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Abstract: 1 

Soil thickness (ST) plays an important role in regulating soil processes, 2 

vegetation growth and land suitability. Therefore, it has been listed as one of twelve 3 

basic soil properties to be delivered in GlobalSoilMap project. However, ST prediction 4 

has been reported with poor performance in previous studies. Our case study is 5 

located in the intensive agriculture Beauce area, central France. In this region, the ST 6 

mainly depends on the thickness of loess (TOL) deposits over a calcareous bedrock. 7 

We attempted to test the TOL prediction by coupling a large soil dataset (10978 8 

sampling sites) and 117 environmental covariates. After variable selection by 9 

recursive feature elimination, quantile regression forests (QRF) was employed for 10 

spatial modelling, as it was able to directly provide the 90% prediction intervals (PIs). 11 

Averaging a total of 50 models, generated by repeated stratified random sampling, 12 

showed a substantial model performance with mean R2 of 0.33, RMSE of 30.48 cm 13 

and bias of -1.20 cm. The prediction interval coverage percentage showed that 86.70% 14 

of the validation samples fall within the predefined 90% PIs, which also indicated the 15 

prediction uncertainty produced by QRF was reasonable. The relative variable 16 

importance indicated the importance of airborne gamma-ray radiometric data and 17 

Sentinel 2 products in TOL prediction. The produced TOL map with 90% PIs makes 18 

sense from a soil science and physiographic point of view. The final product can 19 

guide evidence-based decision making for agricultural land management, especially 20 

for irrigation in our case study. 21 



1. Introduction 22 

Soil thickness (ST) is an important soil property due to its influence as a 23 

controlling factor of numerous surface and subsurface soil processes. Through its 24 

influence on the plant rootable depth (Leenaars et al., 2018), ST is a major 25 

controlling factor of vegetation growth and land suitability, and is a key variable to 26 

estimate available water capacity (AWC). As a consequence, ST has been retained 27 

as a mandatory soil attribute to be delivered in GlobalSoilMap products (Arrouays et 28 

al., 2014). Previously, some attempts have been made to map ST at national, 29 

continental or global levels (e.g., Grundy et al., 2015; Lacoste et al., 2016; Mulder et 30 

al., 2016; Hengl et al., 2017; Chen et al., 2019). Grundy et al. (2015) mapped ST in 31 

Australia using about 300,000 points of observations and environmental covariates 32 

as inputs for a Cubist model. Lacoste et al. (2016) tested three digital soil mapping 33 

(DSM) approaches, based on regression tree modelling, gradient boosting modelling, 34 

and multi-resolution kriging for a dataset of ca 14,000 observations in France. Hengl 35 

et al. (2017) mapped ST at a global scale. Predictions were based on ca. 150,000 36 

soil profiles used for training and a stack of 158 covariates which were used to fit an 37 

ensemble of machine learning methods—random forest and gradient boosting and/or 38 

multinomial logistic regression. Mulder et al. (2016) used Cubist predictions for 39 

mainland France using ca 16,000 observation points and a set of 20 spatially 40 

exhaustive covariates. Chen et al. (2019) further demonstrated how right-censored 41 

data can be accounted for in the ST modelling of mainland France. Using random 42 

survival forest, the probability of exceeding a given depth was modelled using freely 43 

available spatial data representing the main soil-forming factors. However, most of 44 

these results gave rather poor prediction performances compared to other soil 45 

properties such as soil organic carbon or clay content and pH (e.g., Mulder et al., 46 

2016; Hengl et al., 2017). In many cases, ST prediction proved to be hampered either 47 

1) by the lack of data measurements (Leenaars et al., 2018) or 2) by the fact that the 48 

collected ST data is often right-censored data (i.e. the observed ST is less than true 49 

ST, Chen et al., 2019), or 3) because ST has a high short-range spatial variability in 50 

specific pedological contexts (e.g., Bourennane et al., 1996; Lacoste et al., 2016). 51 

Moreover, most of the examples taken from the literature were produced using digital 52 

soil mapping (DSM, McBratney et al., 2003) and in some cases, one may expect that 53 

no relevant covariate was available to improve the performance of the predictions. 54 



For example, while topography-related covariates such as elevation or slope often 55 

explain large part of the variability of soils in a given areas, these covariates might 56 

not improve the performance of predictions in flat areas. 57 

Mapping ST enables several applications among which are agronomy and 58 

agricultural practices (plant rootable depth, drainage, irrigation), crop growth 59 

modelling, geotechnical engineering, water balance modelling at catchment to global 60 

scale, and Quaternary science studies. 61 

The Beauce area, located in central France is a limestone plateau irregularly 62 

covered with Quaternary loessic silt (Macaire, 1971; Lorain, 1973; Ménillet, 1974). 63 

Soil classification varies from Luvisols to Calcic and Calcaric Cambisols. The region 64 

is rather flat, and has a noticeable proportion of rather thin soils. Intensive agriculture 65 

in this region often utilizes irrigation and most of the surface area is occupied by 66 

cereal crops (mainly maize and wheat) and sugar beet. Also, the Beauce area is 67 

home of the largest aquifer of France in the underlying calcareous rock. Upper 68 

horizons were affected by peri-glacial winds that redistributed loess deposits 69 

(Macaire, 1971; Bourennane et al., 1996), resulting in a rather homogeneous 70 

particle-size distribution of the fine earth (i.e., silt, clay, and sand). Therefore, most of 71 

the soils consist now of silt, silt loam or silty clay loam layers derived from this aeolian 72 

deposit developed on a lacustrine limestone substrate. In general, the illuviation 73 

process occurred when the thickness of loess was the largest, resulting in less clayey 74 

topsoil textures. 75 

The available water capacity (AWC) is the maximum amount of available water 76 

that can be stored for crop growth, therefore it is an important soil information for 77 

agricultural management. Therefore, the thickness of loess (TOL) deposit is also one 78 

of the primary factors influencing the calculation of the soil AWC. Although Tetegan 79 

et al. (2015) demonstrated that the percentage of rock fragments was also one of the 80 

controlling factors of AWC in this region. Overall, in this region, irrigation 81 

management is of upmost importance in order to maintain crop yields, while 82 

preserving the underlying water table and water quality. Knowing the TOL is essential 83 

for determining a water balance and for piloting irrigation management. In terms of 84 

agronomy and environment, the TOL is a determining factor (Nicoullaud et al., 1995; 85 

Ould-Mohamed et al., 1997). Therefore, the TOL should be known accurately and 86 

cheaply over the study area. Several traditional soil maps have been produced in this 87 



region, with scales ranging from 1:50,000 to 1:250,000, resulting in a various density 88 

of point scale soil information. 89 

The objective of this study is to assess to which extent using this legacy data and 90 

environmental covariates (from existing geological maps, digital elevation model 91 

derivatives, airborne gamma-ray radiometry, and remote sensing data) in a DSM 92 

model allows to reach acceptable performances for TOL prediction. In this study, we 93 

decided to model the TOL up to a depth of 120 cm using Quantile Regression 94 

Forests (QRF) because the TOL was deemed useful for agricultural practices. Maize 95 

cropping is especially of interest because it is known for its high water requirement 96 

(Doorenbos et al., 1978) and thus typically requires the largest amounts of irrigation. 97 

The average rooting depth of maize is equal to 120 cm (British Standards Institution, 98 

1988; Tetegan et al., 2015). Therefore, we only mapped the TOL up to a depth of 99 

120 cm, as there is no difference of soil water management between soils with a TOL 100 

deeper than 120 cm and soils with a TOL of 120 cm. 101 

 102 

2. Material and methods 103 

2.1. Study area 104 

This study was conducted in the Beauce area located at the middle Loire 105 

catchment, central France (Figure 1). It covers a total area of 4835 km2, of which 106 

agriculture is the dominant land use (88.5%, Inglada et al., 2017). It has a 107 

continental-oceanic climate with a mean annual temperature of 11.5°C and a mean 108 

annual rainfall of 700 mm (Paroissien et al., 2014). Most of the soils in this study area 109 

are developed from periglacial loess deposits which covered a limestone bedrock. 110 

Cambisol (48.3%) and Luvisol (25.6%) are the major soil groups observed in this 111 

region (IUSS Working Group WRB, 2006). At the southern border of the Beauce 112 

region, some other soil groups (not developed from loess) are observed. 113 

2.2. Soil data 114 

We used available soil data from the French Soil Inventory Program (IGCS). The 115 

thickness of loess derived horizons (TOL) was determined by several criteria: 1) 116 

digging soil pits down to the calcareous material and 2) by auger borings. The 117 

presence of small rock fragments could in some case lead to an underestimation of 118 

TOL done by augering. Therefore, if a TOL of 120 cm was not reached, two other 119 



augerings were made randomly 0.5 m apart from the first one and the maximum TOL 120 

reached was recorded. TOL should have a texture of silt, silt loam or silty clay loam 121 

(Bertran et al., 2016; Borderie et al., 2017). The deeper the TOL the more the 122 

illuviation processes are pronounced and the lighter the topsoil texture. 123 

In total, 10978 sites were used in this study to map the TOL up to a depth of 120 124 

cm. The TOL for sites with a TOL deeper than 120 cm (n=14) was set to 120 cm 125 

before modelling to eliminate the effect of extreme values in modelling. 126 

2.3. Environmental covariates 127 

The environmental covariates used in this study and their data sources are listed 128 

in Table 1. These covariates provide information on the environmental factors 129 

assumingly controlling TOL, based on the Scorpan conceptual model (McBratney et 130 

al., 2003). For illustrative purposes, several covariates are shown in Figure 2. 131 

2.3.1. Relief 132 

The Digital Elevation Model of mainland France was derived from BD TOPO 3 of 133 

the French National Geographical Institute (IGN, 2011), at 25 m resolution. SAGA 134 

GIS (Conrad et al., 2015) was used to calculate its derivatives (relief factors), 135 

including channel network base level (CNBL), multiresolution index of valley bottom 136 

flatness (MrVBF), plan curvature (PlC), profile curvature (PrC), slope (Sl), slope 137 

position (SlP), slope length (SlL), terrain wetness index (TWI), valley depth (VD), and 138 

vertical distance to channel network (VDCN). As the relief factor at neighbouring 139 

locations is able to provide additional useful information in modelling soil patterns 140 

(McBratney et al., 2003), some previous studies investigated the potential of 141 

incorporating local neighbourhood information into the training pixels, using 142 

convolution filtering operations (e.g., Grinand et al., 2008; Loiseau et al., 2019). 143 

Filtering can be achieved by passing a moving window over the variable to calculate 144 

a value of the processing cell (central pixel) using the values of its neighbouring cells. 145 

In this study, we used mean convolution circular windows to calculate the focal 146 

means for these relief factors with radius at 200, 500 and 1000 m (Grinand et al., 147 

2008), which resulted in three raster layers derived from each original relief factor (25 148 

m). 149 

2.3.2. Soil 150 



The soil type information were extracted from the French national soil type map 151 

at 1:1 M scale (King et al., 1994). The soil types in this study area were mainly 152 

Cambisols and Luvisols. However, some Podzols, Gleysols, Fluvisols, Arenosols and 153 

Vertisols were rarely present, mainly at the southern border of the region. 154 

2.3.3. Parent material 155 

The map of parent material was extracted from the French national parent 156 

material map (King et al., 1994). Undifferentiated alluvial deposits, calcareous rocks, 157 

clayey materials, sandy materials and loamy materials are the main parent materials 158 

in the study area. Note that the loamy materials are nearly always located over 159 

underlying calcareous rocks.  160 

The gamma radiometric data, including Potassium (K), Thorium (Th) and 161 

Uranium (U), and total count (TC), was derived from an airborne high-resolution 162 

magnetic and radiometric survey over the Région Centre, flown by Terraquest Ltd, 163 

Canada, under the supervision of BRGM between 2008 and 2009 (Martelet et al., 164 

2014). The line-spacing of the survey was 1 km and, along the flight lines the 165 

footprint of each gamma radiometric measurement was an ellipse of 150 × 250 m2; 166 

accordingly the data were interpolated on 250 m grids using a standard minimum 167 

curvature interpolation. 168 

2.3.4. Organisms 169 

A land use map was extracted from the French land use map, which was 170 

produced from Sentinel 2 data at 10 m resolution, for year 2016 (Inglada et al., 2017). 171 

This land use map was aggregated to 25 m resolution by majority sampling and the 172 

proportions (0~100%) of the nine main land-use classes within each 25×25 m pixel 173 

(which contained 6 10×10 pixels) were also included as covariates. 174 

The monthly normalized difference vegetation index (NDVI) from the MODIS 175 

(MCD43A4 16-day Version 6) in 500 m resolution and the PROBA-V 10-day product 176 

level 2B TOC (Copernicus, 2016) in 300 m resolution were used in this study. These 177 

24 monthly NDVI data in 2003 (extreme warm and dry year) and 2016 (normal year) 178 

were collected and reduced into the first three principal components by principal 179 

component analysis to eliminate their multicollinearity. For more details, we refer to 180 

Loiseau et al. (2019). 181 



We also included 42 covariates related to Sentinel 2 bands (year of 2016 to 2017) 182 

and indices, which were produced in an earlier study from Loiseau et al. (2019) for 183 

mainland France at 90 m resolution. The Sentinel 2 data were processed to Level-2A 184 

(atmospheric and topographic corrections) by the French National Centre for Space 185 

Studies (Hagolle et al., 2015). These covariates included 10 Sentinel 2 bands (2, 3, 4, 186 

5, 6, 7, 8, 8A, 11 and 12), 11 spectral indices (brightness index, saturation index, hue 187 

index, coloration index, redness Index, carbonate index, ferrous iron, clay index, 188 

normalized difference 1, normalized difference 2 and grain size index) and their focal 189 

means determined by a low-pass filter with an average within a 2×2 km window. For 190 

more details, we refer to Loiseau et al. (2019). 191 

2.3.5. Position 192 

The coordinates, i.e., latitude and longitude (extracted for each recorded 193 

sampling site), were used in modelling. In addition, 10 oblique geographic 194 

coordinates were calculated at angles of 15°, 30°, 45°, 60°, 75°, 105°, 120°, 135°, 195 

150° and 165°. The oblique coordinate (OC) at an angle of θ can be calculated as 196 

below (Møller et al., 2019): 197 

OC = ��� + �� × cos(� − tan��(��))     (1) 198 

where X and Y are the latitude and longitude. 199 

Note that when θ is 0° or 90°, the oblique coordinate equals to latitude or 200 

longitude. 201 

2.3.6. Harmonization of environmental covariates 202 

The environmental covariates had different resolutions and scales, we therefore 203 

harmonized them at 25 m resolution using nearest neighbour interpolation for spatial 204 

predictive modelling and mapping at non-visited locations. 205 

2.4. Variable selection using recursive feature elimination 206 

Considering the large set of environmental covariates (n=117), variable selection 207 

was applied by recursive feature elimination (Kunn, 2020) prior to fitting the spatial 208 

predictive model. The recursive feature elimination (incorporating resampling) adopts 209 

a backwards selection, which includes several steps: (1) split data into training and 210 

test set by resampling (i.e., k-fold cross-validation); (2) train the model on the training 211 

set using all predictors, calculate the model performance on the test set, and rank 212 



predictors using their model importance; (3) for each predictor subset size Si (i=1, 213 

2, …, s), train the model on the training set using the Si most important predictors, 214 

and calculate the model performance on the test set; (4) compare the model 215 

performance profile over the Si on the test set, and determine the optimal number of 216 

predictors. 217 

To select the important covariates and improve the mapping efficiency, the 218 

recursive feature elimination was performed on the whole data using rfe function in 219 

caret package (Kunn, 2020) in R (R Core Team, 2019). The model was set to 220 

Random Forest (default values with tree number of 500 and mtry of p/3 where p is 221 

the size of predictors) using 5-fold cross-validation. Seven predictor subset sizes (5, 222 

10, 15, 20, 40, 60, 80 and 100) were tested and the model performance indicated 223 

that 80 variables (Table 2) were optimal and then used for later modelling. 224 

2.5. Spatial predictive modelling and model performance evaluation 225 

Quantile Regression Forest (QRF, Meinshausen, 2006) has been growingly used 226 

in DSM for delivering soil information as it is able to provide uncertainty estimates 227 

straightforwardly with a fair model performance (e.g., Vaysse and Lagacherie, 2017; 228 

Lombardo et al., 2018; Loiseau et al., 2019). Therefore, QRF was used for modelling 229 

TOL in this study. 230 

Since QRF is an extension of Random Forest (RF, Breiman, 2001), we start with 231 

RF. Assume X and Y are the predictor variables and responses, for regression, RF 232 

generates a large number (b) of bootstrap trees by using m training samples (Xi,Yi), 233 

i=1,…, m. Here, bootstrap refers to repeated (b times) selection of a random sample 234 

with replacement of the training samples. For each node in a bootstrap tree, a 235 

random subset of the predictor variables is used for split-point selection. The 236 

prediction of a bootstrap tree for a new sample D=Xd is the conditional mean 237 

estimate (��) of Y, which can be represented by: 238 

�� = � ����     (2)�
��  239 

where wi is the weight of the sample (Xi, Yi) in the same leaf of the bootstrap tree. 240 

The final prediction of the new sample D is approximated by the mean predictions of 241 

b bootstrap trees. 242 



Apart from the conditional mean estimate in RF, QRF also uses the weighted 243 

samples to derive a conditional distribution. This distribution function is able to 244 

provide the probability of Y being lower than a given percentile and thus to calculate 245 

the prediction intervals. For more details about the constructions of the conditional 246 

distribution, we refer to Meinshausen (2006). 247 

We used the quantregForest package (Meinshausen, 2017) in R (R Core Team, 248 

2019) for implementing QRF to derive the median prediction and 90% prediction 249 

intervals (90% PIs, 5th and 95th quantiles). The default number of tree (ntree=500) 250 

and minimum size of terminal nodes (nodesize=5) were used for QRF, and the 251 

number of variables randomly sampled as candidates at each split (mtry) was 252 

optimized in the caret package (Kunn, 2020) by 5-fold cross-validation in R (R Core 253 

Team, 2019). The variable importance was determined by the increased mean 254 

square error (IncMSE, in %) between the model excluding and including a given 255 

variable, and this information was integrated in QRF model. In our case, the variable 256 

importance was calculated by the average of 50 repeated models. 257 

Considering the highly varying soil sampling density (Brus et al., 2011), we 258 

divided the study area into 20 compact equal area geographical strata (Figure 3) 259 

using the spcosa package (Walvoort et al., 2020) in R (R Core Team, 2019), and 260 

performed stratified random sampling (5 sites for each strata) for selecting the 261 

validation set. It resulted in a set of 10878 sites for model calibration and 100 sites for 262 

model validation. To derive a robust result, we repeated this procedure 50 times and 263 

took the average as the final model performance. 264 

Four indicators were used to evaluate the model performance in validation set: (1) 265 

modelling efficiency (R2); (2) root mean square error (RMSE); (3) bias; (4) prediction 266 

interval coverage percentage (PICP), which describes the percentage of the 267 

observed TOL falls within the estimated upper and lower 90% PIs. 268 

R� = 1 − "∑ ($%& − $�)'��� �
"∑ ($� − $%()'��� �     (3) 269 



RMSE = -� ($%& − $�).'
���

�     (4) 270 

Bias = � ($%& − $�).'
���     (5) 271 

where n is the sample size of observations, $� and $%&  are observed value and 272 

predicted value for sample i, and $%(  is the average of observed values. 273 

In addition, we also reported the model performance by the internal validation 274 

using out-of-bag data (around 34% of data that is not used for growing each tree) in 275 

QRF. The final TOL map and its 90% PIs were produced by QRF fitted using all the 276 

sampling sites. 277 

 278 

3. Results and discussion 279 

3.1. Summary of TOL in the Beauce area 280 

Table 3 displays the statistics of the TOL in the Beauce area. Among 10978 sites, 281 

TOL ranged from 0 to 120 cm, with a mean and median TOL at 36.46 cm and 30 cm, 282 

respectively. A skewness of 0.66 (larger than 0.5) indicated the data were slightly 283 

positively skewed while a kurtosis less than 3 (2.85) showed that the data were light-284 

tailed. Though the log transformation, i.e. log(TOL+a), is able to convert soil data to 285 

normal distribution (a skewness less than 0.5 and a kurtosis close to 3), it did not 286 

improve the model performance. Therefore, instead of data transformation, we used 287 

the original TOL data for spatial modelling in this study. 288 

Figure 4 presents the TOL located in 20 compact equal area geographical strata. 289 

It showed a large difference of number of sampling sites among these 20 290 

geographical strata, ranging from 22 to 1351. These geographical strata with high 291 

median TOL (>60 cm) had much less sampling sites (51 to 201), and this is the main 292 

reason for evaluating the model performance by random stratified sampling. 293 

Figure 5 shows the Pearson correlations coefficients between TOL and top 30 294 

environmental covariates. Elevation and its focal mean derivatives had the highest 295 

positive correlations (r > 0.3). Other positively correlated covariates were related to 296 



oblique coordinates, channel network base level (CNBL), graphic coordinates, 297 

gamma-ray radiometry and two Sentinel 2 indexes (grain size index and clay index). 298 

Negative correlations with TOL were found with valley depth, Sentinel 2 bands and its 299 

indexes. Overall, the correlations between TOL and covariates were found to be 300 

rather low (|r| < 0.35). 301 

3.2. Model performance of Quantile Random Forest 302 

The mean R2, RMSE and bias from the internal validation using the out-of-bag 303 

data in QRF were 0.31, 26.88 cm and 0.23 cm (data not shown). Figure 6 indicates 304 

the model performance after we repeated 50 times the validation procedure using 305 

QRF. The mean R2 and RMSE were 0.33 and 30.48 cm respectively. The mean bias 306 

of -1.20 cm indicated that the prediction was almost un-biased for 50 repeats. The 307 

mean PICP indicated that on average 86.7% of the validation samples fall within the 308 

defined 90% PIs, therefore the uncertainty estimates from the QRF model was valid 309 

for non-visited locations. 310 

As shown in Table 4, the global soil thickness (ST) products (Hengl et al., 2017; 311 

Shangguan et al., 2017) had better model performance than those at national or 312 

regional scale (Guerrero et al., 2014; Kidd et al., 2015; Vaysse and Lagacherie, 2015; 313 

Lacoste et al., 2016; Mulder et al., 2016; Zhang et al., 2018). This may be attributed 314 

to the fact that global ST products include a substantial proportion of very thin soils 315 

(i.e., soils prone to severe erosion) and of very thick ones (i.e., Arenosols in desert 316 

dunes, Shangguan et al., 2017). There was no large difference of model performance 317 

between national and regional products, even if we used nearly 11000 sampling sites 318 

in this study. This is because the TOL is highly variable at short distances. By 319 

incorporating a large exhaustive set of environmental covariates, however, the map 320 

produced in this study performed slightly better than almost all the previous studies at 321 

regional and national scales. 322 

The large range between upper and lower limits of 90% PIs for R2 and RMSE 323 

indicated the randomness involved in data split brought a large amount of uncertainty 324 

in model evaluation. Therefore, instead of a single time data split, repeated random 325 

(stratified) sampling adopted in this study would provide more robust estimates for 326 

the model performance so as to avoid under- or over- optimistic decision making in 327 

management of soil resources. 328 



3.3. Variable importance of environmental covariates  329 

Figure 7 displays the top 30 environmental covariates in QRF model calculated 330 

as the average of 50 repeats. It indicated that the gamma radiometric data (U, Th and 331 

TC) and hue index (focal mean) calculated from Sentinel 2 images were the most 332 

important environmental covariates in modelling TOL in the study area. They were 333 

followed by longitude, NDVI PC1, slope position (with a radius of 1000 m), TWI (with 334 

a radius of 1000 m), normalized difference (focal mean) and grain size index (focal 335 

mean), representing position, organisms and relief factors in Scorpan conceptual 336 

model. For many relief (e.g., slope position, TWI, VDCN, curvature, valley depth, 337 

CNBL, elevation, slope) and organisms (e.g., hue index, normalized difference, grain 338 

size index, ferrous iron) factors, their derivatives calculated from neighbouring 339 

information performed better than original covariates. Spatial position, i.e., latitude 340 

and longitude, were identified important in Figure 7 while oblique coordinates were 341 

not listed among the top 30 covariates. 342 

Interestingly, the variable importance in the QRF model was not in line with the 343 

correlations between TOL and covariates (see Figure 5). This may be due to the fact 344 

that the relations between TOL and covariates are not linear. If the relationships were 345 

linear then the most important covariates should have been those with highest |r| 346 

which is not the case in this study. Another reason may be that the importance of 347 

covariates results also from interactions between them, that are not visible using 348 

Pearson correlations but that are taken into account in QRF model. 349 

Our results indicate a high importance of airborne gamma radiometric data in 350 

TOL modelling as they can capture soil information relevant to soil texture and to the 351 

presence of the calcareous rock at low depth. Indeed, the substrate of part of the 352 

study area (composed carbonates) is completely different from the TOL and it has 353 

been shown that calcium mitigates surface gamma-spectrometric signatures because 354 

it has a poor gamma-spectrometric response (Martelet et al., 2013). Therefore, it is 355 

not surprising that gamma radiometric data plays an important role, especially for 356 

predicting thin TOL. Also, the large plateaus with deep TOL in the northern part are 357 

depleted in K (see Figure 2). This is because soils with large TOL were prone to 358 

illuviation, resulting in lower clay content in topsoil. So in this case, it is an indirect 359 

relationship with TOL. Our results also confirm the contribution of neighbouring 360 

information (e.g, focal hue index, slope position 1000m, TWI 1000m, focal normalized 361 



difference) of relief and organism factors in spatial modelling of TOL, which 362 

implicates the multi-scale influence of covariates on soil properties. Concerning slope 363 

and TWI, the importance of this neighbouring information may be due to the gradient 364 

of TOL that shows that very large flat plateaus (mainly in the north) are characterized 365 

by a deeper TOL. These derivatives likely performed well because it is not the same 366 

geomorphological context if you have a flat location inside a very large flat plateau 367 

than if you have locally flat “pixels” in a region where the relief is more accentuated, 368 

such for instance in the southwest (Behrens et al., 2019). Other studies also have 369 

shown the potential of multi-scale covariates derivatives in improving model 370 

performance in DSM (Behrens et al., 2018b, 2019). Compared to simple convolution 371 

approach (focal mean), wavelet transforms, empirical mode decomposition, and the 372 

Gaussian scale space may even better represent the multi-scale information of 373 

environmental covariates (Behrens et al., 2010, 2018a, 2018b; Biswas et al., 2013a, 374 

2013b; Zhou et al., 2016; Huang et al., 2017; Zhao et al., 2018; Liang et al., 2019) so 375 

as to improve model performance in DSM. The Sentinel 2 spectral bands may not 376 

always provide direct information related to soil, while a great potential has been 377 

shown from its derived indicators (e.g., NDVI, hue index, normalized difference, 378 

ferrous iron, and grain size index) in this study. Considering its high spatial and 379 

temporal resolution, Sentinel 2 has a great potential in delivering useful information of 380 

soil surface for DSM across scales (Gholizadeh et al., 2018; Castaldi et al., 2019; 381 

Loiseau et al., 2019; Vaudour et al., 2019). Some of the Sentinel 2 data we used 382 

come from a mosaic of images of bare soils built by Loiseau et al. (2019). Therefore, 383 

these Sentinel 2 data provide direct information on soil colour which may reflect thin 384 

TOL or absence of TOL through the presence of white calcareous rocks at the 385 

surface. They may indirectly reflect also texture through bright colours due to slaking 386 

that occurs mainly on very loamy topsoil soils which correspond to the deepest TOL 387 

where Luvisols have developed. The land use map produced by Sentinel 2 was not 388 

among the top 30 environmental covariates as it may be masked by the NDVI data 389 

due to their correlation or NDVI better explains the spatial variability than land use 390 

map. Therefore, relative importance of environmental covariates should be taken with 391 

caution as high contributing covariates can inadvertently bear part of the contribution 392 

of the less contributing covariates (Chen et al., 2018). 393 



3.4. Maps of thickness of loess and its 90% prediction intervals  394 

Figure 8 presents the spatial distribution of TOL and its lower and upper limits of 395 

90% PIs. It displays the general increasing thickness of loess soils from south-west to 396 

north in the study area. Very shallow loess (<10 cm) was found in south-west of the 397 

study area, and very deep loess (>100 cm) was mainly found in the northern part. 398 

Highest TOL were mainly located in rather flat areas located on high elevation 399 

plateaus, while shallow loess was mainly located at lower elevations and in more 400 

dissected relief, especially in the vicinity of small valleys. Note that there is a border 401 

effect from the south-west to the west of the region. This border effect corresponds to 402 

the outcropping limit of the TOL, where sandy or clayey materials locally overlay the 403 

calcareous. The regions with thin soil (<10 cm with a lot of outcrops of the calcareous) 404 

correspond to the areas with black gamma-ray radiometry patterns matching on 405 

steep slopes around the drainage lines (mostly rivers). 406 

The maps of lower and upper limits of 90% PIs clearly show different spatial 407 

structures. On the northern part with the highest elevations and high mean TOL, the 408 

95th percentile is equal or deeper than 1.2 m, which means that high TOL are largely 409 

dominant in these plateaus. On the contrary the extreme southern part of the region 410 

exhibits TOL that rarely exceed 0.6 m. Moreover, except for some very local areas 411 

having a high mean TOL, the 5th percentile map suggests that the upper calcareous 412 

surface is undulating at very short distances and that local calcareous outcrops may 413 

be found in nearly all the southern part of the study area. The wind direction of loess 414 

deposits was from northwest (Bertran et al., 2016; Borderie et al., 2017). The Beauce 415 

area corresponds to the southern margin of the Paris basin loess deposits which 416 

show a clear gradient from North to South (Bertran et al., 2016). The gradient of 417 

loess that we observe in the Beauce region from north to south may be due to this. In 418 

addition, the northern part is characterized by large flat plateaus where no erosion 419 

occurred, except along the main deep valleys, whereas the southwestern part is 420 

characterized by a local relief that may have induced erosion and redistribution 421 

processes (Macaire, 1971). All these observations were confirmed by the expert 422 

knowledge of the soil surveyors who did some traditional reconnaissance soil 423 

mapping in this region. Interestingly, when doing reconnaissance maps at 1:250,000 424 

the soil surveyors delineated small natural regions in order to create the broadest 425 

geographical ensembles of the legend (Richer-de-Forges, 2008; Richer-de-Forges et 426 



al., 2008). Figure 9 shows these small natural regions drawn by the soil surveyors on 427 

the study area. The comparison between Figure 8 and Figure 9 clearly shows that 428 

the map of the TOL makes sense both from soil and physiography point of views. 429 

One should keep in mind that 90% PI is a very large PI. Therefore, it is normal that 430 

such wide ranges are found. Another reason for the large PI comes from the fact that 431 

our map does not have very high model performance, and there is still a large room 432 

to improve it. Useful outputs for irrigation or drainage management, however, are 433 

maps of probability of exceeding a given depth for TOL in the study area (see an 434 

example in the next section). 435 

3.5. Example of application 436 

One example of application is to map the probability of the TOL to exceed a 437 

given depth or, on the contrary, to map the probability of the TOL to be less than a 438 

given value. Figure 10 displays an example of these practical applications, which 439 

extracts the probability of exceeding of 30 cm from the function between the TOL and 440 

prediction quantile (from 0 to 100% with an interval of 2%) within the QRF model. The 441 

soils that have a very low probability to exceed a 30 cm TOL are unsuitable for 442 

conventional tillage and have a very low AWC. Therefore, optimizing the irrigation on 443 

these soils should greatly save water. 444 

 445 

4. Conclusion 446 

In this study, we utilized a large soil dataset (10978 sampling sites) and 117 447 

environmental covariates relevant to soil, organisms, relief, parent material and 448 

spatial position for mapping thickness of loess at a regional scale. The 50 repeated 449 

Quantile Random Forest had an average R2 of 0.33, which was slightly better than 450 

those obtained in most previous studies at regional or national scale (R2 of 451 

0.11~0.41). A PICP of 86.70% showed that around 86.70% of the validation samples 452 

fall within the predefined 90% PIs, which indicated that the prediction uncertainty 453 

produced by Quantile Random Forest was reasonable and can be properly used in 454 

decision making of land management. The relative importance of environmental 455 

covariates indicated the importance of elevation and gamma radiometry in modelling 456 

thickness of loess and also proved the necessity of incorporating neighbour 457 

information in relief and organisms for spatial modelling. The produced map of 458 



thickness of loess and its 90% prediction intervals made sense from a soil science 459 

perspective. This map can be further used for efficient irrigation management as well 460 

as crop growth and yield modelling. 461 
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Figures 

Figure 1 Study area and soil sampling sites, the Beauce area that locates at the 

middle Loire catchment, central France 

 

  



Figure 2 Examples of environmental covariates 

   

   

   

 

  



Figure 3 Compact equal area geographical strata 

  



Figure 4 Boxplot of TOL for each compact equal area geographical strata. The 

number of sampling sites is indicated in blue. 

  



Figure 5 Pearson correlation coefficient (r) between TOL and top correlated 
environmental covariates (r > 0.15 or r < -0.15). 

 

  



Figure 6 Model performance of 50 repeats evaluated by R2 (a), RMSE (b), bias (c) 
and coverage of PICP (d) on validation set 

 

 

  



Figure 7 Relative importance of environmental covariates in Quantile Random Forest 

(average of 50 repeats). Only the top 30 variables are shown here. 

 

 

  



Figure 8 Spatial distribution of the thickness of loess and its 90% prediction intervals 

 

  



 

Figure 9 Natural regions delineated by soil surveyors (Richer-de-Forges, 2008; 

Richer-de-Forges et al., 2008) 

 

  



Figure 10 The probability of exceeding 30 cm for TOL in the study area. The 

probability at 30 cm is extracted from the probability distribution of Quantile Random 

Forest for each pixel. 

 

 



Tables 

Table 1 Environmental covariates used for digital soil mapping 

Variable Number Resolution Scorpan factor Reference 

Channel network base level 4 25 m Reliefa IGN, 2011 

Elevation 4 25 m Relief IGN, 2011 

Multiresolution index of valley bottom flatness 4 25 m Relief IGN, 2011 

Plan curvature 4 25 m Relief IGN, 2011 

Profile curvature 4 25 m Relief IGN, 2011 

Slope 4 25 m Relief IGN, 2011 

Slope position 4 25 m Relief IGN, 2011 

Slope length 4 25 m Relief IGN, 2011 

Terrain wetness index  4 25 m Relief IGN, 2011 

Valley depth 4 25 m Relief IGN, 2011 

Vertical distance to channel network 4 25 m Relief IGN, 2011 

Soil type 1 1:1000000 Soil King et al. (1995) 

Parent material 1 1:1000000 Parent material King et al. (1995) 

Gamma radiometric (K, U, Th, TC) 4 200 m  Parent material Martelet et al. (2014) 

Land cover and probability 10 10, 20, 60 m  Organisms Inglada et al. (2017) 

Sentinel 2 spectral bands and indices 42 90 m Organisms Loiseau et al. (2019) 

First three PCs of monthly NDVIb 3 300, 500 m Organisms Loiseau et al. (2019) 

Coordinates (Latitude, Longitude) 2 25 m Position IGN, 2011 

Oblique coordinatesc 10 25 m Position Møller et al. (2019) 

a For all the covariates in relief factor, except for the original products, their local mean values with 

radius at 200, 500 and 1000 m are also calculated by convolution circular windows. b PCs, principal 

components; NDVI, normalized difference vegetation index. c Oblique coordinates at angles of 15°, 

30°, 45°, 60°, 75, 105°, 120°, 135°, 150° and 165° are produced 

  



Table 2 Random Forest model performance over the predictor subset size using 

recursive feature selection 

Subset size RMSE R2 Selected 

5 28.70 0.1808 No 

10 27.07 0.2712 No 

15 26.72 0.2904 No 

20 26.52 0.3007 No 

40 26.50 0.3022 No 

60 26.50 0.3019 No 

80 26.44 0.3052 Yes 

100 26.50 0.3025 No 

117 26.48 0.3038 No 

  



Table 3 Statistics of the thickness of loess (in cm) 

Variable Number Minimum Q1 Median Mean Q3 Maximum Skewness Kurtosis 

TOL 10978 0 0 30 36.46 60 120 0.66 2.85 

Q1, the first quartile; Q3, the third quartile. 

 



Table 4 A summary of the model performance of soil thickness (or soil depth) 

mapping from regional to global scales 

Reference Location R2 

Regional scale 

Kidd et al. (2015) Tasmania, Australia 0.16 

Vaysse and Lagacherie 

(2015) 

Languedoc-Roussillon, 

France 

0.23 

Zhang et al. (2018) Xinjiang, China 0.28 

This study Beauce, France 0.34 

National scale   

Guerrero et al. (2014) Mexico 0.41 

Lacoste et al. (2016) France 0.22 

Mulder et al. (2016) France 0.11 

Global scale   

Hengl et al. (2017) Globe 0.57 

Shangguan et al. (2017) Globe 0.59 

 




