation index (NDVI) from the MODIS (MCD43A4 16-day Version 6) in 500 m resolution and the PROBA-V 10-day product level 2B TOC (Copernicus, 2016) in 300 m resolution were used in this study. These 24 monthly NDVI data in 2003 (extreme warm and dry year) and 2016 (normal year) were collected and reduced into the first three principal components by principal component analysis to eliminate their multicollinearity. For more details, we refer to [START_REF] Loiseau | Satellite data integration for soil clay content modelling at a national scale[END_REF].

We also included 42 covariates related to Sentinel 2 bands (year of 2016 to 2017) and indices, which were produced in an earlier study from [START_REF] Loiseau | Satellite data integration for soil clay content modelling at a national scale[END_REF] for mainland France at 90 m resolution. The Sentinel 2 data were processed to Level-2A (atmospheric and topographic corrections) by the French National Centre for Space Studies [START_REF] Hagolle | A multi-temporal and multispectral method to estimate aerosol optical thickness over land, for the atmospheric correction of FormoSat-2, LandSat, VENμS and Sentinel-2 images[END_REF]. These covariates included 10 Sentinel 2 bands (2, 3, 4, 5, 6, 7, 8, 8A, 11 and 12), 11 spectral indices (brightness index, saturation index, hue index, coloration index, redness Index, carbonate index, ferrous iron, clay index, normalized difference 1, normalized difference 2 and grain size index) and their focal means determined by a low-pass filter with an average within a 2×2 km window. For more details, we refer to [START_REF] Loiseau | Satellite data integration for soil clay content modelling at a national scale[END_REF].

Position

The coordinates, i.e., latitude and longitude (extracted for each recorded sampling site), were used in modelling. In addition, 10 oblique geographic coordinates were calculated at angles of 15°, 30°, 45°, 60°, 75°, 105°, 120°, 135°, 150° and 165°. The oblique coordinate (OC) at an angle of θ can be calculated as below [START_REF] Møller | Oblique geographic coordinates as covariates for digital soil mapping[END_REF]:

OC = + × cos( -tan ( )) (1)
where X and Y are the latitude and longitude.

Note that when θ is 0° or 90°, the oblique coordinate equals to latitude or longitude.

Harmonization of environmental covariates

The environmental covariates had different resolutions and scales, we therefore harmonized them at 25 m resolution using nearest neighbour interpolation for spatial predictive modelling and mapping at non-visited locations.

Variable selection using recursive feature elimination

Considering the large set of environmental covariates (n=117), To select the important covariates and improve the mapping efficiency, the recursive feature elimination was performed on the whole data using rfe function in caret package (Kunn, 2020) in R (R Core Team, 2019). The model was set to Random Forest (default values with tree number of 500 and mtry of p/3 where p is the size of predictors) using 5-fold cross-validation. Seven predictor subset sizes (5, 10, 15, 20, 40, 60, 80 and 100) were tested and the model performance indicated that 80 variables (Table 2) were optimal and then used for later modelling.

Spatial predictive modelling and model performance evaluation

Quantile Regression Forest (QRF, [START_REF] Meinshausen | Quantile regression forests[END_REF] has been growingly used in DSM for delivering soil information as it is able to provide uncertainty estimates straightforwardly with a fair model performance (e.g., [START_REF] Vaysse | Using quantile regression forest to estimate uncertainty of digital soil mapping products[END_REF][START_REF] Lombardo | Modeling soil organic carbon with Quantile Regression: Dissecting predictors' effects on carbon stocks[END_REF][START_REF] Loiseau | Satellite data integration for soil clay content modelling at a national scale[END_REF]. Therefore, QRF was used for modelling TOL in this study.

Since QRF is an extension of Random Forest (RF, [START_REF] Breiman | Random forests[END_REF] 

= ( 2 
)
where wi is the weight of the sample (Xi, Yi) in the same leaf of the bootstrap tree.

The final prediction of the new sample D is approximated by the mean predictions of b bootstrap trees.

Apart from the conditional mean estimate in RF, QRF also uses the weighted samples to derive a conditional distribution. This distribution function is able to provide the probability of Y being lower than a given percentile and thus to calculate the prediction intervals. For more details about the constructions of the conditional distribution, we refer to [START_REF] Meinshausen | Quantile regression forests[END_REF].

We used the quantregForest package [START_REF] Meinshausen | quantregForest: Quantile Regression Forests[END_REF] in R (R Core Team, 2019) for implementing QRF to derive the median prediction and 90% prediction intervals (90% PIs, 5 th and 95 th quantiles). The default number of tree (ntree=500)

and minimum size of terminal nodes (nodesize=5) were used for QRF, and the number of variables randomly sampled as candidates at each split (mtry) was optimized in the caret package (Kunn, 2020) by 5-fold cross-validation in R (R Core

Team, 2019). The variable importance was determined by the increased mean square error (IncMSE, in %) between the model excluding and including a given variable, and this information was integrated in QRF model. In our case, the variable importance was calculated by the average of 50 repeated models.

Considering the highly varying soil sampling density [START_REF] Brus | Sampling for validation of digital soil maps[END_REF], we divided the study area into 20 compact equal area geographical strata (Figure 3) using the spcosa package [START_REF] Walvoort | Spatial Coverage Sampling and Random Sampling from Compact Geographical Strata[END_REF] 

R = 1 - "∑ ($ % & -$ ) ' "∑ ($ -$ % () ' (3) RMSE = - ($ % & -$ ) . ' (4) Bias = ($ % & -$ ) . ' ( 5 
)
where n is the sample size of observations, $ and $ % & are observed value and predicted value for sample i, and $ % ( is the average of observed values.

In addition, we also reported the model performance by the internal validation using out-of-bag data (around 34% of data that is not used for growing each tree) in QRF. The final TOL map and its 90% PIs were produced by QRF fitted using all the sampling sites.

Results and discussion

Summary of TOL in the Beauce area

Table 3 displays the statistics of the TOL in the Beauce area. Among 10978 sites, TOL ranged from 0 to 120 cm, with a mean and median TOL at 36.46 cm and 30 cm, respectively. A skewness of 0.66 (larger than 0.5) indicated the data were slightly positively skewed while a kurtosis less than 3 (2.85) showed that the data were lighttailed. Though the log transformation, i.e. log(TOL+a), is able to convert soil data to normal distribution (a skewness less than 0.5 and a kurtosis close to 3), it did not improve the model performance. Therefore, instead of data transformation, we used the original TOL data for spatial modelling in this study.

Figure 4 presents the TOL located in 20 compact equal area geographical strata.

It showed a large difference of number of sampling sites among these 20 geographical strata, ranging from 22 to 1351. These geographical strata with high median TOL (>60 cm) had much less sampling sites (51 to 201), and this is the main reason for evaluating the model performance by random stratified sampling.

Figure 5 shows the Pearson correlations coefficients between TOL and top 30 environmental covariates. Elevation and its focal mean derivatives had the highest positive correlations (r > 0.3). Other positively correlated covariates were related to oblique coordinates, channel network base level (CNBL), graphic coordinates, gamma-ray radiometry and two Sentinel 2 indexes (grain size index and clay index).

Negative correlations with TOL were found with valley depth, Sentinel 2 bands and its indexes. Overall, the correlations between TOL and covariates were found to be rather low (|r| < 0.35).

Model performance of Quantile Random Forest

The mean R 2 , RMSE and bias from the internal validation using the out-of-bag data in QRF were 0.31, 26.88 cm and 0.23 cm (data not shown). Figure 6 indicates the model performance after we repeated 50 times the validation procedure using QRF. The mean R 2 and RMSE were 0.33 and 30.48 cm respectively. The mean bias of -1.20 cm indicated that the prediction was almost un-biased for 50 repeats. The mean PICP indicated that on average 86.7% of the validation samples fall within the defined 90% PIs, therefore the uncertainty estimates from the QRF model was valid for non-visited locations.

As shown in Table 4, the global soil thickness (ST) products [START_REF] Hengl | SoilGrids250m: Global gridded soil information based on machine learning[END_REF][START_REF] Shangguan | Mapping the global depth to bedrock for land surface modeling[END_REF] had better model performance than those at national or regional scale [START_REF] Guerrero | Building a national framework for pedometric mapping: soil depth as an example for Mexico[END_REF][START_REF] Kidd | Eighty-metre resolution 3D soil-attribute maps for Tasmania, Australia[END_REF][START_REF] Vaysse | Evaluating digital soil mapping approaches for mapping GlobalSoilMap soil properties from legacy data in Languedoc-Roussillon (France)[END_REF][START_REF] Lacoste | Evaluating large-extent spatial modeling approaches: A case study for soil depth for France[END_REF][START_REF] Mulder | GlobalSoilMap France: High-resolution spatial modelling the soils of France up to two meter depth[END_REF][START_REF] Zhang | Estimating effective soil depth at regional scales: Legacy maps versus environmental covariates[END_REF]. This may be attributed to the fact that global ST products include a substantial proportion of very thin soils (i.e., soils prone to severe erosion) and of very thick ones (i.e., Arenosols in desert dunes, [START_REF] Shangguan | Mapping the global depth to bedrock for land surface modeling[END_REF]. There was no large difference of model performance between national and regional products, even if we used nearly 11000 sampling sites in this study. This is because the TOL is highly variable at short distances. By incorporating a large exhaustive set of environmental covariates, however, the map produced in this study performed slightly better than almost all the previous studies at regional and national scales.

The large range between upper and lower limits of 90% PIs for R 2 and RMSE indicated the randomness involved in data split brought a large amount of uncertainty in model evaluation. Therefore, instead of a single time data split, repeated random (stratified) sampling adopted in this study would provide more robust estimates for the model performance so as to avoid under-or over-optimistic decision making in management of soil resources. Interestingly, the variable importance in the QRF model was not in line with the correlations between TOL and covariates (see Figure 5). This may be due to the fact that the relations between TOL and covariates are not linear. If the relationships were linear then the most important covariates should have been those with highest |r| which is not the case in this study. Another reason may be that the importance of covariates results also from interactions between them, that are not visible using

Variable importance of environmental covariates

Pearson correlations but that are taken into account in QRF model.

Our results indicate a high importance of airborne gamma radiometric data in TOL modelling as they can capture soil information relevant to soil texture and to the presence of the calcareous rock at low depth. Indeed, the substrate of part of the study area (composed carbonates) is completely different from the TOL and it has been shown that calcium mitigates surface gamma-spectrometric signatures because it has a poor gamma-spectrometric response [START_REF] Martelet | Regional regolith parameters prediction using the proxy of airborne gamma ray spectrometry[END_REF]. Therefore, it is not surprising that gamma radiometric data plays an important role, especially for predicting thin TOL. Also, the large plateaus with deep TOL in the northern part are depleted in K (see Figure 2). This is because soils with large TOL were prone to illuviation, resulting in lower clay content in topsoil. So in this case, it is an indirect relationship with TOL. Our results also confirm the contribution of neighbouring information (e.g, focal hue index, slope position 1000m, TWI 1000m, focal normalized difference) of relief and organism factors in spatial modelling of TOL, which implicates the multi-scale influence of covariates on soil properties. Concerning slope and TWI, the importance of this neighbouring information may be due to the gradient of TOL that shows that very large flat plateaus (mainly in the north) are characterized by a deeper TOL. These derivatives likely performed well because it is not the same geomorphological context if you have a flat location inside a very large flat plateau than if you have locally flat "pixels" in a region where the relief is more accentuated, such for instance in the southwest [START_REF] Behrens | Teleconnections in spatial modelling[END_REF]. Other studies also have

shown the potential of multi-scale covariates derivatives in improving model performance in DSM (Behrens et al., 2018b[START_REF] Behrens | Teleconnections in spatial modelling[END_REF]. Compared to simple convolution approach (focal mean), wavelet transforms, empirical mode decomposition, and the Gaussian scale space may even better represent the multi-scale information of environmental covariates [START_REF] Behrens | Multi-scale digital terrain analysis and feature selection for digital soil mapping[END_REF](Behrens et al., , 2018a(Behrens et al., , 2018b;;Biswas et al., 2013aBiswas et al., , 2013b;;[START_REF] Zhou | Revealing the scalespecific controls of soil organic matter at large scale in Northeast and North China Plain[END_REF][START_REF] Huang | Unravelling scale-and location-specific variations in soil properties using the 2-dimensional empirical mode decomposition[END_REF][START_REF] Zhao | Identifying localized and scale-specific multivariate controls of soil organic matter variations using multiple wavelet coherence[END_REF][START_REF] Liang | National digital soil map of organic matter in topsoil and its associated uncertainty in 1980's China[END_REF] so as to improve model performance in DSM. The Sentinel 2 spectral bands may not always provide direct information related to soil, while a great potential has been shown from its derived indicators (e.g., NDVI, hue index, normalized difference, ferrous iron, and grain size index) in this study. Considering its high spatial and temporal resolution, Sentinel 2 has a great potential in delivering useful information of soil surface for DSM across scales [START_REF] Gholizadeh | Soil organic carbon and texture retrieving and mapping using proximal, airborne and Sentinel-2 spectral imaging[END_REF][START_REF] Castaldi | Evaluating the capability of the Sentinel 2 data for soil organic carbon prediction in croplands[END_REF][START_REF] Loiseau | Satellite data integration for soil clay content modelling at a national scale[END_REF][START_REF] Vaudour | Sentinel-2 image capacities to predict common topsoil properties of temperate and Mediterranean agroecosystems[END_REF]. Some of the Sentinel 2 data we used come from a mosaic of images of bare soils built by [START_REF] Loiseau | Satellite data integration for soil clay content modelling at a national scale[END_REF]. Therefore, these Sentinel 2 data provide direct information on soil colour which may reflect thin TOL or absence of TOL through the presence of white calcareous rocks at the surface. They may indirectly reflect also texture through bright colours due to slaking that occurs mainly on very loamy topsoil soils which correspond to the deepest TOL

where Luvisols have developed. The land use map produced by Sentinel 2 was not among the top 30 environmental covariates as it may be masked by the NDVI data due to their correlation or NDVI better explains the spatial variability than land use map. Therefore, relative importance of environmental covariates should be taken with caution as high contributing covariates can inadvertently bear part of the contribution of the less contributing covariates [START_REF] Chen | Fine resolution map of top-and subsoil carbon sequestration potential in France[END_REF].

Maps of thickness of loess and its 90% prediction intervals

Figure 8 presents the spatial distribution of TOL and its lower and upper limits of 90% PIs. It displays the general increasing thickness of loess soils from south-west to north in the study area. Very shallow loess (<10 cm) was found in south-west of the study area, and very deep loess (>100 cm) was mainly found in the northern part.

Highest TOL were mainly located in rather flat areas located on high elevation plateaus, while shallow loess was mainly located at lower elevations and in more dissected relief, especially in the vicinity of small valleys. Note that there is a border effect from the south-west to the west of the region. This border effect corresponds to the outcropping limit of the TOL, where sandy or clayey materials locally overlay the calcareous. The regions with thin soil (<10 cm with a lot of outcrops of the calcareous) correspond to the areas with black gamma-ray radiometry patterns matching on steep slopes around the drainage lines (mostly rivers).

The maps of lower and upper limits of 90% PIs clearly show different spatial structures. On the northern part with the highest elevations and high mean TOL, the 95 th percentile is equal or deeper than 1.2 m, which means that high TOL are largely dominant in these plateaus. On the contrary the extreme southern part of the region exhibits TOL that rarely exceed 0.6 m. Moreover, except for some very local areas having a high mean TOL, the 5 th percentile map suggests that the upper calcareous surface is undulating at very short distances and that local calcareous outcrops may be found in nearly all the southern part of the study area. The wind direction of loess deposits was from northwest [START_REF] Bertran | A map of Pleistocene aeolian deposits in Western Europe, with special emphasis on France[END_REF][START_REF] Borderie | La couverture loessique d'Eure-et-Loir (France): Potentiel pédo-sedimentaire et organisation spatiale[END_REF]. The Beauce area corresponds to the southern margin of the Paris basin loess deposits which show a clear gradient from North to South [START_REF] Bertran | A map of Pleistocene aeolian deposits in Western Europe, with special emphasis on France[END_REF]. The gradient of loess that we observe in the Beauce region from north to south may be due to this. In addition, the northern part is characterized by large flat plateaus where no erosion occurred, except along the main deep valleys, whereas the southwestern part is characterized by a local relief that may have induced erosion and redistribution processes [START_REF] Macaire | Etude sédimentologique des formations superficielles sur le tracé de l'autoroute A10 entre Artenay et Meung sur Loire[END_REF]. All these observations were confirmed by the expert knowledge of the soil surveyors who did some traditional reconnaissance soil mapping in this region. Interestingly, when doing reconnaissance maps at 1:250,000 the soil surveyors delineated small natural regions in order to create the broadest geographical ensembles of the legend (Richer- [START_REF] Richer-De-Forges | Notice explicative de la carte des pédopaysages du Loiret à 1/250 000 (Référentiel Régional Pédologique de la région Centre)[END_REF][START_REF] Richer-De-Forges | Notice explicative de la carte des pédopaysages du Loiret à 1/250 000 (Référentiel Régional Pédologique de la région Centre)[END_REF]. Figure 9 shows these small natural regions drawn by the soil surveyors on the study area. The comparison between Figure 8 and Figure 9 clearly shows that the map of the TOL makes sense both from soil and physiography point of views.

One should keep in mind that 90% PI is a very large PI. Therefore, it is normal that such wide ranges are found. Another reason for the large PI comes from the fact that our map does not have very high model performance, and there is still a large room to improve it. Useful outputs for irrigation or drainage management, however, are maps of probability of exceeding a given depth for TOL in the study area (see an example in the next section).

Example of application

One example of application is to map the probability of the TOL to exceed a given depth or, on the contrary, to map the probability of the TOL to be less than a given value. Figure 10 displays an example of these practical applications, which extracts the probability of exceeding of 30 cm from the function between the TOL and prediction quantile (from 0 to 100% with an interval of 2%) within the QRF model. The soils that have a very low probability to exceed a 30 cm TOL are unsuitable for conventional tillage and have a very low AWC. Therefore, optimizing the irrigation on these soils should greatly save water.

Conclusion

In this study, we utilized a large soil dataset (10978 sampling sites) and 117 environmental covariates relevant to soil, organisms, relief, parent material and spatial position for mapping thickness of loess at a regional scale. The 50 repeated Quantile Random Forest had an average R 2 of 0.33, which was slightly better than those obtained in most previous studies at regional or national scale (R 2 of 0.11~0.41). A PICP of 86.70% showed that around 86.70% of the validation samples fall within the predefined 90% PIs, which indicated that the prediction uncertainty produced by Quantile Random Forest was reasonable and can be properly used in decision making of land management. The relative importance of environmental covariates indicated the importance of elevation and gamma radiometry in modelling thickness of loess and also proved the necessity of incorporating neighbour information in relief and organisms for spatial modelling. The produced map of thickness of loess and its 90% prediction intervals made sense from a soil science perspective. This map can be further used for efficient irrigation management as well as crop growth and yield modelling. Figure 10 The probability of exceeding 30 cm for TOL in the study area. The probability at 30 cm is extracted from the probability distribution of Quantile Random Forest for each pixel.

  variable selection was applied by recursive feature elimination (Kunn, 2020) prior to fitting the spatial predictive model. The recursive feature elimination (incorporating resampling) adopts a backwards selection, which includes several steps: (1) split data into training and test set by resampling (i.e., k-fold cross-validation); (2) train the model on the training set using all predictors, calculate the model performance on the test set, and rank predictors using their model importance; (3) for each predictor subset size Si (i=1, 2, …, s), train the model on the training set using the Si most important predictors, and calculate the model performance on the test set; (4) compare the model performance profile over the Si on the test set, and determine the optimal number of predictors.

  , we start with RF. Assume X and Y are the predictor variables and responses, for regression, RF generates a large number (b) of bootstrap trees by using m training samples (Xi,Yi), i=1,…, m. Here, bootstrap refers to repeated (b times) selection of a random sample with replacement of the training samples. For each node in a bootstrap tree, a random subset of the predictor variables is used for split-point selection. The prediction of a bootstrap tree for a new sample D=Xd is the conditional mean estimate ( ) of Y, which can be represented by:

  in R (R Core Team, 2019), and performed stratified random sampling (5 sites for each strata) for selecting the validation set. It resulted in a set of 10878 sites for model calibration and 100 sites for model validation. To derive a robust result, we repeated this procedure 50 times and took the average as the final model performance. Four indicators were used to evaluate the model performance in validation set: (1) modelling efficiency (R 2 ); (2) root mean square error (RMSE); (3) bias; (4) prediction interval coverage percentage (PICP), which describes the percentage of the observed TOL falls within the estimated upper and lower 90% PIs.

Figure 7

 7 Figure 7 displays the top 30 environmental covariates in QRF model calculated as the average of 50 repeats. It indicated that the gamma radiometric data (U, Th and TC) and hue index (focal mean) calculated from Sentinel 2 images were the most important environmental covariates in modelling TOL in the study area. They were followed by longitude, NDVI PC1, slope position (with a radius of 1000 m), TWI (with a radius of 1000 m), normalized difference (focal mean) and grain size index (focal mean), representing position, organisms and relief factors in Scorpan conceptual model. For many relief (e.g., slope position, TWI, VDCN, curvature, valley depth, CNBL, elevation, slope) and organisms (e.g., hue index, normalized difference, grain size index, ferrous iron) factors, their derivatives calculated from neighbouring information performed better than original covariates. Spatial position, i.e., latitude and longitude, were identified important in Figure 7 while oblique coordinates were not listed among the top 30 covariates.
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 1234 Figures Figure 1 Study area and soil sampling sites, the Beauce area that locates at the middle Loire catchment, central France

Figure 5

 5 Figure 5 Pearson correlation coefficient (r) between TOL and top correlated environmental covariates (r > 0.15 or r < -0.15).
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 67 Figure 6 Model performance of 50 repeats evaluated by R 2 (a), RMSE (b), bias (c) and coverage of PICP (d) on validation set
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 89 Figure 8 Spatial distribution of the thickness of loess and its 90% prediction intervals

  

Acknowledgement

Dominique Arrouays is coordinator, Vera Leatitia Mulder is member, and Anne C. Richer-de-Forges, and Guillaume Martelet are collaborators of the Research Consortium GLADSOILMAP supported by "LE STUDIUM" Loire Valley Institute for Advances Research Studies. This work was funded by the French National Research Agency (Soilserv program, ANR 16 CE32 0005 01). Songchao Chen has received the support of China Scholarship Council for 3 years' Ph.D. study in INRAE and Agrocampus Ouest (under grant agreement no. 201606320211). We also acknowledge Dr. Hélène Tissoux (BRGM, France) for sharing her knowledge on loess deposits in France and the Beauce region.

Tables