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ABSTRACT Plant pathogens can adapt to quantitative resistance, eroding its effective-
ness. The aim of this work was to reveal the genomic basis of adaptation to such a re-
sistance in populations of the fungus Pseudocercospora fijiensis, a major devastating
pathogen of banana, by studying convergent adaptation on different cultivars. Samples
from P. fijiensis populations showing a local adaptation pattern on new banana hybrids
with quantitative resistance were compared, based on a genome scan approach, with
samples from traditional and more susceptible cultivars in Cuba and the Dominican
Republic. Whole-genome sequencing of pools of P. fijiensis isolates (pool-seq) sampled
from three locations per country was conducted according to a paired population
design. The findings of different combined analyses highly supported the existence of
convergent adaptation on the study cultivars between locations within but not between
countries. Five to six genomic regions involved in this adaptation were detected in each
country. An annotation analysis and available biological data supported the hypothesis
that some genes within the detected genomic regions may play a role in quantitative
pathogenicity, including gene regulation. The results suggested that the genetic basis of
fungal adaptation to quantitative plant resistance is at least oligogenic, while highlight-
ing the existence of specific host-pathogen interactions for this kind of resistance.

IMPORTANCE Understanding the genetic basis of pathogen adaptation to quantita-
tive resistance in plants has a key role to play in establishing durable strategies for
resistance deployment. In this context, a population genomic approach was devel-
oped for a major plant pathogen (the fungus Pseudocercospora fijiensis causing
black leaf streak disease of banana) whereby samples from new resistant banana
hybrids were compared with samples from more susceptible conventional cultivars
in two countries. A total of 11 genomic regions for which there was strong evi-
dence of selection by quantitative resistance were detected. An annotation analysis
and available biological data supported the hypothesis that some of the genes
within these regions may play a role in quantitative pathogenicity. These results
suggested a polygenic basis of quantitative pathogenicity in this fungal pathogen
and complex molecular plant-pathogen interactions in quantitative disease devel-
opment involving several genes on both sides.

KEYWORDS convergent adaptation, fungal plant pathogen, genome scan,Musa,
quantitative pathogenicity, quantitative resistance, pool-seq, Pseudocercospora fijiensis

When infection is possible, interactions between plants and pathogens can be char-
acterized by several quantitative traits related to disease development (reviewed
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in references 1 and 2). Overall, the values arising from these quantitative traits result
from the pathogen effect (quantitative pathogenicity, often called aggressiveness in the
plant pathology literature), host effect (quantitative resistance [QR]), and their interac-
tion. Quantitative resistance (QR) is generally thought to be durable and is therefore
being used to an increasing extent in crop protection (3). QR can be distinguished from
so-called effector-triggered resistance (ETR), or immunity (ETI), in which major genes con-
fer near-complete protection after recognition of effectors produced by some pathogen
genotypes that are often referred to as avirulent genotypes, as reviewed in reference 4.
Many ETR genes with large effects are not durable because of their specificity to patho-
gen genotypes, and it is generally thought that this is not the case for QR. It has been
demonstrated, however, that this type of resistance might be eroded following patho-
gen adaptation and that some level of specificity may exist (reviewed in references 3, 5,
and 6). Furthermore, some QR is caused by ETR genes that are partially effective against
certain pathogen genotypes (5). The durability of quantitative host resistance has
recently been questioned, and there is a need for more information on the genetic basis
of quantitative pathogenicity in pathogens and on mechanisms underlying its evolution.

The genetic basis of quantitative pathogenicity in plant pathogens has received rel-
atively little attention, in contrast with studies dealing with the QR of their plant hosts
(7). Functional studies of genes involved in pathogenicity have mostly been focused
on so-called effectors, which are secreted molecules that modulate pathogen-host
interactions (8, 9). Effectors were initially characterized as small secreted proteins
(SSPs) rich in cysteine (10). Based on these characteristics and the ability to sequence
fungal genomes, in silico analysis has greatly extended the list of effector candidates,
but in silico analysis may overlook some of them if they are not SSPs. New predictors
based on machine learning have been developed recently to improve predictions of
fungal effectors (11), but these predictions could be too stringent or include false posi-
tives, depending on the strategy used. Furthermore, other kinds of genes, such as
those involved in gene regulation, may play an important role in quantitative pathoge-
nicity, and functional studies generate little information on gene evolution. Thus, com-
plementary approaches other than functional analyses are needed to gain further
insight into the genetic basis of quantitative pathogenicity and how it may evolve dur-
ing adaptation to QR.

Fungi outnumber other plant pathogens and are responsible for a range of serious
plant diseases (12). A first comprehensive quantitative trait locus (QTL) mapping analy-
sis of fungal quantitative pathogenicity was published recently for the wheat pathogen
Zymoseptoria tritici (13). A complex genetic architecture was identified, along with
large- and small-effect QTLs for all the traits analyzed, as well as some candidate genes,
including potential effectors and other gene classes. In addition, population genomics
can be used to identify the targets of positive selection, thereby providing a comple-
mentary approach to identify genes of importance for pathogenicity. A few population
genomics studies based on whole-genome sequencing have been published on plant-
pathogenic fungi to identify genomic regions under selection (14–17). However, the
sampling designs used in those studies were not focused on adaptation to given hosts
since the samples came from various locations or countries and the corresponding
pathogen populations undoubtedly had various hosts and coped with other external
factors.

Studying convergent adaptive evolution (or convergent adaption) can shed light
on the ecological and molecular basis of adaptive traits (18, 19). As in the work of Lee
and Coop (19), the term convergence used here covers all cases regarding the
repeated evolution of similar traits across independent lineages, without distinguishing
between convergent and parallel evolution. According to this definition, adaptive con-
vergence can arise due to changes at independent loci, independent changes at the
same loci, and/or identical changes at a locus due to independent mutations or selec-
tion on standing genetic variation. Recent studies on a number of organisms have
shown signs that convergent adaptation involving the same genes is surprisingly
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common (18). Population genomics can be used to assess convergent adaption based
on a paired design and sampling multiple pairs of populations evolving in contrasted
environments which can be viewed as replicates of a natural experiment (20–23).
Genomic regions underlying convergent adaptation involving a shared genetic basis
can be identified by searching for loci that are strongly differentiated in multiple pairs
of populations compared to the genomic background. Such studies can benefit from
genome sequencing of pools of isolates (pool-seq)—a cost-effective method that ena-
bles allele frequency estimation using large sample sizes (24). Applying this approach
to fungal plant pathogens could be helpful for identifying genes involved in quantita-
tive pathogenicity and in adaptation to different host cultivars.

The ascomycete fungus Pseudocercospora fijiensis is responsible for black leaf streak
disease (BLSD, also known as black Sigatoka) of banana, which is a major agronomic
constraint for that crop (recently reviewed in the work of Guzman et al. [25]). In the last
40 years, this emerging disease has spread from Asia throughout the intertropical ba-
nana production zone. It is one of the most marked examples of a recent pandemic in
the plant kingdom and is considered to be one of the most serious threats to food se-
curity (26). Studies of the population history of P. fijiensis revealed that demographic
events have accompanied its spread into tropical areas (27). In the Americas, BLSD was
first detected in Honduras in 1974 and within a few decades it then spread throughout
the Latin America-Caribbean region (25). Some banana varieties featuring QR (derived
from breeding programs) have been used in recent years to control this disease in some
countries in this region, such as Cuba and the Dominican Republic (DR). However, a local
adaptation of pathogen populations eroding this QR has been recently detected based
on a paired population design and cross-inoculations on plants (6). This first study did
not provide any information on the genetic basis of the local adaptation detected. Due
to the existence of regular sexual reproduction in natural P. fijiensis populations (27) and
the recent publication of a reference genome for this fungus (28), the P. fijiensis/banana
pathosystem is an appropriate model to be used in population genomics approaches to
further characterize adaptation to quantitative host resistance.

In this study, we set out to test for convergent adaptation to the quantitative resist-
ance of banana in populations of the fungus P. fijiensis and concurrently to reveal the
genomic basis of this adaptation. To this end, we developed a genome scan approach
based on pool-seq of P. fijiensis samples collected from resistant and susceptible ba-
nana cultivars in Cuba and the Dominican Republic based on the same paired popula-
tion design as that used in the work of Dumartinet et al. (6).

RESULTS
Pool-seq and SNP calling. Six samples were collected at three locations in 2011 in

the Dominican Republic (DR) and in Cuba using a paired population sampling design
(Fig. 1 and Table 1). This design, with samples from different population pairs and loca-
tions (representing replicates), is a powerful strategy that strengthens the detection of
selection in some genomic regions (18, 29, 30). In each country, infected banana leaves
were collected at three locations 20 to 300 km apart, and from two banana plantations
at each location, i.e., one planted with a susceptible variety and the other with a resist-
ant variety. As the mean dispersal distance of P. fijiensis ascospores has been shown to
be around a few hundred meters (31), we opted for a distance of around 2 to 8 km
between the two plantations of the same location to limit gene flow, which might
have counteracted host selection (32). The same varieties were collected at the three
locations of each country and could therefore be considered replicates, but the sampled
varieties differed between countries. The two susceptible cultivars, i.e., ‘Macho’ and
‘Macho 3/4’ from DR and Cuba, respectively, both belong to the banana AAB genomic
group and the plantain subgroup, which is genetically very homogenous (33). The two
resistant cultivars, i.e., ‘FHIA 21’ and ‘FHIA 18’ from DR and Cuba, respectively, are tetra-
ploid hybrids (AAAB genomic group) that were both created by the Fundación
Hondureña de Investigación Agrícola (FHIA), with a BLSD-resistant diploid hybrid
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(SH-3142) as common male parent and different BLSD-susceptible triploids as female
parent (34, 35). Samples from one location in Honduras—the country where BLSD was
first detected in the Latin America-Caribbean zone (27)—were included as reference
populations. They were collected on two plots planted with different susceptible vari-
eties (‘French sombre,’ another plantain, and ‘Grande Naine,’ belonging to the AAA
genomic group and Cavendish subgroup). On average, 42.25 haploid isolates represent-
ing different individuals from each population were pooled and sequenced (pool-seq).
The sample size of the pools analyzed was limited by the number of isolates we could
obtain from infected plants. These sizes might seem suboptimum as a pool size of 50
diploid individuals is usually recommended for accurate allelic frequency (AF) estimation
(24). However, a recent theoretical study showed that the limit of 50 individuals may be
overly conservative if some precautions are taken in DNA pooling and sequencing (36),
as was the case in this study (see Fig. S1 in the supplemental material). Furthermore, ex-
perimental studies comparing AFs between individuals and pool sequencing have
shown that satisfactory AF estimates can be obtained with pool sizes of around 20 to 25
(37, 38) and even 12 (39) with appropriate data filtering. After filtering, we identified
576,627 and 753,001 biallelic single nucleotide polymorphisms (SNPs) in the DR and

TABLE 1 Pseudocercospora fijiensis samples analyzed

Country (code) Location (code)

Cultivar of origin

Pool-seq sizea Population codeName (code) Phenotype Group
Dominican Republic (DR) La Vega (20) Macho (S1) Susceptible AAB 42 DR1 S1

FHIA21 (R1) Resistant AAAB 37 DR1 R1
Moca (20) Macho (S1) Susceptible AAB 37 DR2 S1

FHIA21 (R1) Resistant AAAB 32 DR2 R1
San Francisco (3) Macho (S1) Susceptible AAB 47 DR3 S1

FHIA21 (R1) Resistant AAAB 41 DR3 R1

Cuba (CU) Villa Clara (20) Macho 3/4 (S2) Susceptible AAB 40 CU1 S2
FHIA18 (R2) Resistant AAAB 48 CU1 R2

Ciego de Avila (20) Macho 3/4 (S2) Susceptible AAB 49 CU2 S2
FHIA18 (R2) Resistant AAAB 58 CU2 R2

Matanzas (3) Macho 3/4 (S2) Susceptible AAB 38 CU3 S2
FHIA18 (R2) Resistant AAAB 38 CU3 R2

Honduras (HN) La Lima (20) Grande Naine (S3) Susceptible AAA 27 HN1 S3
French sombre (S4) Susceptible AAB 30 HN1 S4

aNumber of P. fijiensis isolates pooled for sequencing.

FIG 1 Paired population design for samples collected in the Dominican Republic and Cuba. At each
location, about 40 P. fijiensis isolates on average were collected from a banana plantation in which a
resistant hybrid (R) and a susceptible variety (S) were grown.
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Cuba samples, respectively, and 579,597 when combining all the samples from DR,
Cuba, and Honduras.

A hierarchical population genetic structure. The population genetic structure
was first inferred from Fst estimated from all SNPs (Fig. 2A and Table 2). A similar struc-
ture was obtained using the Bayesian hierarchical core model implemented in BayPass
(Fig. S2). This structure was in line with the population history of P. fijiensis in the Latin
America-Caribbean region previously inferred with 16 microsatellite markers (27)—
from an initial introduction point in Honduras around 1972, the disease spread across
the region through a series of serial population bottlenecks and was detected more
recently in the Caribbean islands (from 1990). This history led to a hierarchical genetic
structure as inferred from Fst estimated from all SNPs (Fig. 2A and Table 2). Nucleotide
diversity and Tajima’s D were estimated in each population (Table 2). Tajima’s D is a
population genetic statistic that provides information on the allelic frequency spec-
trum and evolutionary forces acting on a DNA sequence (40). The negative Tajima’s D
values obtained indicated an excess of low-frequency alleles, which is often interpreted
as resulting from a population expansion after a recent bottleneck (41). On the whole
core genome, nucleotide diversity was 1.4- to 10-fold lower in the Caribbean islands
than in Honduras, and Tajima’s D was slightly positive for the Honduran populations
and negative for all the DR and Cuban populations, thereby suggesting the existence
of recent bottlenecks and population expansions in the Caribbean islands (Table 2). In
DR and Cuba, the population structure reflected the geography (Fig. 2A): populations
from the different locations were grouped together, and there was no evidence that
populations from susceptible and resistant hosts were more related to each other. This
means that any clear-cut differentiation between populations from different types of
host (susceptible versus resistant) would likely be relatively insensitive to the popula-
tion structure within countries and could reflect local adaptation.

Convergent selection footprints for different cultivars. The detection of genomic
regions exhibiting, in any paired population, strong divergence relative to the average
divergence across the genome is evidence that in at least one of the populations these
regions might have been involved in host selection and then adaptation. It could be
considered that convergent adaptation has occurred if the same regions are found to
have diverged in the multiple paired populations sampled (18, 19).

We sought to identify genomic regions putatively under convergent host selection
between the locations sampled. To this end, as a first step, two different methods were
run separately for paired populations from DR or Cuba since the cultivars sampled dif-
fered between the two countries. The Honduras samples collected only from other
susceptible cultivars at a single location were not included in these analyses. As recom-
mended by de Villemereuil et al. (42), we cross-checked our results using two single-
marker methods with different power and sensitivity, i.e., a differentiation-based method
(poolFreqDiff [43]) and a genotype-environment association method (BayPass [44]). The
poolFreqDiff method tests for consistent allele frequency differences between popula-
tion pairs across locations. Based on a quasibinomial generalized linear model (QGLM),
this method performs better than the conventional Cochran-Mantel-Haenszel (CMH) test
which may confuse heterogeneity and main effects (43). With the BayPass method, asso-
ciations between SNPs and the cultivars of origin of the populations (resistant versus sus-
ceptible) were tested using three covariables. The first covariable (Cov-co) was qualita-
tive and corresponded to the cultivars of origin. We cross-checked our results using two
other quantitative covariables estimated in the common garden experiments previously
published in the work of Dumartinet el al. (6). Such comparisons are considered efficient
for deciphering the genetic basis of adaptive traits (45). These two quantitative covari-
ables (Cov-dS for susceptible and Cov-dR for resistant cultivars) corresponded to the
least-square means (LSMeans) of the diseased leaf area estimated for each population in
the work of Dumartinet et al. (6) from a cross-inoculation experiment. Putative genomic
regions under convergent host selection were then identified using the local score
approach based on the P values estimated by the above analysis (46). This method
accounts for linkage disequilibrium from pool-seq data combining single-marker tests.

Convergent Adaptation to Quantitative Plant Resistance ®

January/February 2021 Volume 12 Issue 1 e03129-20 mbio.asm.org 5

 on M
ay 26, 2021 by guest

http://m
bio.asm

.org/
D

ow
nloaded from

 

https://mbio.asm.org
http://mbio.asm.org/


FIG 2 Dendrograms constructed from the Fst between populations from Cuba (CU), the Dominican
Republic (DR), and Honduras (HN) calculated from all SNPs along the genome (A) and SNPs within

(Continued on next page)
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Genomic regions encompassing linked loci with a relatively low P value (leading to local
scores that exceed a certain threshold) are identified using this method. The value of the
j parameter for the local score formula affects the range of P values considered (only
markers with P values under 102j will contribute to the score [46]). Variable values for
the j parameter of 1, 2, and 3 were taken as recommended from simulations in a recent
study (47).

According to the procedure presented above, eight and 16 genomic regions puta-
tively under convergent host adaptation were detected in the DR and Cuban samples,
respectively (Fig. 3, Table 3, and Fig. S3). Results obtained with a j value of 1 to 2 for
poolFreqDiff and of 2 to 3 for BayPass were taken because the P values are globally
lower with PoolfreqDiff. These regions were found in eight out of the 12 scaffolds ana-
lyzed, with a size ranging from around 0.6 to 70 kb. For each country, Fst values were
estimated in all of these regions and locations between population pairs isolated from
susceptible and resistant cultivars.

Considering all the data, the regions were classified in four categories starting from
those having more evidence supporting convergent adaptation (Table 4). For category
I, regions were detected using the results from both the poolFreqDiff and BayPass
methods combined, or only from BayPass, but using two covariables, and Fst was signif-
icant for all three locations sampled. Three regions per country were in this category.
For category II, regions were detected with poolFreqDiff or BayPass with only one
covariable, and Fst was significant in all three locations sampled. Category II also
included regions detected using BayPass with two covariables, and Fst was significant
for two of the three locations sampled. Three and two regions were in this category in
DR and Cuba, respectively. For category III, regions were detected with BayPass with
only one covariable and Fst was significant for two of the three locations sampled. One
and six regions were in this category in DR and Cuba, respectively. Finally, for category
IV, regions were detected with BayPass with only one covariable (except for S4R2-Cu
detected with the three), and Fst was significant for only one of the three locations
sampled. One and five regions were in this category in DR and Cuba, respectively.
Using BayPass with quantitative covariables, some regions were detected with Cov-dS
(related to susceptible cultivars) or with Cov-dR (related to resistant cultivars), suggest-
ing host specificity. Note finally that some regions were detected using poolFreqDiff
and/or BayPass with Cov-co (corresponding to the cultivars of origin) and thus might
be involved in a trait other than that measured in the cross-inoculation experiment but
also showing some host specificity.

Only class I and II regions, which had the most evidence of convergent adaptation
between locations, were kept for further characterization. To help visualize these con-

TABLE 2 Ranges of Fst estimated between populations within or between countries, median
nucleotide diversity (p ), and median Tajima’s D (D) estimated within populations on the core
genome in each country

Fst (%)

p DDRa Cuba Honduras
DR 0.0 6.0/9.7 19.1/21.5 0.00020/0.00051 22.057/21.102
Cuba 0.0/3.9 6.2/16.4 0.00065/0.00203 21.048/20.092
Honduras 0.7 0.00269/0.00284 0.096/0.116
aDR, Dominican Republic.

FIG 2 Legend (Continued)
genomic regions having more evidence supporting selection footprints (classes I and II, Table 3)
detected in Cuba (B) or in the Dominican Republic (C). R, resistant host; S, susceptible host. Each
sample name indicates its country of origin (DR, CU, or HN), the code of the location of origin within
countries (numbered 1, 2, or 3; Table 1 gives correspondences), and the code of the cultivar of origin
(S1, susceptible cultivars ‘Macho’; S2, susceptible cultivars ‘Macho 3/4’; S3, susceptible cultivars
‘Grande Naine’; S4, susceptible cultivars ‘French sombre’; R1, resistant cultivars ‘FHIA21’; R2, resistant
cultivars ‘FHIA18’).
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vergences, we calculated pairwise Fst values from SNPs only within the detected class I
and II regions in each country and constructed a dendrogram (Fig. 2B and C). When
considering the detected regions within one country, here populations were first
grouped according to host origins and not according to their location in the corre-
sponding country.

Analysis of the AFS. Allelic frequency spectrum (AFS) was analyzed in each popula-
tion in the whole core genome and the class I and II regions pooled using Tajima’s D
estimates on 1-kb nonoverlapping windows (Fig. 4). An increase or decrease in

FIG 3 Manhattan plots showing selection footprints in the core genome of P. fijiensis detected between samples from different hosts collected from the
Dominican Republic. Along the genome represented on the horizontal axis, the P values and local scores for each SNP are successively reported on the
vertical axis from the test of allelic differentiation between populations sampled on resistant and susceptible cultivars using poolFreqDiff (A) or from
the test of association using BayPass with the covariables Cov-co (B), Cov-dS (C), and Cov-dR (D). The horizontal dashed lines correspond to the
chromosome-wide threshold a = 1% calculated for each scaffold. All genomic regions for which there was a concentration of SNPs above the threshold
and for which there was more evidence supporting selection footprints (classes I and II, Table 3) are mentioned at the top.
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Tajima’s D in the putative selected regions relative to the whole core genome would
indicate an increase of intermediate-frequency alleles or low-frequency alleles, respec-
tively (41). From the genomic regions detected in DR, a significant increase in Tajima’s
D was detected in all samples from Honduras and DR, regardless of the cultivars.
However, the extent of the difference between Tajima’s D estimated from the whole
genome and that from the selected regions was greater for the DR samples than for
those from Honduras. From the genomic regions detected in Cuba, a significant
increase in Tajima’s D was again detected for one cultivar in the Honduran samples
and in only three Cuban samples, corresponding to the resistant cultivars at locations
1 and 2 and to susceptible cultivars at location 3. A significant lower mean Tajima’s D
was detected in two other samples from the susceptible cultivars at locations 1 and 2.
Thus, in two of the three locations in Cuba, the mean Tajima’s D for the selected
regions relative to the whole changed in opposite directions between susceptible and
resistant cultivars. These observations suggested that the allele frequency spectra had

TABLE 3 Genomic regions putatively under convergent host selection6

ξ

1Genomic regions detected from poolFreqDiff.
2Genomic regions detected from BayPass with Cov-co, Cov-dS, or Cov-dR as covariables.
3Fst, estimate between population pairs.
4Value of the j parameter for the local score formula.
5Genomic regions were classified in four selection-support classes (Table 4).
6Asterisks highlighted in salmon pink indicate the methods from which the genomic regions were detected with a 1% significance threshold. The Fst values highlighted in
green were considered significant with a 5% significant threshold. Each region name indicates its scaffold number after the letter S (for scaffold), the region number after
the letter R (for region), and the country where it was detected (DR for Dominican Republic or CU for Cuba).
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changed in all the putative selected regions relative to the whole genome for most of
the populations, regardless of their host origin.

Some genes in candidate genomic regions might be involved in host-pathogen
interactions. From two to 11 genes were identified in each class I and II region, with
47 overall (Table 5). All of the information available to date for these genes is provided
in Table S1. No GO terms were significantly overrepresented within the 47 genes.
Furthermore, none of the detected genes coded for SSPs, i.e., the putative effectors of
plant-pathogen interactions. However, as molecules other than SSPs secreted by
pathogens could be considered potential effectors (10), we assessed whether or not
the identified genes belonged to the set of genes having a signal peptide. Four of
these genes were detected in three different regions, and two of them were also
described in the in vitro secretome of P. fijiensis (48). One of these genes (ID 55415),
detected in region S1R2-Cu, coded for a putative glucoside hydrolase differentially
secreted in vitro by a P. fijiensis isolate having a higher pathogenicity than another one
(48). This gene also had a homologue in the pathogen-host interaction database (PHI-
base [49]) which codes for an effector of the Blumeria graminis f. sp. hordei fungus

TABLE 4 Decision criteria used to quantify the strength of evidence in favor of convergent
selection between population pairs collected from different cultivars across locationsd

Class Support PoolfreqDiff

BayPass Significant Fst

2 cov.a 1 cov.b 3 locations 2 locations 1 location
I Very strong * * *

* * *
* *

II Strong * *
* *

* *
III Moderate * *
IV Weak (*)c (*)c *
aGenomic regions detected using Cov-co and either Cov-dS or Cov-dR as covariables (cov.).
bGenomic regions detected using Cov-dS or Cov-dR as covariables.
cGenomic regions detected using one and/or two covariables.
dAsterisks indicate the methods from which the genomic regions were detected with a 1% significance threshold
(poolFreqDiff, BayPass).

FIG 4 Boxplot of Tajima’s D estimates in the Dominican Republic (A) and Cuba (B) from different locations and cultivars. Estimates for genomic regions
putatively under host selection (hs) significantly different from the estimate for the whole genome (g) at the 5% level using the Mann-Whitney U-test are
indicated by darker colors. Each sample name indicates its country of origin (DR, Dominican Republic; CU, Cuba; HN, Honduras), the code of the location of
origin within countries (numbered 1, 2, or 3; Table 1 gives correspondences), and the code of the cultivar of origin (S1, susceptible cultivars ‘Macho’; S2,
susceptible cultivars ‘Macho 3/4’; S3, susceptible cultivars ‘Grande Naine’; S4, susceptible cultivars ‘French sombre’; R1, resistant cultivars ‘FHIA21’; R2,
resistant cultivars ‘FHIA18’).
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found to be involved in a reduction in pathogenicity in a silencing experiment (67). Two
other genes with a signal peptide (regions S1R1-Dr and S2R1-Cu) had unknown func-
tions and were potential effectors. The latter gene with a signal peptide was significantly
more expressed in infected leaf tissue than in a culture medium in the transcriptome
analysis published by Noar and Daub (50) and had homology with galactosyltransferase.
Overall, eight genes distributed in five genomic regions were homologous to a fungal
gene of the PHI-base (49) that has been demonstrated to have an effect on quantitative
pathogenicity (phenotype “reduced virulence,” or “loss of pathogenicity,” or “hyperviru-
lence”). Three of these genes were involved in gene regulation at the transcriptional level
(with a lysine histone methyltransferase and a transcription factor) or at the posttransla-
tional level (with a protein kinase).

DISCUSSION

In this study, we used a pool-seq approach to compare samples of the fungus P.
fijiensis that had evolved on banana cultivars with different levels of quantitative resist-
ance in the Dominican Republic and Cuba. The results revealed convergent selection
signatures for the cultivars across the sampled locations in each country in some
genomic regions that included candidate genes involved in host adaptation and quan-
titative pathogenicity, thereby supporting the existence of convergent and oligogenic
adaptation to quantitative resistance.

Local adaptation to quantitative resistance has already been described in fungi
(51–55) and recently in P. fijiensis (6). However, the samples in these plant inoculation-
based studies came from a single location, or the number of isolates sampled from

TABLE 5 Summary of the gene annotation results in the genomic regions putatively under convergent host selectiong

Genomic
region Scaffolda Size (kb)

Annotation

Protein IDf

No. of
genes Spb Secr.c Trans.d BLASTe Putative function/homologue

S1R3-Dr 1 9.87 4 3 Kinase of Fusarium graminearum (81) 213358
Beta-oxidase ofMagnaporthe oryzae (82) 149244
Multidrug resistance; protection from oxidative stress
fromMagnaporthe oryzae (83)

2013360

S4R1-Dr 4 0.59 0
S9R1-Dr 9 4.99 0
S1R1-Dr 1 20.48 11 1 1 Glycoside hydrolases 46143

1 Unknown 170196
S3R1-Dr 3 2.89 3 1 1 Galactosyltransferase 153261
S5R1-Dr 5 7.25 2 1 Transcription factor ofMagnaporthe oryzae (84) 203908
S1R2-Cu 1 29.94 12 1 1 1 Glycoside hydrolases. Effector protein of Blumeria

graminis (67)
55415

2 Lysine histone methyltransferase of Fusarium
verticillioides (85)

149458

Superoxide dismutase of Puccinia striiformis, reduced
virulence (86)

112476

S12R1-Cu 12 14.29 5 1 Unknown 200624
1 Short-chain dehydrogenase ofMagnaporthe oryzae

(87)
83266

S2R5-Cu 2 11.99 6
S2R1-Cu 2 3.31 2 1 Unknown 210184
S12R2-Cu 12 3.20 2

Total 47 5 2 2 8
aScaffold where genomic regions are located.
bGenes having a predicted peptide signal.
cGenes of in vitro secretome of P. fijiensis differentially expressed in virulent isolates compared to avirulent isolates (48).
dGenes with lower or higher expression in infected leaf tissue compared to culture medium (50).
eBLAST search results from the Pathogen-Host Interactions database (PHI-base [49]); best hits with plant-pathogenic fungus genes having an effect on pathogenicity.
fJGI protein IDs from the P. fijiensis reference genome (https://genome.jgi.doe.gov/Mycfi2/Mycfi2.home.html [28]).
gGray areas indicate characteristics of the same genes.
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different locations was small. Convergent adaptation was sometimes suggested but
not clearly demonstrated, and the genetic basis of adaptation to quantitative resist-
ance was not addressed. Our study involved a population genomics approach, and the
findings strongly supported convergent selection signatures between locations for dif-
ferent cultivars within each study country and thus convergent host adaptation. Five
to six genomic regions considered strongly or very strongly supporting convergent ad-
aptation were detected in the two countries (the class I and II regions outlined in
Results [Fig. 2 and 3 and Fig. S2; Tables 3 and 4]). There was also moderate evidence of
convergence in one to six more regions in the two countries (class III regions).
Different sets of genes could be found to be involved in adaptation between locations,
and greater support for convergence might be detected in more genomic regions if a
larger number of locations were to be studied. Convergent adaptation between the
two study countries was not observed since there was no overlap between the two
sets of genomic regions detected in both of them. However, the cultivars sampled in
DR and Cuba differed. The resistant cultivars (FHIA18 and FHIA21) shared the same re-
sistant parent, but the latter might have some level of heterozygosity which could lead
to segregation for this trait in crosses. Furthermore, the other parents were different,
and some of their genes transmitted in new hybrids might also play a role in their
quantitative resistance.

Considering the regions most supported for convergent adaptation signatures
(classes I and II), the results of this study implied that quantitative pathogenicity and
adaptation to QR in P. fijiensis is at least oligogenic. This is in line with the findings of a
recent comprehensive QTL mapping analysis conducted on Z. tritici (13), a fungus
related to P. fijiensis, belonging to the same family (Mycosphaerellaceae within the
Dothideomycetes class) and having a similar biology (56), for which a complex genetic
architecture of quantitative pathogenicity was documented. The evolution of quantita-
tive pathogenicity can potentially be determined by several quantitative plant-patho-
gen interaction traits, each depending on the expression of several genes in the patho-
gen. On the plant side, recent comprehensive studies showed that quantitative
resistance depends on several dozen genes (7). Complementary results obtained on
the quantitative pathogenicity of some fungi suggest that molecular interactions
between plants and pathogens in quantitative disease development may be complex
and involve several genes on both sides, in contrast with ETR.

A change in the allele frequency spectrum, in comparison with the whole genome,
was detected in genomic regions for which there was more evidence of host selection
(classes I and I [Tables 3 and 4]) in most of the populations analyzed and regardless of
the cultivars of origin (Fig. 4). These observations supported the assumption that, in
comparison with the rest of the genome, evolutionary forces interact differently on loci
in these regions, which thus might be involved in host-pathogen interactions in all of
the study cultivars. It is worth noting that susceptible cultivars, which can be consid-
ered to have low quantitative resistance, may also interact with and exert some con-
straints on the pathogen. The estimated Tajima’s D statistic comparison findings were
not always compatible with what one might expect according to the theory of classical
so-called hard selective sweeps (i.e., lower values in the genomic regions under selec-
tion with an excess of low-frequency variants [29, 57]). Instead, in most populations we
observed an increase in Tajima’s D values in regions putatively under host selection,
suggesting an increase in alleles with intermediate frequencies. This pattern is
expected when a selective sweep is incomplete, or ongoing following the introduction
of new selection pressure (58, 59), and when it is soft (60). In accordance with this ob-
servation, the dissemination of the resistant cultivars (about 15 years ago) and the
introduction of P. fijiensis in both of the study countries (20 to 30 years ago) were very
recent events (25). Thus, P. fijiensis has been adapting to the cultivars for more than a
decade. Furthermore, the interaction of demographic events with selection can impact
the Tajima’s D values. An abundance of regions with positive Tajima’s D values was
recently observed in a population genomics study on Drosophila simulans, a species that
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has also recently colonized a new geographical region (North America). Moreover, simu-
lations on different demographic scenarios showed that positive Tajima’s D values are
expected, on average, when a selective effect and a recent population contraction occur
concomitantly (61). This scenario seems to be close to that followed by P. fijiensis popula-
tions in the Caribbean since they faced new hosts during their expansion after initial
recent bottlenecks. However, it has not been possible to conduct simulations to test the
effects of P. fijiensis population-history scenarios on statistics such as Tajima’s D since reli-
able estimates of demographic and genetic parameters are currently not available for
this species and sequencing of individuals would be required (62).

In the presence of specific interactions and restricted gene flow, divergent selection
between habitats (hosts here) could lead to local adaptation (63, 64). As the durability
of a given resistance may depend on its specificity level, this aspect needs to be more
documented with regard to QR (3, 5). The existence in some genomic regions of
genetic differentiation between population pairs and of significant changes in Tajima's
D values in most populations suggested that divergent selection between cultivar
types (susceptible versus resistant) has occurred. This implies that all of the cultivars
might be impacted by some specific host-pathogen interactions. The existence of such
interactions has recently been suggested in plant inoculation studies with P. fijiensis
but only on resistant cultivars (6). Specific interactions have been detected, or not, in
other fungi via inoculations (51–55). The detection, or not, of specificities may depend
on the underlying genes involved in the interactions but also on the statistical power
of the experimental design, given that the sample size that can be analyzed in inocula-
tion assays is very limited. As we were able to analyze a larger number of samples, our
population genomics approach may be more powerful for detecting specificity on all
cultivars, including those that are supposedly susceptible and which may be consid-
ered to have low quantitative resistance.

Combining the annotation results for the genes identified in the candidate genomic
regions using the P. fijiensis reference genome with the findings of functional studies
on this and other pathogens indicated that some of the genes might be involved in
host-pathogen interactions. The genes detected in the most supported genomic
regions (classes I and II) are presented in Table 5 and in Table S1 in the supplemental
material. This list could be first considered for future experimental validation. No genes
were detected in two out of 11 of the identified genomic regions. However, in the pop-
ulations analyzed, some genes may exist in these regions that are not present in the ref-
erence genome used for the mapping step. A recent study of 19 de novo-assembled
genomes using long-range sequencing technology with the related fungus Zymoseptoria
tritici showed that conserved orthogroups accounted for only about 60% of the species
pangenome (65). Furthermore, the 40% left represented an accessory pangenome that
varied between isolates and was enriched in pathogenesis-related functions including
more than 60% of the predicted effectors. De novo assembly and annotation of some P.
fijiensis genomes from the study populations will certainly improve the identification of
the genes involved. None of the 47 genes detected corresponded to the putative effector
SSP identified in silico in the work of Arango Isaza et al. (28). However, it has been pro-
posed that effectors should be defined as any microbial secreted molecule that contrib-
utes to niche colonization (66). Thus, all secreted proteins are potential effectors, and via
the population genomic approach we used in this study, we detected three genes encod-
ing non-SSP proteins yet which presented a peptide signal. One of them seemed to be
the best candidate of this study. This gene was detected in the S1R2-Cu genomic region
and corresponded to glycoside hydrolase, which is secreted to a greater extent in vitro in a
highly pathogenic isolate of P. fijiensis (48) and has high homology with a gene and a puta-
tive effector involved in the pathogenicity of the fungus Blumeria graminis f. sp. hordei
(67). However, although it was secreted, it was instead considered to be a candidate mor-
phogenetic factor (but essential for pathogenesis) rather than an effector in the strict sense
(67). Homology with genes involved in pathogenicity was found in most of the other
genomic regions (but not coding for putative effectors), and genes detected in three
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genomic regions were homologous with genes involved in gene regulation. We therefore
did not obtain any clear evidence that QR erosion of banana cultivars results from changes
in effectors. Complementary to functional studies, our population genomics approach
might enable the identification of genes other than in silico predicted effectors involved in
both quantitative pathogenicity and erosion of quantitative resistance in plants.

This study showed that pool-seq, combined with a paired population sampling
design and recent analysis methods, is an efficient approach for detecting convergent
host adaptation in plant-pathogenic fungi while also enhancing the identification of
candidate genes involved in such adaptation. The main results suggested that the
genetic basis of fungal adaptation to QR is at least oligogenic and highlighted the exis-
tence of specific host-pathogen interactions for this kind of resistance. However, even
in the presence of QR specificity, tradeoffs in the adaptation of pathogen populations
to the different host genotypes might exist and help define durable disease deploy-
ment strategies to hamper pathogen adaptation. To that end, it would now be essen-
tial to study this genetic basis of fungal adaptation to QR in a broader range of quanti-
tative-resistant genotypes. In P. fijiensis, such studies could be conducted on a wide
range of diploid bananas that have already been described as featuring QR that could
potentially serve as parents in breeding programs (25).

MATERIALS ANDMETHODS
Pool-seq and SNP calling. Mycelium cultures initiated by single ascospores isolated from necrotic

lesions bearing perithecia were identified as belonging to P. fijiensis and stored as described in reference
68. All isolates were thus the product of sexual reproduction and corresponded to different individuals.
They were genotyped using 16 microsatellites markers in the previous study of Dumartinet et al. (6), and
genotypic diversity was close to the maximum value possible with no significant linkage disequilibrium
in each population. In the present study, genomic analysis was based on 32 to 58 (mean = 42.25) isolates
in DR and Cuba and 27 to 30 isolates in Honduras (Table 1). Isolates were pooled after DNA extraction.
As suggested in a recent theoretical study (36), this approach appeared to be the best way to reduce
variation in the pooling step of our study. Mycelia from each isolate were grown on solid medium
(300ml V8, 3 g CaCO3, 20 g/liter agar, pH 6) for 2weeks at 25°C, dried for 2 days at 55°C, and ground.
Genomic DNA was extracted as detailed in reference 69. Equimolar amounts of DNA from 27 to 58 iso-
lates were pooled for each sampled population (Table 1). Overall, 17 pools were sequenced using
paired-end Illumina sequencing at the Genome Quebec Innovation Centre at McGill University on the
GAII platform. Samples were (6 per lane) sequenced with a 100-bp read length and a targeted depth of
80�. The pool of population DR3 R1 was sequenced four times with four independent sequencing libra-
ries to help filter sequencing errors after SNP calling.

Genomic reads from fastq files were mapped against the P. fijiensis reference genome (https://
genome.jgi.doe.gov/Mycfi2/Mycfi2.home.html [28]) using Stampy aligners 1.0.13 with default settings
(70) and with a minimum mapping quality score of 30. Sites around indels were realigned using the
Genome Analysis Toolkit (GATK) v1.05777 indel realigner (71). Coverage was analyzed from the gener-
ated BAM file using the Genocov program from Bedtools v.2.27.0 (72). Based on the coverage distribu-
tions, a minimum coverage of 20 and a maximum coverage of 150 were used as thresholds for SNP iden-
tification to correct for potential errors from repetitive sequences. Considering these thresholds, the
mean coverage was between 55 and 85� and then was always higher than the number of individuals,
as recommended in reference 36. The proportion of the genome represented was between 57 and 62%
across all samples, suggesting that most of the repetitive sequences were eliminated, as these sequen-
ces amounted to around 40% of the P. fijiensis genome (28). According to the PoPoolation2 pipeline for
pool-seq data (73), a synchronized file was created via SNP calling using SAMtools mpileup (74). The
popsync2pooldata function of the R package Poolfstat (75) was used to filter biallelic SNPs with cover-
age of between 20 and 150� in each sample. To set up filtering in this study, the four sequencing repli-
cates of the same pool (DR3 R2) were first used together to test values for the minimum read count per
base (min.rc) with 1#min.rc# 4 and for the minimum allele frequency (MAF) with 0#MAF# 0.05.
Since the DNA pool sequenced was the same among replicates, SNPs detected with a given set of pa-
rameters were obviously false and resulted from sequencing errors. The number of SNPs decreased
quickly when both parameters increased and became independent of min.rc when MAF= 0.03, suggest-
ing that most sequencing errors were filtered (see Fig. S1 in the supplemental material). A min.rc = 3 and
a MAF= 0.03 were then adopted to filter all the samples.

Population genetic structure. We described the population structure by first estimating the pair-
wise Fst on all loci between populations using the R package Poolfstat (75) and drew up dendrograms
using the standard R functions hclust and plot. We also calculated the covariance matrix X of the popu-
lation allele frequencies by running the core model of the BayPass program (44).

Genome scan for convergent selection footprints. In a PoolFreqDiff analysis, we rescaled all the al-
lele counts to the effective sample size (neff), as recommended by the authors (43). A P value for each
SNP was calculated from a G-test of consistency between population pairs across locations. In BayPass
analysis, the qualitative covariable (Cov-co) corresponding to the cultivars of origin was coded as 1 for
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resistant and 21 for susceptible, as performed in the work of Eoche-Bosy et al. (76). The quantitative
covariables Cov-dS and Cov-dR were estimated in the work of Dumartinet et al. (6) using a subsample of
16 to 32 isolates drawn from the same samples analyzed in the present study. An empirical Bayesian P
value was calculated for each SNP for an association with the covariables tested using the standard
covariate model. Three independent runs were conducted for all the BayPass analyses and gave very
close results. For the local score approach, as the P value distributions in the above analysis were non-
uniform (chi-squared test, P , 0.0001), we used the resampling procedure proposed in the work of
Fariello et al. (46) to approximate a null distribution and defined a chromosome-wide significance
threshold. We opted for a 1% threshold based on the variable value for the j parameter. This procedure
is jointly sensitive to the correlation between loci and the chromosome size. Scaffolds that definitely cor-
responded to dispensable (B) chromosomes (77) in P. fijiensis generally showed higher correlations of
single-marker P values, which may have been the result of less reliable mapping due to greater variabili-
ty between the reference genome and the sequenced pools. B chromosomes are also smaller in size
(28). Thus, we ran the local score approach and all the other analyses while considering only the 12 scaf-
folds corresponding to the core genome from a synteny analysis (28). This core set encompassed almost
87% of the genome and more than 96% of the predicted genes.

Genetic differentiation within putative selected regions. The existence of convergent host selec-
tion between locations in the genomic regions detected with the above two methods was also
addressed using an independent Fst outlier approach between population pairs at each location. Fst val-
ues were estimated for all the locations sampled and the genomic regions detected using the estimator
developed for pool-seq data and implemented in the R package Poolfstat (75). As P. fijiensis is not a
model organism, estimates of demographic models and genetic parameters are not available to draw a
null distribution of Fst. The pool-seq data provided in this study were not ideal for fitting a demographic
model of P. fijiensis in the geographical region studied, which would have required genome sequencing
of separate individuals (62). Furthermore, false positives can be generated with this approach if the mod-
eled and true demography do not match (29). We hence preferred an empirical approach rather than a
model-based approach to define the null distribution of Fst, since it can represent simple and transparent
data treatments (e.g., see reference 78). For each region and population pair, the null Fst distribution was
defined from Fst estimates for SNPs in all the nonoverlapping windows along the entire genome having
the same size as the considered region and with a minimum number of 10 SNPs. The number of win-
dows taken for each region was over 2,000, except for the longest one (Cu4R1 of about 60 kb in size) for
which the number was 900. Fst values were considered significant when they fell in the 5% upper tail of
the Fst distribution. Dendrograms based on Fst values estimated on subsets of genomic regions were
constructed as described above for the population genetic structure.

Within-population statistics. Nucleotide diversity p and Tajima’s D were evaluated using the
unbiased estimators implemented in PoPoolation (79) using 1-kb nonoverlapping windows. The differ-
ence between the median Tajima’s D values estimated on the whole genome and those on genomic
regions putatively under convergent adaptation was tested using a Mann-Whitney U-test.

Analysis of loci in candidate genomic regions. The annotated P. fijiensis reference genome was
used to define the list of genes included within the genomic regions putatively under host selection.
The annotation (GO terms, KOG terms, presence of a peptide signal) for these genes was retrieved from
GFF3 files on the JGI website (https://genome.jgi.doe.gov/Mycfi2/Mycfi2.home.html). Enrichment for GO
terms was tested using the Gowinda program (78). We also tested whether these genes corresponded
to in silico-defined SSPs (28) or to proteins secreted in vitro and in planta by comparing isolates with dif-
ferent pathogenicity levels (48) or genes expressed during infection in a transcriptome analysis (50).
Protein sequences were subjected to a BLAST (80) search in the pathogen-host interactions database
(PHI-base), which currently contains around 6,000 genes proven to affect the outcome of host-pathogen
interactions (49). Almost 70% of the host species in this database belong to plants. For each BLAST
search, we kept the gene in the PHI-base that had the lowest bitscore (and E value , 1� 1029) and an
effect on quantitative pathogenicity (i.e., phenotype “loss of pathogenicity.” “reduced virulence,” or
“increased virulence”).

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.
FIG S1, TIF file, 1.9 MB.
FIG S2, TIF file, 1.9 MB.
FIG S3, TIF file, 2.5 MB.
TABLE S1, XLSX file, 0.02 MB.
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