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ABSTRACT 
In tropical forests, the high proportion of trees showing irregularities at the stem base complicates 

forest monitoring. For example, in the presence of buttresses, the height of the point of 

measurement (HPOM) of the stem diameter (DPOM) is raised from 1.3 m, the standard breast height, 

up to a regular part of the stem. While DPOM is the most important predictor for tree aboveground 

biomass (AGB) estimates, the lack of harmonized HPOM for irregular trees in forest inventory 

increases the uncertainty in plot-level AGB stock and stock change estimates. In this study, we 

gathered an original non-destructive 3D dataset collected with terrestrial laser scanning and close 

range terrestrial photogrammetry tools in three sites in central Africa. For the 228 irregularly 

shaped stems sampled, we developed a set of taper models to harmonize HPOM by predicting the 

equivalent diameter at breast height (DBH’) from a DPOM measured at any height. We analyzed the 

effect of using DBH’ on tree-level and plot-level AGB estimates. To do so, we used destructive 

AGB data for 140 trees and forest inventory data from eight 1-ha-plots in the Republic of Congo. 

Our results showed that our best simple taper model predicts DBH’ with a relative mean absolute 

error of 3.7% (R²=0.98) over a wide DPOM range of 17 to 249 cm. Based on destructive AGB data, 

we found that the AGB allometric model calibrated with harmonized HPOM data was more accurate 

than the conventional local and pantropical models. At the plot level, the comparison of AGB 

stock estimates with and without HPOM harmonization showed an increasing divergence with the 

increasing share of irregular stems (up to -15%). The harmonization procedure developed in this 

study could be implemented as a standard practice for AGB monitoring in tropical forests as no 

additional forest inventory measurements is required. This would probably lead to important 

revisions of the AGB stock estimates in regions having a large number of irregular tree stems and 

increase their carbon sink estimates. The growing use of 3D data offers new opportunities to 

extend our approach and further develop general taper models in other tropical regions.

Key-words: 1) Allometric above-ground biomass model, 2) biomass changes, 3) buttresses, 4) 

close-range terrestrial photogrammetry, 5) point of measurement of stem diameter, 6) stem profile 

7) taper, 8) terrestrial laser scanning, 9) structure from motion
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1 Introduction 
Tropical forests play a key role in the terrestrial global carbon cycle (Pan et al., 2011), but their 

estimated contribution and response to global environmental changes are still subject to a high 

degree of uncertainty (Mitchard et al., 2014, 2013; Phillips and Lewis, 2014). 

Estimates of forest carbon stocks are mainly based on indirect tree-level biomass estimates, using 

allometric models to convert forest inventory data into aboveground biomass (AGB, Fig. 1). Tree 

biomass estimates are then summed at the plot scale and the resulting plots biomass estimates are 

then upscaled to larger areas (e.g., a landscape, a region, a country) using design- or model-based 

inference approaches, with or without ancillary data (McRoberts, 2010; McRoberts et al., 2010, 

Clark and Kellner, 2012; Gibbs et al., 2007).

It has been demonstrated that the propagation of errors from tree measurements to large-scale 

carbon stock estimates largely depends on the choice of the AGB allometric model (Chave et al., 

2004; Chen et al., 2016; Molto et al., 2013; Zhao et al., 2012). In the tropics, general (multi-

species) AGB models are most commonly used to predict tree AGB (Brown et al., 1989; Chave et 

al., 2014, 2005; Fayolle et al., 2018, 2013; Higuchi et al., 1998; Nogueira et al., 2008; Overman et 

al., 1994). General allometric models typically use tree diameter (DPOM) measured at the point of 

measurement (POM), which is either the 1.3 m reference height or above any deformation, total 

tree height (TH) and species average wood basic density (ρ) as predictors. 

When developing AGB models, an important step of model diagnosis consists of assessing how 

model error varies with change in fitted or predictor values. The pantropical AGB model of Chave 

et al. (2014), which is the most widely used model, shows a clear error pattern with tree biomass, 

with a large AGB overestimation for small trees and an underestimation for large trees (> 20 Mg, 

Fig. 2 in Chave et al. 2014). Using the publicly available dataset of Chave et al. (2014), it can be 

shown that the error shows a similar structure with tree diameter, with a positive mean relative 

error for trees with diameter ≤ 140 cm (mean = 14%, median = 7 % and n = 3,988) and, a negative 

mean relative error for the trees larger than 140 cm  (mean = -14 %, median = -16 %, n = 16 and a 

maximum diameter of 212 cm). This systematic underestimation of AGB for large trees has been 

found in independent studies using this pantropical model or a similar AGB model functional form 

(i.e., a power model based on the compound variable ρ·D²POM·TH) in Amazonia (Gonzalez de 

Tanago et al., 2018; Goodman et al., 2014; Lau et al., 2019) and central Africa (Bauwens et al., A
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2017; Ploton et al., 2016). A hypothesis to explain this bias is that variation in crown-diameter 

allometry, either across sampling sites (Goodman et al., 2014) or during tree ontogeny (Ploton et 

al., 2016), is not fully captured by the model’s predictors (i.e., DPOM, TH and ρ) while it influences 

tree allometry. Another hypothesis for the underestimation of large tree AGB is that such trees 

often present deformations (e.g., buttresses) at the standard breast height (i.e., 1.3 m) so that the 

measured diameter (DPOM) is taken higher and is systematically lower than the equivalent diameter 

at breast height because of stem taper. Bauwens et al. (2017) developed a method based on 3D 

data to harmonize the height (HPOM) of the measured DPOM by computing the equivalent diameter 

at breast height (DBH’) which is defined as the diameter of a circle having the same area as the 

measured basal area at 1.3 m height. Using destructive biomass data from Cameroon, the authors 

demonstrated that using DBH’ instead of DPOM in a published AGB model reduced the AGB 

underestimation for large trees with an irregular stem (Fig. 4 in Bauwens et al. 2017). This last 

method has operational perspectives as DBH’ could be estimated from correction models 

previously fitted on 3D data without requiring additional measurements in forest inventories.

Across 97 1-ha forest inventory plots in central Africa (from a subsample of Ploton et al., 2020), 

HPOM values greater than 1.3 m represent 9% (±9%) of the trees with DPOM ≤ 70 cm and this 

proportion rises to 55% (±31%) for trees with DPOM > 70 cm, suggesting that trees with irregular 

stem base dominate among large tropical trees in this region. Since large trees disproportionally 

contribute to AGB stocks (Bastin et al., 2015; Lutz et al., 2012; Slik et al., 2013), any systematic 

errors in AGB prediction induced by the use of non-standard HPOM would have an important 

influence on plot AGB estimates and associated uncertainties (Cushman et al., 2014; Muller-

Landau et al., 2014). The influence of this error pattern on the changes of the biomass stock over 

time is less easy to apprehend since biomass production is not driven by large trees (Ligot et al., 

2018). Therefore, it remains unclear how the abundance of trees with irregular stem bases could 

affect estimates of stand biomass productivity and carbon capture. In all cases, the conversion of 

DPOM to DBH’ whether using taper models (Bauwens et al., 2017; Cushman et al., 2014) or 

empirical statistical models (Bauwens et al., 2017; Ngomanda et al., 2012), has the potential to 

improve plot AGB estimates and their comparison (among plots and over time).The use of a taper 

model compared to empirical statistical models has the advantage to be less sensitive to field 

protocol for measuring the diameter of trees with irregularities at the standard height (e.g. of field 

protocols: DPOM measured 30 or 50 cm, 1 m or even more above the buttresses).A
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In this study, we developed a correction procedure aiming to harmonize the HPOM by estimating 

DBH’, the equivalent diameter at the standard breast height (1.3 m), for irregular tree stems and 

assess its effect on biomass estimates at the tree and plot level. Specifically, we (i) used 3D tree 

data to develop a general taper model that predicts DBH’ from information available in 

conventional forest inventories. Then we (ii) used destructive AGB data to assess the potential fit 

improvement in allometric models by using DBH’ in the AGB predictors instead of DPOM. We also 

assessed the prediction error of the pantropical AGB model when using DBH’ instead of DPOM in 

the model. Last, we (iii) used forest inventory data to evaluate the effect of the HPOM 

harmonization on biomass stocks and stock changes at the plot level, considering our local AGB 

model fitted with DBH’ as the reference.

2 Material and methods

2.1 The taper study sites

We collected 3D data on 228 trees, distributed in three sites in central Africa. A total of 40 trees 

were sampled in the first site in Cameroon (14°6.867’ N, 14°33.133' E) using terrestrial laser 

scanning (TLS), 102 trees were sampled in the second site in the Republic of Congo (2°22.520' N, 

17°4.771' E) using close range terrestrial photogrammetry (CRTP), and 86 trees were sampled in 

the third site in the Democratic Republic of Congo (0°12.057' N, 25°20.580' E) using TLS 

(Appendix S1: Table S1). We recorded the tree species, the HPOM and the DPOM of each sampled 

tree. HPOM was measured using a laser rangefinder device (VERTEX IV) and, DPOM was measured 

with a tape or, if the height of measurement was too high (HPOM > 4.5 m), in the lab by 

automatically extracting DPOM at the required measured HPOM with the 3D data from TLS or 

CRTP. Before collecting 3D data of the trees, we cleared the small vegetation (stem with diameter 

< 5 cm and leaves) and small lianas up to 2 m high in a radius < 2.5 m around the focal trees.

We selected eleven abundant focal species with potential stem irregularities and for each of them, 

we sampled at least five trees spanning a diameter range as wide as possible. To expand our 

analysis to a large variety of stem shapes, we also selected less abundant species with contrasted 

stem irregularities and species with more regular stems. For the analyses, we defined a categorical 

variable called ‘Species’ that separately includes the focal species, two other species with more 

than five trees measured and having contrasted shapes (Emien - Alstonia boonei De Wild with its A
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potential fluted trunk and Iroko - Milicia excelsa (Welw.) C.C. Berg with its more regular shape) 

and a group gathering the species with less than five trees (totaling 32 trees). The variable 

‘Species’ thus contains 14 categories (eleven focal species, two other species with more than five 

trees, one group of other species with 31 trees, Appendix S1: Table S1).
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2.2 Post-processing of 3D point clouds

We extracted trunk metrics of the 3D point clouds obtained from TLS and CRTP by following the 

workflow detailed in Bauwens et al. (2017). The outputs are cross-sections realized every 10 cm 

along the stem axis up to 1 meter above the HPOM of each tree. For each cross-section (Fig. 2), we 

extracted: (i) diameter of a theoretical circle which area equals the real area of the cross-section at 

that height l (Darea,l, in meter), (ii) the convex hull length that imitates a tape tight around the stem, 

express in equivalent diameter (DconvHull,l, in meter) and, (iii) the perimeter expressed in equivalent 

diameter of a circle with the same perimeter(Dperim,l, in meter).

2.3 Taper profiles of irregularly shaped tree stems

Most taper models require total tree height to express height in relative terms. Tree height is, 

however, difficult to measure in tropical forests and subject to large measurement uncertainties 

due to a frequently high, dense, and multi-layered canopy. This variable, hence, is not 

systematically available in forest inventory datasets. We therefore tested a variety of taper models 

(Appendix S1: Table S2) that does not require total tree height as an explicative variable and 

which rely on few parameters to ease further analyses. Based on the best Akaike Information 

Criterion ( ), the Root Mean Square Error 𝐴𝐼𝐶 = 2𝑘 ― 2𝑙𝑛 (𝐿) (𝑅𝑀𝑆𝐸 =

 and the simplicity of the model, we finally selected the following 
1
𝑛 ∙ ∑n

1(𝐷𝑎𝑟𝑒𝑎 𝑙,𝑘 ― 𝐷𝑎𝑟𝑒𝑎 𝑙,𝑘)2)

model: 

2.𝐷𝑎𝑟𝑒𝑎,𝑙 =
𝐷𝑃𝑂𝑀 ℎ𝑙

𝑎

𝐻𝑃𝑂𝑀
𝑎 + 𝜀𝑙

With, Darea,l: the equivalent diameter of the cross-section area l at the height hl (in meter), DPOM: 

the diameter measured in the field (50 cm above the buttresses or above other local deformations; 

in meter), hl: the height l above the ground and along the stem at which Darea,l is predicted (in 

meter), HPOM: the height of measurement of DPOM (in meter) and, a: the taper parameter.

2.4 Prediction of the taper parameter

After identifying the taper model that fits the best at the tree-level, we generalized Eq. 2. to predict 

the most reliable equivalent diameter (DBH’) for any tree measured in forest inventories (Eq. 3.). A
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We used different covariates that would potentially explain individual variations of the taper 

parameter ai,j,k. These covariates are the species and the site (both categorical covariates) and 

quantitative trunk metrics based on measured (or easily measurable) variables in forest 

inventories: DPOM, HPOM, Dconvhull130, buttresses convex taper – bct, slenderness coefficients – h:d, 

h:d², h:dc, h:dc
2, hardiness coefficient – hdn and the deficit basal area index – DeBA (definitions in 

Appendix S1: Table S3).

When fitting the general taper model, we took into account the hierarchical structure of the data, 

which relies on the multiple stem measurements realized along each sample tree. We grouped 

these within-tree observations (l) into upper hierarchy levels: tree (k), species (j) and site (i) 

(several trees per species and per site). Within-tree observations are likely to be correlated with the 

correlation as a function of distances between measurements (Tasissa and Burkhart, 1998). This 

violates the assumption of independence required to apply the nonlinear least squares method, 

resulting in unbiased parameter estimates but biased and inconsistent estimates of their variance 

(West et al., 1984). Mixed-effects models allow autocorrelation to be at least partly accounted for 

by including random effects (Burkhart and Tomé, 2012). The random effects are assumed to 

follow a multivariate normal distribution with a mean of zero and a positive-definite variance-

covariance matrix. Additionally to the mixed – effect approach, the reduction of the correlations 

among within-tree observations was taken into account with the first order continuous 

autoregressive structure. The Eq. 2. thus became:

3.𝐷𝑎𝑟𝑒𝑎 𝑖𝑗𝑘𝑙 =
𝐷𝑃𝑂𝑀 𝑖,𝑗,𝑘 ℎ 𝑖,𝑗,𝑘,𝑙

𝑎𝑖,𝑗,𝑘

𝐻𝑃𝑂𝑀 𝑖,𝑗,𝑘
𝑎𝑖,𝑗,𝑘

+ 𝜀𝑖𝑗𝑘𝑙

With,

𝑎𝑖,𝑗,𝑘 =  (𝛽1 + 𝑏1 𝑖 + 𝑏1 𝑖,𝑗 + 𝑏1 𝑖,𝑗,𝑘) + 𝛽2𝐷𝑃𝑂𝑀 𝑖,𝑗,𝑘 + 𝛽3ℎ:𝑑𝑐𝑖,𝑗,𝑘 + 
𝛽4ℎ:𝑑²𝑖,𝑗,𝑘 +  𝛽5𝑆𝑝𝑖_𝑋 +  𝛽6𝐷𝑐𝑜𝑛𝑣𝐻𝑢𝑙𝑙130 𝑖,𝑗,𝑘 + 𝛽7𝑆𝑖𝑡𝑒_𝑋 + … + 𝛽𝑛𝑋𝑛

4.

 is a cross-section area at height l for tree k belonging to species j in Site i, ai,j,k is the taper 𝐷𝑎𝑟𝑒𝑎 𝑖𝑗𝑘𝑙

model parameter for tree k belonging to species j in Site i. β = (β1, . . . , βn) are the fixed effects 

(general parameters), b1 i  is the site-level random effect, b1 i,j is the species within site-level 

random effect and b1 I,j,k is the tree within the species and site and ɛijkl is the within group residual 

error. Spi_X and Site_X are dummy covariates. The random effect b1 i is assumed to be independent A
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for different i, b1 i,j is assumed to be independent for different i, j and independent of b1 i, b1 i,j,k is 

assumed to be independent for different i, j, k and independent of b1 I,j as well as independent of b1 

I. The ɛijkl are assumed to be independent for different i, j, k, l and independent of the random 

effects. The vector of tree random effects and the vector of within-tree residual error terms (ɛl) are 

both assumed to be multivariate normally distributed (Lejeune et al., 2009). The variance–

covariance matrix of the within-tree error terms (Ri) was modeled through a first-order 

autoregressive correlation structure (Eq.  5.) and an exponential function of the variance covariate 

(Eq. 6.), which provided the best fit.

5.𝑐𝑜𝑟𝑟(𝜀𝑖𝑗𝑘𝑙,𝜀𝑖𝑗𝑘𝑙′) = 𝜌𝑖𝑗𝑘𝑙𝑙′ = 𝜌|ℎ𝑖𝑗𝑘𝑙 ― ℎ𝑖𝑗𝑘𝑙′|

6.𝑉𝑎𝑟(𝜀𝑖𝑗𝑘𝑙) = 𝜎2𝑒𝑥𝑝 (2𝛿𝑆𝑖𝑗𝑘𝑙 𝑣𝑖𝑗𝑘𝑙) 

Where δ is a vector of variance parameters for each level of the stratification variable S (the 

species in the study) and vijkl is a vector of variance covariates.

We tested the different fixed-effects covariates in the nested models using a stepwise backward 

approach and we evaluated the significance of a fixed parameter by using conditional t-tests. We 

compared the models fitted by maximum likelihood with a different number of fixed parameters 

by means of likelihood ratio tests including, in the final stage, models with the variance function 

and the autocorrelation structure. All models were also evaluated based on the distribution of the 

residuals, the RMSE, the RMSE of the cross-sections at 1.3 m only (𝑅𝑀𝑆𝐸_130 =  

) and the AIC. In the case of the general taper models (Eq. 3. 
1
n𝑘

∙ ∑𝑛𝑘

1 (𝐷𝑎𝑟𝑒𝑎130,𝑘 ― 𝐷𝑎𝑟𝑒𝑎130,𝑘)2

and 4.), we also included the mean absolute error ( ) as it is less 𝑀𝐴𝐸 =
1
n ∙ ∑n

1|𝐷𝑎𝑟𝑒𝑎 𝑙,𝑘 ― 𝐷𝑎𝑟𝑒𝑎 𝑙,𝑘|
sensitive to large individual errors than RMSE. Relative RMSE and MAE were computed by 

dividing them with the mean tree diameter DPOM of the dataset. We finally selected the best 

models based on all covariates and on covariates commonly available in forest inventory data.

2.5 Effect of the HPOM harmonization

2.5.1 Tree-level AGB estimates 

In order to assess the relevance of the HPOM harmonization in biomass prediction, we compared 

the performance of AGB allometric models using as the main  predictor, alternatively DPOM (with 

HPOM ≥ 1.3 m) or DBH, the harmonized diameter at breast height ( i.e. DPOM for trees with HPOM = 

1.3m or DBH’, the equivalent DBH for trees with HPOM > 1.3 m). For this analysis, we used A
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destructive measurements available for 140 trees (Appendix S1: Table S4) sampled in northern 

Congo in the frame of the PREREDD+ project (Fayolle et al., 2018) in a site close (18 km) to the 

second site of the taper study. Note that the basal area was indirectly measured on each stump by 

photographing the cross-sections of the stump covered with a graduated Plexiglas. The images 

were then orthorectified and the stump cross-sections were digitized in a GIS software allowing an 

accurate estimate of the stump area (Bauwens et al., 2017; Bauwens and Fayolle, 2014; Fayolle et 

al., 2013). For trees with HPOM higher than the breast height, the equivalent diameter at breast 

height (DBH’) was thus computed by back-transforming the log(DBH’) from the linear 

interpolation of the couple of points log(Darea_stump)-log(Hstump) and log(DPOM)-log(HPOM). In this 

destructive biomass dataset, DBH’ is thus interpolated and not estimated from a taper model and 

could then be assumed as a measurement.

Using the destructive biomass dataset, we tested (i) the assumption that using the DBH instead of 

DPOM in the pantropical allometric model developed by Chave et al. (2014) reduced the negative 

bias encountered on large trees, and (ii) compared the quality of local biomass models fits based 

on DPOM or DBH.

The pantropical model tested here is the model 4 in Chave et al. (2014), mPAN in Table 1. For local 

biomass models, we used the same functional form fitted on the destructive biomass dataset using 

either DPOM (hereafter mLOC-DPOM) or DBH (hereafter mLOC-DBH) as the tree diameter predictor 

(Table 1).

The relevance of each of AGB estimates from the four approaches (i.e., AGBPAN-DPOM, AGBPAN-

DBH, AGBLOC-DPOM and AGBLOC-DBH) was assessed by the mean error , (1
𝑛 × ∑𝑛

𝑖 = 1(𝐴𝐺𝐵𝑖 ― 𝐴𝐺𝐵𝑖))
the mean relative error  , and using a t-test to gauge the presence of bias. (1

𝑛 × ∑𝑛
𝑖 = 1(𝐴𝐺𝐵𝑖 ― 𝐴𝐺𝐵𝑖

𝐴𝐺𝐵𝑖 ))
The performances of the local AGB models (i.e., mLOC-DPOM and mLOC-DBH) were also assessed 

with their respective AIC.

2.5.2 Plot-level estimates of AGB stock and stock change 

Finally, we assessed the impact of the HPOM harmonization at the 1-ha plot scale using eight 

permanent sampling plots located in the second site in the north of the Republic of Congo (see 

Panzou et al., 2018 and Forni at al., 2019 for further details of the site). For this assessment, we A
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compared the plot AGB estimates from the four approaches: Pan-DPOM, Pan-DBH, Loc-DPOM and 

Loc-DBH (Table 1). For the two approaches requiring DBH, we first estimated the equivalent 

DBH (i.e. DBH’) of the trees with HPOM > 1.3 m. Then, we estimated the height of each tree in the 

plots using height:diameter allometry models calibrated on the destructive biomass dataset. Two 

distinct height:diameter models were fitted and used depending on whether the approach required 

DPOM (TH-DPOM model) or DBH (TH-DBH model) as predictor. We then estimated total plot 

AGB by summing tree-level AGB estimates derived from the four approaches. The plot AGB 

estimated with the mLOC-DBH model was used as the reference, and compared with the three other 

sets of AGB estimates. 

Following the same procedure, we assessed the effect of HPOM harmonization on plot AGB stock 

changes using inventory data collected four years after the first census.
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3 Results 

3.1 Variability in the stem profile

We first fitted the taper model (Eq. 2.) to each tree separately and thus obtained one taper 

parameter ai for each of the 228 trees. The values of the taper parameter a were normally 

distributed around a mean of -0.123 ± 0.049 (Appendix S1: Fig. S1). The RMSE of the predicted 

diameters was 3.8 cm for trees with a DPOM ranging from 17 cm to 249 cm. 

There was a high intraspecific variation in a for most species (Fig. 3 and Appendix S1: Fig. S2) 

except Sapelli (E. cylindricum), Iroko (M. excelsa) and Emien (A. boonei). An interspecific 

variation of a was also noticed, with Iroko (highest mean value, a =-0.062) and Ako (lowest mean 

value, a =-0.180) being the species for which a deviated the most from the average. A virtual 

Iroko (resp. Ako) tree with DPOM = 100 cm and HPOM = 3.3 m (HPOM frequently encountered for 

these species, see Appendix S1: Table S1), would have a DBH’ of 106 cm (resp. 118 cm). Note 

the average difference between DPOM and DBH’ on the 228 trees is -12 cm.

3.2  Toward a general taper model

After assessing the potential of Eq. 2. to fit the taper of each of the 228 trees with 3D data, we 

generalized the model by fitting Eq. 3. using all the cross-sections of the 228 trees in one single 

model. We tested many covariates in Eq. 4. to accommodate for individual variations of the taper 

parameter ai,j,k. Among all the fixed covariates tested h:dc (P = 0.003, F = 8.6) and h:d² 

(P = 0.0004, F = 12.7) were found to be significant and kept in model m1 (RMSE = 6.9 cm, MAE 

= 3.7 cm, and mean error = -0.9 cm, Table 2). To obtain an operational taper model that can be 

applied in any forest inventory plot in central Africa, despite their significance we removed some 

covariates such as DconvHull130 and metrics related to DconvHull130 (e.g., h:dc), leading to the model 

m2 with only DPOM as significant covariate (P < 0.001, F = 15.2, Table 2). The parameters of the 

selected covariates for m1 and m2 are provided in Table 3. In comparison to the taper model fitted 

on individual trees (section 3.1, RMSE = 3.8 cm), using a general taper model increased the 

RMSE by 3.2 to 4 cm depending on the model, resulting in RMSE values of 7 and 7.8 cm for m1 

and m2, respectively (Table 2, Fig. 4).

The inclusion of the correlation structure (Eq. 4) in the final step of the model selection removed 

almost all the correlations (Appendix S1: Fig. S4 and S5). Consequently, the number of significant A
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covariates was reduced and overfitting avoided. Nevertheless, we additionally tested the site effect 

at the species level, for the three species having balanced sampling between second and third sites, 

namely Dabema, Ohia and Padouk (Appendix S1: Fig. S2b). The Student t-test performed on the 

taper parameter did not reveal any significant site effect for these three species, with respectively 

P = 0.06 (df = 10.2), P = 0.4 (df = 18.7), and P = 0.8 (df = 9.9). In addition, using nonlinear mixed 

models fitted for each species separately and including the Site, h:dc and h:d² as covariates 

provided the same results. We also further investigated the species effect and found that including 

DconvHull130 (or derived metrics as h:dc) can compensate, in addition to other metrics, the absence of 

the species covariate and even outperform models including the species factor in terms of RMSE 

and Bias (results not shown). 

The estimated equivalent diameter DBH’ with the models m1 and m2 have a RMSE of 7 cm and 8 

cm respectively (Table 2). DBH‘ predicted with model m1 do not show any important bias (mean 

error= -0.9 cm) and, following Piñeiro et al. (2008), the comparison of observed versus predicted 

DBH’ lead to a coefficient of determination of 0.98 with no significant deviance to the line 1:1 

(Table 2 and Appendix S1: Fig. S6 A). The DBH’ predicted with model m2 are, on average, 

slightly underestimated (mean error = -1.5 cm) and more specifically for very large trees (Table 2, 

Appendix S1: Fig. S6 B). 

3.3 Effect of HPOM harmonization on tree-level AGB estimates

Based on the destructive data available for 140 trees, we compared the prediction error associated 

with the use of DBH and DPOM in AGB models following four approaches (Pan-DPOM, Pan-DBH, 

Loc-DPOM and Loc-DBH, Table 4). The mean prediction error for AGBPAN-DPOM estimates was 

slightly different from zero across all trees sizes (mean = -0.348 Mg, P = 0.017) and significantly 

different from zero for large trees (i.e., DPOM ≥ 70 cm, mean = -1.430 Mg, P = 0.009, Table 4 and 

Appendix S1: Fig. S7). The relative error was positive for all the four approaches with a mean 

relative error of almost 10% for AGBPAN-DBH. The unbalanced numbers of trees along the diameter 

range lead to a positive mean relative error for all the four approaches. Indeed, this positive mean 

relative error was mostly driven by the high number of trees with DPOM < 70 cm which had an 

overall systematic positive error (Table 4 and Appendix S1: Fig. S7).

When fitting local AGB models, we found that tree AGB was better predicted by the model mLOC-

DBH (AIC = -50.4) than by mLOC-DPOM (AIC = -37.9) with lower mean errors occurring across all A
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trees sizes (Table 4 and Appendix S1: Fig. S7). The Akaike weights of these models were 

respectively 0.002 and 0.998, meaning that the local AGB model fitted with DBH is 0.998/0.002 = 

499 times more likely to be the best model in terms of Kullback–Leibler discrepancy than the 

model fitted with DPOM (Wagenmakers and Farrell, 2004). We thus considered the mLOC-DBH 

model as our reference model in the plot-level analysis. Note that the AIC (and AICw) of TH-

DBH and TH-DPOM models are 836 (0.72) and 838 (0.28) respectively. Allometry relationships 

relating either AGB or TH to the tree diameter show thus better fits with DBH than DPOM.

3.4 Effect of HPOM harmonization on plot-level AGB stock and stock change 
estimates

First, we used the taper model m2 to estimate the DBH’ of trees with a raised POM in the forest 

inventory data. Then, we predicted tree AGB with the reference model (i.e., mLOC-DBH) and 

summed AGB for all trees within a plot. We found, AGB stocks to equal 401 ± 96 Mg ha-1 on 

average (± sd) and, the annual AGB stock changes to 6.2 ± 0.8 Mg ha-1 year-1 on average (± sd). 

The average contribution of large trees (DPOM ≥ 70cm) to AGB stock and stock changes were 46 ± 

13 % and 26 ± 7 %, respectively. For very large trees (DPOM > 140 cm), these contributions 

decreased to 20 ± 13 % and 7 ± 3 % (Appendix S1: Fig. S8).

Using DPOM to estimate tree AGB (i.e., Loc-DPOM and Pan-DPOM approaches) led to an 

underestimation of AGB stocks at the plot level in comparison with the reference approach. The 

magnitude of this underestimation increased with the proportion of (large) trees with trunk 

irregularities (Fig. 6A and Appendix S1: Fig. S9 and S10). Depending on the approach used with 

DPOM, the underestimation reached -10 to -15% in the plots with the highest abundance of trees 

with HPOM superior to 1.3 m height. 

The estimates of AGB stock changes obtained when using approaches with DPOM were not, on 

average, significantly different from those obtained with the reference approach (P = 0.052 and 

P = 0.745 for Loc-DPOM and Pan-DPOM, respectively). For some plots, deviations between the two 

estimates were, however, larger than 5%, and tended to be increasingly negative as the plot basal 

area contribution of trees with HPOM superior to 1.3 m height increased (Fig. 5B). This negative 

deviation disappeared when using DBH (i.e., Pan-DBH, the horizontal orange line in Fig. 5B). 

However, using Pan-DBH approach led to an average positive deviation of 2.2% (P < 0.001) 

compare to estimates derived from the reference AGB model.A
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4 Discussion
The taper of irregularly shaped stems well captured by a simple taper model

In this study, we developed general taper models having RMSEs ranging from 7 % to 7.8% for 

trees with different types of stem irregularities (Table 2). These RMSE values are similar to the 

range of values (4.9% – 8.5%) obtained with species-specific taper models predicting tree 

diameter of the lower stem part of more regularly-shaped boreal conifers species (Lejeune et al. 

2009 and, Garber and Maguire, 2003). Here, our dataset mainly combined irregular tree stems 

from three sites in central Africa, including several species and notably covering a large range of 

diameters (DPOM = 17 cm – 249 cm). Our results thus suggest that simple taper models can be 

developed and be yet performant, even on mixes of tropical species with contrasted stem 

irregularities.

An improved AGB allometry when using equivalent diameter at breast height

We could expect that for trees with irregularities such as buttresses, using an equivalent diameter 

at breast height would have added noise to the relationship between stem lateral size (diameter, 

circumference or basal area) and tree AGB. Nevertheless, we found that power AGB models 

calibrated with DBH (i.e., DPOM for trees with regular stems and DBH’ for irregular stems) was 

more accurate than the same model using the conventional DPOM of all the trees, confirming the 

results obtained by Bauwens et al. (2017) for one species. The improvement brought by DBH over 

DPOM should be further studied in other sites and forest types as the distribution of the model error 

versus sampled tree size might not show the same pattern as the one observed in our study (see 

Fayolle et al. 2018 for examples of various AGB error pattern according to sites). Moreover, using 

DBH to improve the goodness of fit of other types of AGB models than the power model on the 

product ρ·D²·TH, should be further studied to ensure that DBH is a reliable predictor for tree AGB 

estimates of any tropical trees. More complex general allometries with non-power models or 

power models with more than one entry have been shown to provide better fits (Fayolle et al., 

2018; Picard et al., 2015) and could be investigated with DBH. 

HPOM harmonization to mitigate AGB estimation bias induced by the widely used pantropical 

AGB model

Using the equivalent diameter at breast height (DBH’) in the published pantropical AGB model 

mPAN reduced the negative bias on AGB estimates for large irregularly shaped tree stems (Chave 

et al. 2014). The reduction of this ‘allometric bias’ has been earlier demonstrated on a smaller A
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dataset from Cameroon (Bauwens et al. 2017). At the plot level, using DBH’ removed the 

increasing negative AGB prediction error observed with the increasing abundance of irregular tree 

stems. By removing this error pattern, the HPOM harmonization renders AGB estimates comparable 

between plots with different shares of irregular tree stems. However, the harmonization led to a 

systematic positive deviation of plot-level AGB estimates of about 2% when compared to 

estimates obtained from our reference AGB model (Fig. 5). This systematic deviation is probably 

due to the high number of small trees within plots (D < 70 cm), for which the systematic 

overestimation of AGB is more important when using the pantropical AGB model whatever the 

type of diameter used (Pan-DPOM or Pan-DBH, see Table 4 and the local maxima in the loess 

curves in Appendix S1: Fig. S7B). The systematic overestimation of AGB for small trees could be 

avoided by segmenting the AGB power model (Picard et al., 2015). Therefore, in absence of an 

AGB model fitted with DBH’, using the published pantropical AGB model of Chave et al. (2014) 

with DBH’ is an efficient way to correct for plot-level AGB estimation bias associated with 

nonstandard HPOM, and the overall small positive bias of 2 %  resulting from this estimation 

approach could be corrected a posteriori.
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A higher AGB growth for trees with HPOM > 1.3m when taking into account the HPOM in AGB 

estimates 

The displacement of the HPOM over time, because of the height growth of the buttresses, adds an 

additional source of uncertainty on tree growth (Cushman et al., 2014; Muller-Landau et al., 2014, 

Talbot et al. 2014). Different correction procedures can be used to account for this uncertainty on 

tree growth estimates and the choice of the appropriate correction procedure depends on the 

objective of the analysis, in particular, whether it focuses on among-plot or within-plot AGB 

changes (Cushman et al., 2014; Talbot et al. 2014). Nevertheless, the derivative of the AGB model 

(mPAN or mLOC-DBH) is higher when considering the equivalent diameter at breast height DBH’ for 

trees with raised POM (see the slopes of the curves from mLOC-DBH in Appendix S1: Fig. S11). 

Therefore, tree AGB change between two censuses will be higher when using DBH’ than a 

corrected DPOM, whatever the growth correction procedure. Harmonizing the HPOM would thus 

limit this growth underestimation. To prevent HPOM changes over time due to the buttress 

development, an alternative long-term solution would be to set a new standard height that remains 

above buttresses during the whole ontogeny of individuals belonging to species known to develop 

buttresses. Following this reasoning, Picard & Gourlet-Fleury (2008) recommended setting the 

HPOM at a standardized height of 4.5 m for all trees of such species. The development of new AGB 

models including this higher standard POM height for these species would then be necessary 

(Muller-Landau et al., 2014).

Reducing uncertainty on plot-level AGB stock change estimates

At the plot level, AGB stock changes are mainly driven by the small trees (Ligot et al. 2018), and 

the divergences in AGB stock changes based on our reference model and the pantropical model 

are mainly coming from trees with DPOM ≤ 70cm  (Appendix S1: Fig. S9 and S10). The local 

positive bias for small trees in AGB power model on the product ρ·D²·TH should be further 

investigated (Picard et al., 2015) in order to reduce as much as possible the AGB stock change 

uncertainty of small trees. In addition, for AGB stock changes comparison among plots, 

controlling the HPOM variation is required. Reducing the stock changes uncertainty from the two 

uncertainty sources described in this section would increase the overall carbon sink of structurally 

intact tropical forests for example. Note the analysis presented here looks at AGB stock change 

over a relatively short period (4 years). The difference in AGB stock change estimates with and 

without harmonizing HPOM may show a different pattern over longer monitoring periods (higher A
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negative trend or a positive trend) because of the change in HPOM distribution within a plot through 

time and the higher probability of mortality events including large trees with HPOM > 1.3m.

Perspectives for improved AGB estimation

The HPOM distribution within forest inventory plots should be accounted for to avoid any 

local/regional AGB negative bias associated with spatial variation in the abundance of irregular 

tree stems. HPOM should thus be measured and reported in forest inventories, but also in 

destructive AGB datasets (Muller-Landau et al., 2014). For instance, the absence of the HPOM 

information, or any tree morphological characteristics besides DPOM, TH and ρ, in the pantropical 

dataset used by Chave et al. (2014), strongly limits the investigations on the error source. 

In this study, we have shown that a simple, multi-specific taper model could be used to mitigate 

tree-level AGB estimation bias and its propagation to plot level. Since 3D data on tropical trees 

are becoming more available using TLS technology and the emergence of databases with 

thousands of trees already scanned and processed across the globe (e.g., Verbeeck et al. 2019), we 

believe there is an unprecedented opportunity to refine general taper models, or even develop 

species-specific models for the most important species. Indeed, while tropical forests are hyper-

diverse, only a handful ‘hyperdominant’ species constitute the majority of the biomass stock 

(Bastin et al., 2015). Following the procedure presented here, general or specific taper models 

could be easily integrated into automatic biomass estimation routines – such as in the BIOMASS 

R package (Réjou‐Méchain et al., 2015) – to correct tree diameters from HPOM variation. The data 

required for this correction, HPOM and DPOM, is already available in many forest inventories and 

this correction procedure could thus be performed with no additional burden on AGB model end-

users. Furthermore, we could reduce the uncertainty related to HPOM harmonization by measuring, 

in addition to the HPOM and DPOM, the circumference around the stem irregularities at the reference 

1.3 m height (the equivalent to DconvHull130 in this study) in forest inventory plots. Indeed, the 

models having this additional measurement have better performances to estimate DBH’ as 

demonstrated here and earlier (Ngomanda et al.,2012 and Bauwens et al., 2017).

5 Conclusion
We showed that harmonizing tree diameter measurement height with taper models can reduce 

biomass underestimation for large trees by allometric models, and this correction can have large 

(up to 15%) implications for plot-level biomass estimates. Reducing biases in biomass estimates A
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among tropical forest plots is important to improve our understanding and monitoring of the global 

carbon budget and has direct implications on the calibration/validation of spaceborne biomass 

models. 
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Tables
Table 1: AGB models retrieved from the literature (mPAN) or fitted in this study (mLOC-DPOM and 

mLOC-DBH). Model predictors are the basic wood density (ρ, in g cm-3), the total height of the tree 

(TH , in m) and, the reference stem diameter measured at 1.3 m or above any deformation (DPOM, 

in cm) or the diameter at breast height (DBH, in cm) which includes a mix of DPOM for trees 

measured at 1.3m height and the equivalent diameter at breast height (DBH’, in cm) for diameter 

DPOM measured above any deformation (HPOM>1.3m). 

AGB 

model
Approach Equation

mPAN Pan-DPOM 𝐴𝐺𝐵𝑃𝐴𝑁 ― 𝐷𝑃𝑂𝑀 = 0.673 ∙  (𝜌 ∙ 𝐷2
𝑃𝑂𝑀 ∙ 𝑇𝐻)0.976

Pan-DBH 𝐴𝐺𝐵𝑃𝐴𝑁 ― 𝐷𝐵𝐻  = 0.673 ∙  (𝜌 ∙ 𝐷𝐵𝐻² ∙ 𝑇𝐻)0.976

mLOC-DPOM Loc-DPOM 𝐴𝐺𝐵𝐿𝑂𝐶 ― 𝐷𝑃𝑂𝑀 = 0.043 ∙  (𝜌 ∙ 𝐷2
𝑃𝑂𝑀 ∙ 𝑇𝐻)1.018

mLOC-DBH Loc-DBH 𝐴𝐺𝐵𝐿𝑂𝐶 ― 𝐷𝐵𝐻  = 0.049 ∙  (𝜌 ∙ 𝐷𝐵𝐻² ∙ 𝑇𝐻)1.001
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Table 2: Goodness of fits of the general taper models (Eq. 2) with different fixed covariates used 

to predict the taper parameter ai,j,k. The root mean square error (RMSE), the mean absolute error 

(MAE) and the mean error were computed over all the cross-sections as well as for cross-sections 

at a 1.3 m height only.  The model m1 requires h:dc covariate which is based on DconvHull130, a 

variable not routinely measured in forest inventory. For model m2, before the selection of the 

significant covariates in the fitting process, we only selected covariates that are based on 

conventional measurements in forest inventories. 

RMSE (cm) MAE (cm) Mean error (cm) df

Models   Fixed covariates All 1.3 All 1.3 All 1.3

m1 a ~ h:dc +  h:d² 
7.0

(7.0%)

7.0

(7.6%)

3.7

(3.7%)

4.2 

(4.5%)

-0.9 

(-0.9%)

-0.9 

(-0.9%)
21

m2 a ~ DPOM 
7.8

(7.8%)

8.0

(8.7%)

4.0

(4.0%)

4.7

(5.1%)

-1.5 

(-1.5%)

-1.5 

(-1.6%)
20
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Table 3: General fixed parameters for the two general taper models of the table 2. The parameters 

correspond to the equation aijk= (β1+b1,i+b1,i,j+b1,i,j,k)+ β2·DPOM+ β3·h:dc+ β4·h:d² (Eq. 3). 

Parameter Covariate m1 m2

β1 (Intercept) -0.129 -0.156

β2 DPOM 0.048

β3 h:dc 0.014

β4 h:d² -0.004
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Table 4: Prediction error of the four approaches tested to tree-level AGB estimates with 

destructive AGB measurements available for 140 trees. The significance of a bias in the mean 

error was assessed with t-test (*** for P < 0.001, ** for P < 0.01, * for P < 0.05, and ns for not 

significant). MAE is the mean absolute error.

Mean error (Mg) Mean rel. error (%) MAE (Mg)

AGB 

prediction 

approach All sizes DPOM ≥ 70 cm All sizes DPOM ≥ 70 cm All sizes DPOM ≥ 70 cm

PAN-DPOM -0.35* -1.430** 6.2** -5.7ns 0.87 2.56

PAN-DBH 0.016ns -0.120ns 9.8*** 3.0ns 0.83 2.41

LOC-DPOM 0.074ns 0.250ns 4.4* 1.3ns 0.85 2.49

LOC-DBH 0.019ns 0.111ns 4.0* 3ns 0.82 2.41

A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved

Figures

Figure 1: Conventional (left) and original (right) workflows for plot-level aboveground biomass 

(AGB) stock and stock change estimates. In the original workflow, the height (HPOM) of the 

measured DPOM is harmonized at the breast height (i.e., 1.3m) and the resulting equivalent 

diameter at breast height (DBH’) is computed with a taper model before estimating tree AGB of 

the trees with irregular stems in the forest inventory plots. The taper model and the AGB model 

used in this study are based on 3D data and destructive data, respectively. In the original 

workflow, the AGB model has DBH as one of its predictors (i.e., DPOM for regular stems and 

DBH’ for irregular ones). The performances of the AGB model from the original workflow are 

tested in this study and the plot-level AGB stock and stock change estimates of the two workflows 

are compared.

Figure 2: Main attributes used in the taper models. The cross section extracted from the 3D data at 

the standard breast height (1.3 m) is indicated with all the types of measurements used in the 

study.

Figure 3: Taper parameter a of each taper model fitted at the tree-level (Eq. 1) and grouped by 

species. Solid and dotted vertical red lines represent the mean and the mean ± sd of a across all 

species, respectively.

Figure 4: Equivalent diameters Darea,i along the stem.  Darea,i is predicted from (i) the taper models 

fitted on each tree separately (green curves) and (ii) the general model m1 fitted on all trees 

(orange curves). Curves represent Darea,i predictions from the two approaches for five individual 

trees from species showing contrasted stem shapes. Ayous (Triplochiton scleroxylon) and 

Fromager (Ceiba pentendra) are species with well-developed buttresses. Sapelli 

(Entandrophragma cylindricum) is known to develop irregularities at the base of the stem with 

sometimes buttresses. Emien (Alstonia boonei) is a fluted species and Iroko (Milicia excelsa) has a 

more circular stem with some irregularities at the base of the stem for the largest individuals. On 

the right, the cross-sections of the five trees for two reference heights: the breast height (1.3 m) 

and the height of the point of measurement (HPOM) of the reference diameter (DPOM) located 50 cm 

above the irregularities. The sizes of the cross-sections are proportional within trees but not among 

trees.A
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Figure 5: The 1ha plot scale relative difference on AGB stock and stock change between the 

reference approach Loc-DBH and approaches using DPOM (Loc-DPOM and Pan-DPOM) or the 

pantropical approach with DBH (Pan-DBH). The basal area was computed with DBH. The stock 

change estimates are based on a 4 years interval re-measurement.
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