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Abstract 
Promoting plant diversity through crop mixtures is a mainstay of the agroecological transition. 

Modelling this transition requires considering both plant-plant interactions and plants’ interactions 

with abiotic and biotic environments. Modelling crop mixtures enables designing ways to use plant 

diversity to provide ecosystem services, as long as they include crop management as input. A single 

modelling approach is not sufficient, however, and complementarities between models may be 

critical to consider the multiple processes and system components involved at different and relevant 

spatial and temporal scales. In this article, we present different modelling solutions implemented in 

a variety of examples to upscale models from local interactions to ecosystem services. We highlight 

that modelling solutions (i.e. coupling, metamodelling, inverse or hybrid modelling) are built 

according to modelling objectives (e.g. understand the relative contributions of primary ecological 

processes to crop mixtures, quantify impacts of the environment and agricultural practices, assess 

the resulting ecosystem services) rather than to the scales of integration. Many outcomes of 

multispecies agroecosystems remain to be explored, both experimentally and through the heuristic 

use of modelling. Combining models to address plant diversity and predict ecosystem services at 

different scales remains rare but is critical to support the spatial and temporal prediction of the 

many systems that could be designed. 

 

Keywords: crop mixtures, process-based models, crop models, individual-based models, 

modelling synergies, pest regulation 
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1. Introduction  

New models are frequently developed for specialists in a field to answer specific scientific questions, 

without much interaction with other disciplines in the initial stages. During the past decade, 

however, modellers have integrated knowledge from multiple disciplines (e.g. micro-meteorology, 

environmental physics, ecophysiology, ecology, soil science) to better represent interactions 

between processes within plants, between plants, and between plants and their environment (e.g. 

Gauthier et al. 2020). The result is a distinct diversity of modelling approaches that can be used to 

benefit the complementary properties and strengths of models (see e.g. Colbach et al. 2021; 

Pointurier et al. 2021). This knowledge and model sharing requires certain upstream steps that are 

necessary to render models more accessible, such as free licenses, open-source code, accessible 

software products, improved usability, extensive documentation and training sessions. These steps 

are especially important when setting up close collaboration between teams of modellers that 

include in-depth work on exchanges between models, such as the international modelling 

communities working on crop models, such as AgMip (“Agricultural Model Intercomparison and 

Improvement Project”; Rosenzweig et al. 2013) and MACSUR (“Modelling European Agriculture with 

Climate Change”; https://macsur.eu/). A good example of this desire to share and standardize 

practices is the study of Midingoyi et al. (2021) on the development of a meta-language to facilitate 

the exchange and reuse of crop-model components between modelling platforms. 

The need to combine several modelling approaches, each with trade-offs in accuracy and generality, 

is crucial in all scientific disciplines and assumes that each model may improve understanding and 

predictions of ecosystem functioning. For instance, Evans et al. (2016) highlighted that the global 

models used to predict the geographic distribution of plant species throughout the world have low 

predictive power if they are not improved with process-based range models that predict impacts of 

environmental changes. Therefore, the need exists for accurate predictions of processes and more 

global and qualitative modelling approaches to understand an ecosystem, while also considering the 

feedback between different approaches, especially as the factors involved in ecosystem functioning 

are not necessarily the same for the spatial scales considered (Pearson and Dawson 2003; Xu et al., 

2021). 

Building connections between modelling approaches is particularly crucial in the context of the 

current agroecological transition, which involves in-depth changes to agricultural practices, with 

more complex and diversified agroecosystems and a multifunctional view of agriculture (Caron et al. 

2014; Duru et al. 2015; Gaba et al. 2015). Increasing plant diversity is a mainstay of the 

agroecological transition and the cornerstone for “biodiversity-based agriculture” (Duru et al. 2015), 

which depends on agrobiodiversity at field, farm and landscape scales (Kremen and Miles 2012; 
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Prieto et al. 2015; Tscharntke et al. 2021). In these types of agriculture, ecological processes are 

fundamental to agricultural production, which requires particular focus on production-ecology 

trade-offs (Sabatier and Mouysset 2018). More than ever, modelling synergies must be identified to 

enable upscaling from plant functioning (i.e. ecophysiological processes and plant-plant interactions) 

to ecosystem services to support the agroecological transition (Tixier et al. 2013). 

To illustrate how these modelling synergies and complementarities are essential to better 

characterize biodiversity-based agriculture, we focus on modelling species and cultivar crop mixtures 

along the continuum of plant (and plant-plant interactions), field and farm scales. Each scale 

requires representing specific abiotic and biotic factors (Pearson and Dawson 2003; Peng et al. 

2020), as well as ecosystem functions that support ecosystem services, including production and 

regulating services (Haines-Young and Potschin 2013). The nature, importance and level of 

expression of ecosystem functions also depend on the scale considered. While experiments have 

identified agronomic advantages of these diversified systems (e.g. Kiaer et al. 2012; Beillouin et al. 

2021), better understanding is needed about their agricultural management and especially about 

how to integrate them into cropping systems to attain the ecosystem services targeted. The diversity 

of ecosystem services targeted and the extent of the temporal and spatial scales at which these 

services are developed make modelling choices complex. Issues to consider include which processes 

the model should simulate and at what resolution, as well as which temporal scale (e.g. 

instantaneous, daily, crop-cycle, rotation or long-term) and spatial resolution (e.g. plant, field or 

landscape, along with its multiple cultivated and uncultivated components) to use to represent the 

multiple interactions of interest. These considerations suggest that a single modelling approach is 

not sufficient to meet these legitimate expectations. Moreover, how these issues are addressed 

depends on which stakeholders use the models. 

In this opinion article, we advocate that complementarities and coupling of different modelling 

approaches are critical to consider the complex and diversified agroecosystems involved in the 

agroecological transition, as well as to upscale from the plant and/or field scales to the ecosystem 

services targeted in diversified agroecosystems. Using several examples, we demonstrate that the 

complementarity between individual-based models (including functional-structural plant models 

(FSPMs)), crop models and physical or more qualitative or statistical models, improves 

understanding and facilitates simulating the functioning of crop mixtures and the ecosystem services 

for which they are designed. These modelling complementarities are discussed through the lens of 

crop mixtures or are integrated at larger scales to address three important modelling challenges: to 

i) quantify and understand plant-plant interactions and their underlying processes, ii) represent 
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impacts of the environment and agricultural practices on the functioning of crop mixtures and iii) 

assess the ecosystem services provided by these heterogeneous covers (Figure 1). 

 
 

2. Modelling plant-plant interactions in crop mixtures to assess ecosystem 

services at fine scales (plant and field) 

Plant-plant interactions in crop mixtures are the foundation for the ecosystem services provided by 

diversified agroecosystems. Although these interactions can provide large-scale ecosystem services, 

for most processes they usually occur at a fine scale due to interactions between neighbouring 

plants or between plants and microorganisms. To illustrate this, we focus on complementarities 

between existing modelling approaches to simulate production and regulating services quantified at 

the plant and/or field scales. 

 
2.1. Modelling plant-plant interactions to quantify underlying processes for production services 

One widely known advantage of crop mixtures is their potential to achieve higher yields due to more 

efficient and complementary use of abiotic resources compared to that of sole crops, especially in a 

low-input context (Banik et al. 2006; Dhima et al. 2007; Gaudio et al. 2021; Hauggaard-Nielsen et al. 

2008). Predicting effects of plant-plant interactions on the capture and use of abiotic resources is 

therefore crucial to assess the production services provided by crop mixtures. 

From an ecophysiological viewpoint, some processes are particularly determinant in crop mixtures 

because they strongly influence functioning and performance, especially related to competition (for 

light, water and nutrients), complementarity (spatio-temporal and niche processes) and facilitation 

(Malézieux et al. 2009; Brooker et al. 2015). The main modelling approaches developed to study 

plant-plant interactions within crop mixtures are process-based models at plant and crop scales 

(Gaudio et al. 2019). We do not provide a detailed description here of how process-based modelling 

approaches simulate the processes that underlie these plant-plant interactions, as several recent 

reviews and integrated studies have done so and have described their strengths and weaknesses 

(e.g. Gaudio et al. (2019) for crop or individual process-based models, Evers et al. (2019) and Louarn 

and Song (2020) for FSPMs). When downscaling to quantify and understand the relative 

contributions of primary ecological processes in crop mixtures, individual-based models, especially 

FSPMs, are usually required, as the phenotype of individual plants emerges from interactions 

between the local environment they perceive and their functioning (Evers et al. 2019). Thus, some 

FSPMs can quantify ecological processes (Zhu et al. 2015; Faverjon et al. 2019) or assess the role of 

given traits involved in the performance or resource-use efficiency of crops (usually light or nitrogen; 

Barillot et al. 2014; Louarn et al. 2020). For instance, Zhu et al. (2015) used an FSPM to simulate 

D
ow

nloaded from
 https://academ

ic.oup.com
/insilicoplants/advance-article/doi/10.1093/insilicoplants/diab037/6449487 by IN

R
AE Institut N

ational de R
echerche pour l'Agriculture, l'Alim

entation et l'Environnem
ent user on 08 D

ecem
ber 2021



Acc
ep

ted
 M

an
us

cri
pt

 

6 

wheat-maize relay-intercropping and highlighted that plasticity is the main process involved in the 

higher light-use efficiency in intercrops than in sole crops. 

Important processes highlighted by FSPMs can be summarized using functional relationships to 

include them in crop models (Escobar-Gutièrrez et al. 2009), which would enable understanding of 

plant-plant interactions and thus achieve upscaling. However, few studies have highlighted 

complementarities between these two modelling approaches. For instance, FSPMs can be used to 

evaluate simplified assumptions applied in upscaled crop models. Crop models can simulate light 

interception and partitioning differently, but the common way to represent light interception is to 

use the “turbid-medium approach” and Beer-Lambert law. However, the question remains as to 

whether this simplified approach is sufficiently accurate to simulate light partitioning among plants 

in crop mixtures. Barillot et al. (2011) addressed this question for three grass-legume mixtures 

(wheat-pea, fescue-alfalfa and fescue-clover) and compared light partitioning between the 

component species. They simulated detailed 3D representations of plants, coupled with a solar 

radiation model that followed the turbid-medium approach, with the plant canopy represented by 

one, two or ten layers. The results indicated that more detailed representation of the canopy 

(several layers or in 3D) improved the prediction of light partitioning in mixtures only slightly, thus 

validating the turbid-medium approach for estimating light competition at the canopy scale in crop 

models. Similarly, Pao et al. (2021) transformed a 1D light model using Beer-Lambert equation by 

estimating empirically the light extinction coefficient from the canopy geometry formalised by plant 

and row distances. The performance of this approach in combination with hourly-step time 

resolution of simulation was equivalent to a 3D light model using ray tracing, in a dynamic plant 

model predicting leaf-level photosynthetic acclimation and plant-level dry matter accumulation. This 

smart solution provided efficient estimation for long-term processes integrated over weeks. Another 

example exhibiting how emerging results can be simplified using FSPM  demonstrated that a model 

input that is time-consuming to assess, the red: far-red ratio, was successfully replaced by a proxy 

computed from the leaf area of the upper ten leaves and the plant density (Kahlen and Stützel 

2011). 

The complex integration of local plant responses to light competition and plant structure considered 

in FSPMs is largely incompatible with the simple representation of plants in crop models. However, 

indirect connections can be identified using inverse modelling and the adaptive calibration of input 

parameters in crop models. For instance, these models frequently use the response function of 

crops to plant density to represent the competitive effect of neighbours in mixtures by calibrating a 

dominance ratio or an equivalent-density parameter (Brisson et al. 2008; Confalonieri 2014). These 

parameters depend strongly on environmental conditions and the identity of neighbouring species in 
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the mixture (Van Oijen et al. 2020). Their variations can be derived from simulated data produced by 

more detailed FSPMs, such as the relative-density responses of species (e.g. as illustrated by Louarn 

and Faverjon (2018) for contrasting legume species). 

Interactions for belowground resources are not reflected to this extent in modelling platforms (Evers 

et al. 2019). Because the spatial distribution of resources and physiological characteristics of species 

drive the growth and plasticity of roots, they are important factors that influence the response to 

water or nutrient changes in intercropping (Yin et al. 2020). Results of intercropping studies that 

focus on how to regulate root systems through spatio-temporal variation in the water or nutrient 

supply are rarely reported. However, studies have focused on species-specific responses of root 

morphological plasticity as influenced by nutrient availability, showing greater plasticity in 

graminaceous species (e.g. maize) than in leguminous species (e.g. faba bean, chickpea) (Li et al. 

2014). Other studies compared mixed cropping to segregated strip-intercropping, showing that using 

strip-intercropping to concentrate low C:N species increased N mineralization potential in the 

planting zone for the subsequent crop (Lowry and Brainard 2016). Finally, benefits of legume-based 

intercrops have been shown through direct plant-to-plant N transfer, depending on the physical co-

location of the root systems and thus on the spatial arrangement of the two species (Johansen and 

Jensen 1996; He et al. 2009; Chapagain and Riseman 2014). These results indicate the need to model 

phenotypic plasticity of roots as a function of the distribution of resources in a predefined spatial 

arrangement of intercrops. However, simple and generic approaches that focus on belowground 

resources already exist. For instance, Bertrand et al. (2018) developed BISWAT, a crop model that 

simulates dynamics of water stress in plants in sole crops and crop mixtures. The model integrates 

and combines simple approaches to simulate the main processes in the system with a 2D 

representation of the plants and soil, radiation-use efficiency, total transpirable soil water content 

and a simple representation of root dynamics. The resulting model requires few data for 

parametrization and yet remains robust for simulating water-stress dynamics in a wide range of 

systems. 

Compared to these ecophysiological approaches, ecological approaches are particularly relevant for 

studying and understanding the functioning of systems in which multiple heterogeneous 

populations, such as crop mixtures, interact. However, representing mechanistically the processes 

that interact within these systems and quantifying the resulting ecosystem services requires 

knowledge and conceptual frameworks that are well theorized in ecophysiology and agronomy. 

Thus, dialogue between these different disciplines – environmental physics, ecophysiology, 

agronomy and ecology – is crucial for modelling these agroecological systems (Evans et al. 2016; 

Brooker et al. 2021). In particular, the concept of “functional trait” commonly used in ecology and 
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recently used to characterize agrobiodiversity and ecosystem services (Wood et al. 2015) can be 

related to the parameters and variables in process-based models using the distinction between 

pattern and process traits developed by Volaire et al. (2020). Unlike the strict definition of functional 

traits, which are measured independent of the environment (Violle et al. 2007), the authors argue 

that process traits (a trait measured under environmental conditions fluctuating in time, which 

characterizes processes, that is, flows of material and energy in a given environment during a defined 

period of time, e.g. growth rate or phenological stage duration) are also functional and crucial for 

parameterizing models. This distinction may provide a bridge between ecology and crop science, 

partly because it allows to discuss upon a common semantics linking pattern and process traits with 

input parameters and state variables which are used in process-based models. 

 

 

2.2. Modelling plant-plant interactions to quantify the underlying processes for regulating services 

Crop mixtures should promote regulating services as well as production services (Haines-Young and 

Potschin 2013). For instance, vegetation diversity at all spatial scales (intra- vs. inter-field) improves 

pest regulation in several ways. It increases the matrix of unfavourable habitats and thus limits pest 

dispersal (Fabre et al. 2012; Papaïx et al. 2014). The spatial heterogeneity of host plants can also 

restrict pest population dynamics, which slows the specialization process (Plantagenest et al. 2007). 

In the next modelling example, a splash dispersal model was coupled with a snapshot of virtual 3D 

canopies provided by an FSPM to understand fine processes involved in controlling rain-borne 

diseases in wheat-cultivar mixtures (Vidal et al. 2018, Figure 2). 

By mixing susceptible and resistant cultivars, the habitat favourable to a pathogen is spatially 

fragmented, thus generating i) a "barrier" effect, related to the presence of resistant cultivars, and ii) 

a "dilution" effect, as the probability of an individual finding a favourable habitat is reduced 

proportionally to the reduction in density of the susceptible cultivar (Finckh et al. 2000). This latter 

effect can be reinforced by a difference in height between cultivars when the pathogen spreads 

from the bottom to the top of the plant. Vidal et al. (2018) showed that a wheat-cultivar mixture 

composed of a short resistant cultivar and a taller susceptible cultivar would result in a lower layer 

that mixes susceptible and resistant leaves, which may provide a strong barrier effect (Figure 2). In 

contrast, the upper part of the canopy would be less dense (containing only the taller susceptible 

cultivar), and the upper leaves would be protected by their increased distance from the inoculum 

source at the bottom (height effect) and the presence of resistant leaves in the lower part of the 

canopy (barrier effect). In this example, the coupled model clarified understanding of the 

mechanisms involved and identified height as a relevant architectural trait to reduce spore dispersal 
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when mixing cultivars. However, manipulating such models is extremely time-consuming. The idea 

again is to identify emerging results − response functions to plant architecture and cultivar 

resistance − and then introduce them in a simplified manner into models that simulate other 

important factors in epidemics, such as the microclimate in the canopy. The next step is to quantify 

the influence of these associations on regulating pest populations and limiting crop yield losses. 

Consequently, coupling process-based modelling approaches and food-web modelling could provide 

a promising path for upscaling (Tixier et al. 2013; Malard et al. 2020). 

 

 

 

3. Representing impacts of the environment and agricultural practices when 

assessing ecosystem services provided by crop mixtures at the cropping-

system scale 

3.1. Representing impacts of external drivers on plant-plant interactions 

As described in previous sections, understanding mechanisms of plant-plant interactions requires 

describing the plant environment in detail. Promoting the use of crop mixtures at the cropping-

system scale (e.g. rotation, farm) requires considering effects of agricultural practices and 

environmental factors that influence plant-plant interactions when building and evaluating the 

ability of crop mixtures to provide one or more ecosystem services. Current FSPMs often do not 

consider this particular point as extensively as crop models due to their complex structure and the 

associated modelling costs (Louarn and Song 2020). This could be mitigated by borrowing the 

strengths of different approaches and developing hybrid modelling. However, the level of precision 

and degree of simplification required to consider plant-plant interactions are not necessarily the 

same and depend on the outputs targeted by the simulation study. Colas et al. (2021) illustrated this 

point by simplifying a complex individual-based model at the cropping-system scale to design 

effective strategies for weed control. They simplified light partitioning – which is usually represented 

with a 3D voxelized canopy in their mechanistic model (FlorSys, Colbach et al. 2014) – using a 

random-forest-based metamodelling approach to accelerate the simulations and enable interactive 

testing of many complex cropping systems with end users. 

 
In crop models, agricultural practices influence the crop environment, such as soil fertility and water 

availability, which modifies the soil-climate context in which crop mixtures may adapt as a function 

of their complementarity and/or plasticity properties (Stöckle and Kemanian 2020). Crop models are 

thus able to supply inputs for FSPMs, i.e. quantified and dynamic descriptions of abiotic constraints 
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under which a crop mixture grows. For instance, the STICS crop model was used to simulate impacts 

of delayed sowing dates on plant-plant competition for light (Launay et al. 2009) and impacts of 

different levels of nitrogen fertilization on relative dominance (Corre-Hellou et al. 2009) in barley-

pea intercrops. 

 
3.2. Assessment of a given ecosystem service: pest regulation 

Pests in agroecological cropping systems can be regulated by significantly increasing plant diversity 

in the field or landscape using arable crops and semi-natural or natural elements (Sirami et al. 2019). 

However, the effectiveness of these systems depends greatly on their spatial organization at the 

field scale (Landis et al. 2000). Collard et al. (2018) transposed the spatial concepts of landscape 

ecology to the field scale, assuming that proximity, edge length or aggregation could improve 

understanding of how the spatial organization of non-crop habitats might alter the predator effect 

and thus increase crop health. They used an individual-based and spatially explicit model to simulate 

individual behaviours of predators, such as the duration and frequency of visits to orchard crops. 

They tested several spatial organizations that varied in the clumping of non-crop habitats, the 

distance between crop and non-crop habitats, and the number of alternative favourable 

neighbouring non-crop habitats around the crop habitat. To assess pest regulation, however, this 

modelling approach now needs to include the dynamics of pests and their interactions with 

predators. The current version partly meets this aim using proxies such as visit duration and 

frequency, as well as the duration of the predator’s absence from the crop. 

 

A good example of a modelling solution that uses complementarities between models and that can 

represent heterogeneous canopies was built by coupling the individual-based model FlorSys 

(Colbach et al. 2014) with RSCone, a metamodel produced using the architectural root model 

ArchiSimple (Pagès et al. 2020), and the soil submodel of the STICS crop model (Brisson et al. 2008). 

While FlorSys simulates aboveground crop-weed canopies, the ArchiSimple metamodel represents 

the trophic connection between above- and belowground growth, and the STICS soil submodels 

represent soil structure and climate and their effects on root growth (Figure 3). Illustrating the issues 

faced by coupling models or modules with different time or space scales, conversions had to be 

done to make optimal days of RSCone compatible with thermal time in FlorSys. This smart solution 

thus generates outputs and proxies that can be used to assess contrasting ecosystem services such 

as crop grain yield; weed-caused yield loss; weed seed production (as a proxy for future yield loss) 

and weed-based trophic resources for domestic bees (as one example of weed benefits), resource 

uptake or striga risk (Pointurier et al. 2021). It was necessary to develop working and modelling 

assumptions as the aim of this multi-faceted model was to cover a wide range of flora (including 

D
ow

nloaded from
 https://academ

ic.oup.com
/insilicoplants/advance-article/doi/10.1093/insilicoplants/diab037/6449487 by IN

R
AE Institut N

ational de R
echerche pour l'Agriculture, l'Alim

entation et l'Environnem
ent user on 08 D

ecem
ber 2021



Acc
ep

ted
 M

an
us

cri
pt

 

11 

many contrasting annual species) and address multiple ecosystem services (Colbach et al. 2021). 

Simpler, empirical relationships were preferred for processes for which mechanistic representation 

would have required downscaling to the cellular or molecular scale. Because representation of 

individual plants had to be compatible with multi-annual and multi-field simulations of thousands of 

plants per field, detailed representations, such as used in FSPMs, were rejected in favour of 

individual-based modelling.  

This research model was then used to identify agroecological mechanisms and provide decision 

support for farmers. This mechanistic and individual-based approach induces considerable 

algorithmic complexity and slow simulations; thus, using it in decision-support systems is time 

consuming, as it requires assigning many input variables and calibrating many parameters, 

particularly when simulating many diverse crops simultaneously. This is solved by aspects of 

metamodelling (Colas et al. 2020) that can identify potential changes to cropping systems that might 

improve their performance. However, a biophysical parent model is still required to provide 

biophysical explanations that farmers will accept (Colbach et al. 2021).  

The authors reconstructed the functioning of a diversified agroecosystem by coupling models that 

could represent systems (the plant and its aerial and root structure, seeds, soil layers and their 

structure and microclimate) and mechanisms at similar scales. In particular, they integrated two 

aspects that are essential to understand and manage these types of agroecological systems: 

consideration of long-term processes (e.g. evolution of a seed bank) and impacts of management 

decisions on these processes and the targeted ecosystem services, with consequences that could 

occur over several years. 

 

 

 

3.3. Assessment of a bundle of ecosystem services at the farm scale 

Assessing the ecosystem services provided by diverse crop mixtures is challenging due to the many 

ecosystem services targeted by farmers and the diversity of crops to be investigated (Verret et al. 

2020). Coupling models may be a promising solution to understand this complexity and diversity 

because it benefits from the strengths of diverse modelling approaches. However, predicting how 

management activities and changing future conditions will alter ecosystem services is rendered 

more complex by interactions (e.g. trade-offs, synergies) among multiple ecosystem services 

(Agudelo et al. 2020). More widespread use of process-based models to estimate ecosystem services 

could identify physiological processes, or even the traits, that influence interactions between 

ecosystem services. However, simulating the ecosystem services provided by crop mixtures requires 

representing their inclusion in crop rotations and long-term effects of the environment. This could 
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be achieved by combining the knowledge provided by process-based models and using more 

qualitative models based on farmers’ expertise. 

In agreement with this idea, Meunier et al. (2022) designed a serious game to help users (farmers or 

students) explore and assess a bundle of ecosystem services (i.e. cereal and legume grain yield, 

cereal protein content, potential nitrogen supply to the next crop, maintenance of soil structure and 

pest regulation) provided by a wide range of binary cereal–grain legume intercrops (Figure 4). The 

serious game encapsulates a modelling chain that they constructed from three modelling 

approaches:  

(i) STICS (Brisson et al. 2008) was used to simulate the potential and water-limited biomasses 

of the cereal and legume sole crops independently under a variety of soil-climate conditions 

and management practices. 

(ii) A statistical model built using R software (R Core Team 2018), using a field-trial database of 

cereal-legume intercrops and their corresponding sole crops, was used to correct these 

potential and water-limited biomasses into attainable (i.e. water and nutrient-limited) 

biomasses (Van Ittersum et al. 2013). 

(iii) A knowledge-based multi-attribute model built using DEXi software (Bohanec 2008) was 

used to turn attainable biomass into actual biomass considering pest damage and assessing 

pest-regulation services. Other multi-attribute models also enabled assessment of five more 

ecosystem services that result from the actual biomass of the cereal-legume intercrop at 

harvest and/or cropping-system features. 

The serious game was designed to explore the ecosystem services provided by both common and 

less-common intercropping scenarios, and to promote debate and knowledge sharing among users. 

 

 1 

4. Upscaling models from local interactions to ecosystem services: realities, 2 

opportunities and obstacles 3 

4.1. Modelling solutions to benefit from model complementarities 4 

From the examples listed above, different strategies can be identified to combine models at different 5 

scales and predict consequences of plant-plant interactions, from local responses up to ecosystem 6 

services at the cropping system and farm scales (Figure 5). Besides direct coupling of models, which is 7 

rarely feasible across all scales, we identified three particularly promising approaches to address this 8 

issue: 9 
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● Inverse modelling, which connects models by identifying input parameters from simulated 10 

data. This approach is common to many scientific disciplines (Evans et al. 2016) and uses 11 

simulated datasets to determine parameter values from other models to supplement the 12 

observed data available. Using simulated datasets to improve exchanges between models 13 

and modellers is particularly valuable to facilitate parametrization of existing models, as 14 

illustrated by the adaptive parametrization of density responses and dominance ratios in 15 

crop models (individual-based model to a crop model, Van Oijen et al. 2020) or the definition 16 

of input scenarios in serious games (crop model to a farm-management model; Meunier et 17 

al. 2022). 18 

● Metamodelling, which connects models by developing a simpler model of outputs from a 19 

more complex model (Jin et al. 2001). Defining such new models is a particularly interesting 20 

way to simplify complex simulation models that have high computing costs into something 21 

tractable and reusable in a particular domain using a more integrated approach. For 22 

instance, this is illustrated by the integration of a root-morphogenesis metamodel in FlorSys 23 

to represent root competition (from root FSPM to a cropping-system model, Pointurier et al. 24 

2021). The approach has also been effective at scaling up local plant interactions over large 25 

areas and representing vegetation dynamics by considering soil and landscape variability 26 

(e.g. Moorcroft et al. 2001). Metamodelling can reduce the computing costs of complex 27 

models by several orders of magnitude. 28 

● Hybrid modelling, which connects models by combining the strengths of existing models in a 29 

new model (Louarn and Song 2020). The goal is to perform hierarchical modelling at multiple 30 

scales by including only the level of detail required to represent the critical processes 31 

involved in targeted outputs of the system (e.g. scaling-up a mechanistic model of dynamic 32 

protein turnover from leaf to canopy level, to provide a physiological explanation of the 33 

photosynthetic acclimation under various light availability and nitrogen supply environments; 34 

Pao et al. 2019). A direct example is the re-use of complementary modules from existing 35 

models in original modelling solutions (e.g. individual-based plant models with soil and 36 

management modules from crop models; Faverjon et al. 2019). Merging knowledge can also 37 

result in formalizing emergent properties of a complex model in simpler robust equations or 38 

in validating a simplified formalism used in cropping-system models (Barillot et al. 2011). 39 

Although not yet developed for agroecosystems, hybrid modelling could also consider 40 

Bayesian approaches that have been effective at aggregating different types of models and 41 

data, including those that concern consequences of plant-plant interactions in natural 42 

systems (Pagel and Schurr 2012). 43 

D
ow

nloaded from
 https://academ

ic.oup.com
/insilicoplants/advance-article/doi/10.1093/insilicoplants/diab037/6449487 by IN

R
AE Institut N

ational de R
echerche pour l'Agriculture, l'Alim

entation et l'Environnem
ent user on 08 D

ecem
ber 2021



Acc
ep

ted
 M

an
us

cri
pt

 

14 

 44 

These three broad categories are not mutually exclusive and can be combined to build original 45 

models across scales. Each can help illustrate the potential of process-based models to assess certain 46 

key ecosystem services (related mainly to crop productivity, biogeochemical cycling and weed 47 

control). Moreover, the temporal scale at which processes and interactions occur and ecosystem 48 

services are built may require long-term simulations (Figure 5). Generally, when the spatial scale 49 

increases (from plant-plant to the landscape), the temporal scale increases. However, modelling 50 

could target more ambitious applications than those documented to date, such as more 51 

comprehensive representation of environmental drivers (e.g. pests and pathogens, soil phosphorus 52 

content, climate change) and greater detail in the relationships between plant diversity (crop, service 53 

and weed plants) and biodiversity at other trophic levels in agroecosystems (pests and diseases). 54 

4.2. Challenges and difficulties linked to modelling solutions 55 

Reusing and coupling existing models faces several methodological and technical challenges. To be 56 

effective, direct coupling and hybrid modelling often require developing specific adapters or new 57 

model code. Too many inconsistencies between models, such as differences in temporal and spatial 58 

resolutions, concepts and coupling variables, can make it more difficult to couple the models. The 59 

coupling time step must be defined and be consistent with the time step of the interactions between 60 

the simulated systems. This indicates that it may be necessary to increase (temporal upscaling) or 61 

decrease (temporal downscaling) the time step of one of the coupled models; the latter assumes 62 

knowing how to describe processes at a finer temporal resolution. Furthermore, the processes 63 

considered can occur at different spatial scales (e.g. from field to watershed) depending on the type 64 

of organisms and the factors involved, and can be influenced by multiple interactions. Modelling 65 

platforms do not always have sufficient technical development to combine these contrasting 66 

resolutions to describe systems and their functioning. Moreover, coupling models promotes dialogue 67 

between disciplines (e.g. agronomy and hydrology) and thus requires agreeing on a common lexicon 68 

or an ontology. 69 

4.3. Modelling perspectives and opportunities 70 

Many consequences of multispecies systems remain to be explored, both experimentally and 71 

through modelling and theoretical studies. We advocate practicing both during the transition 72 

towards more agroecological systems. Models cannot be developed without supporting data, and a 73 

lack of reliable models hinders data analysis. This is particularly true regarding consequences of 74 

plant-plant interactions, for which the magnitude and hierarchy of the major processes involved 75 
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remain hotly debated despite over 80 years of manipulative and observational studies (Brooker 76 

2006; Weisser et al. 2017). This lack of understanding prevents identification of a consensual, much 77 

less optimal, model structure. However, it also promotes the development of a variety of models to 78 

test and benchmark interactions between mechanisms that act simultaneously (e.g. competition and 79 

complementarity for resources, different forms of facilitation, physical and chemical signalling). In 80 

this context, combining specific model developments with effective strategies to aggregate them 81 

encourages parallel progress in key disciplinary issues (related to biophysical aspects and social 82 

sciences in managed ecosystems), while still enabling integration of outputs relevant for predicting 83 

ecosystem services at different scales. 84 

Connecting data with models to develop diversified cropping systems provides an opportunity to 85 

address issues involved in quantifying biodiversity-based services. As a part of managed ecosystems, 86 

these services are scrutinized more closely than those in natural systems and benefit from 87 

observation in agricultural networks (e.g. Lechenet et al. 2017), as well as developments in digital 88 

agriculture that are increasingly used for diversified systems (Reboud 2019; Chen et al. 2019). They 89 

also depend greatly on crops that have a long history of biological characterization and modelling 90 

and are now benefiting from the early development of high-throughput information systems in 91 

plants (Tardieu et al. 2017). Rich benchmarking datasets that cover multiple ecosystem services 92 

rather than only productivity are increasingly available. These data remain rare, but they are required 93 

to understand potential trade-offs between services and to identify inconsistent predictions across 94 

scales (Schneider et al. 2014). Here, models are needed to go beyond the observational posture of 95 

naturalists and quantitatively represent and analyse effects of plant diversity in a high number of 96 

possible scenarios 97 

To this end, the ability to predict consequences of within-field diversity at different spatial and 98 

temporal scales is required in order to assess the overall interest of various diversification scenarios. 99 

A general belief about natural ecosystems is that plant diversity alone provides the ecosystem 100 

services targeted, and that increasing species and genetic diversity in cropping systems should be a 101 

goal to provide multiple services. However, how and why a particular arrangement of practices, or a 102 

given range of diversity, should be chosen largely remain to be solved. By definition, managed 103 

agroecosystems have an economic purpose and often target particular marketable products. From a 104 

farmer’s perspective, diversification thus has advantages (resilience) and disadvantages (not all 105 

species are equal from an economic viewpoint; more complex management). Our opinion is that 106 

combining models that can represent plant diversity and predict ecosystem services at multiple 107 

D
ow

nloaded from
 https://academ

ic.oup.com
/insilicoplants/advance-article/doi/10.1093/insilicoplants/diab037/6449487 by IN

R
AE Institut N

ational de R
echerche pour l'Agriculture, l'Alim

entation et l'Environnem
ent user on 08 D

ecem
ber 2021



Acc
ep

ted
 M

an
us

cri
pt

 

16 

scales is critical to support the spatial and temporal prediction of the many systems that could be 108 

designed.  109 

Concluding remarks 110 

Diversified agriculture points a clear route toward more sustainable systems able to provide a range 111 

of services to the society beyond agricultural production. Exploring and evaluating the diversity of 112 

possible solutions is by no means simple, and will require the combination of different approaches 113 

relying on field experiments, farmers networking and new technological tools taking advantage of 114 

heterogeneous sources of data. We support that plant, crop and cropping system models will be 115 

among the key tools to help achieving this goal. We illustrated it here through the example of one 116 

major option regarding crop diversification, the increase of within-field variability by mixing different 117 

crops, and highlighted potential connection and complementarities in the range of models already at 118 

hand. A proximate use of multi-scale modelling solutions could be to help explore numerically the 119 

benefits and constraints of different diversification scenarios and address the “diversification 120 

dilemma” of an almost infinite number of combinations to test. At the very least, it could help 121 

focusing the experimental development efforts on the most promising solutions and limit the test in 122 

field trials of non-beneficial systems (e.g. non-compatible diversity that does not provide the 123 

expected services or whose costs decrease system resilience or farmers’ incomes). When mature and 124 

more robust, an ultimate use of these models could also be to help quantify non-productive 125 

ecosystem services. It is clear that intercropping and other diversification practices will not become 126 

widespread without sufficient economic justification. Such models could be very useful to help 127 

determine the added value of diversified systems. We are witnessing a renewal of interest for these 128 

systems and anticipate that further developments of models in this area will be critical in the coming 129 

years. 130 
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Figure 1. Different features are required to upscale from plant-plant interactions (e.g. competition, 318 

complementary, facilitation) to agroecosystems that provide ecosystem services. This combines the individual 319 

(plant) model level with biophysical (abiotic and biotic environments) and technical levels. However, the 320 

corollary of this upscaling is downscaling, in the sense that modellers and users may need to apply parsimony 321 

to simulate these systems at large scales (at which only a few factors explain variability in performance) 322 

(Pearson and Dawson 2003; Evans et al. 2016), or to identify an optimal system that responds to a set of 323 

constraints and objectives at a given location. Adapted from Louarn and Song (2020). 324 

 325 

Figure 2. Illustration of facilitation against pests resulting from mixing two wheat cultivars that vary in height 326 

and resistance to pests. An aerial functional-structural plant model (FSPM) and a rain-splash model were 327 

coupled to simulate facilitation (Vidal et al. 2018). Source of photographs: Sébastien Saint-Jean (INRAE, UMR 328 

EcoSys). 329 

 330 

Figure 3. Overview of the main processes that connect the FlorSys individual-based model (IBM, Colbach et al. 331 

2014), which simulates the aboveground crop-weed canopy, to the RSCone metamodel (Pagès et al. 2020), 332 

which simulates root growth, and the STICS crop model (Brisson et al. 2008), which provides soil structure and 333 

climate and their effects on root growth. Adapted from Pointurier et al. (2021). 334 

 335 

Figure 4. Introduction to the serious game “Interplay”, used to assess a bundle of ecosystem services provided 336 

by including crop mixtures in a crop rotation. The game and overall structure of the modelling chain are 337 

illustrated. Green boxes are examples of options selected in a designed intercropping scenario. The main steps 338 

of the game and the variables of the modelling chain are in white, the dry matter (DM) of cereal biomass in the 339 

scenario is in light orange, the DM of legume biomass is in green and additional variables that influence soil 340 

structure are in dark orange. 341 

 342 

Figure 5. Conceptual illustration of modelling solutions (i.e. inverse modelling, metamodelling, coupling and 343 

hybrid modelling) used to simulate crop mixtures at different spatial scales (plant, field, farm and landscape), 344 

which are characterized by contrasting processes and ecosystem services. Asterisks indicate that the multiple 345 

spatial scales involve both short- and long-term simulations.   346 
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Figure 1 348 

 349 
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Figure 2 351 
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Figure 3 354 
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Figure 4 357 
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Figure 5 360 
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