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Abstract 16 

The gut microbiota is a complex ecosystem that inhabits the gastrointestinal tract and consists 17 

of archaea, fungi, viruses, and bacteria, with bacteria being dominant. From birth onwards, it 18 

coevolves dynamically together with the host. The composition of the gut microbiota is under 19 

the influence of a complex interplay between both host and environmental factors. Scientific 20 

advances in the past few decades have shown that it is essential in maintaining homeostasis 21 

and tipping the balance between health and disease. In addition to its role in food digestion, 22 

the gut microbiota is implicated in regulating multiple physiological processes in the host gut 23 

mucosa and in distant organs such as the brain. Persistent imbalance between gut microbial 24 

communities, termed “dysbiosis,” has been associated with several inflammatory and 25 

metabolic diseases as well as with central nervous system disorders. In this review, we present 26 

the state of the art of current knowledge on an emerging concept, the microbiota–retina axis, 27 

and the potential role of its disturbance in the development of retinopathies. We also describe 28 

several microbiota-targeting strategies that could constitute preventive and therapeutic tools 29 

for retinopathies.   30 
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1. Introduction 31 

 32 

Although the relationship between the gut microbiota and the host remains to be fully 33 

elucidated, our knowledge on the essential role that the gut microbiota plays in maintaining a 34 

mens sana in corpore sana grows daily. The gut microbiota ―an entity of the human body 35 

that has been long neglected or underestimated― for the past few decades has taken center 36 

stage in medical and scientific research while attracting the interest of the pharmaceutical 37 

industry. It is now well established that the roles of the gut microbiota are not restricted to the 38 

gastrointestinal compartment. Indeed, basic research in recent decades moved toward trans-39 

disciplinarity, enabling the identification of several pivotal pathways (e.g., neuronal, 40 

endocrine, and immune signaling pathways) and molecular factors (e.g., metabolic, 41 

immunological, and neurochemical host factors, metabolites derived from the microbiota) that 42 

connect the gut microbiota to the rest of the body, and particularly to the central nervous 43 

system (CNS) (Ahlawat et al., 2020; Morais et al., 2021; Schroeder and Backhed, 2016). It 44 

also led us to assess how complex the dialogue is between the gut microbiota and the host and 45 

how powerful the influence of the microbiota on the physiological functions of the host may 46 

be. As a result, the gut microbiota is now considered an essential contributor to CNS 47 

development, functionality, and health. The importance of the gut microbiota in tipping the 48 

balance between health and disease is supported by the association between gut microbiota 49 

imbalance and numerous brain disorders, including neurodevelopmental (e.g., autism), 50 

behavioral (e.g., depression and anxiety), and neurodegenerative (e.g., Parkinson’s disease 51 

and Alzheimer’s disease) diseases (Morais et al., 2021).  52 

The retina is the light-sensitive neural tissue that lines the back of the eyes. Both from 53 

an anatomical and a developmental aspect, the retina is considered an extension of the brain. 54 

Interestingly, many features of neurodegenerative processes in the CNS are similar to those 55 

observed in the retina, and some neurodegenerative disorders of the CNS can have 56 

repercussions in the retina and vice versa (Byun et al., 2021; London et al., 2013; Nucci et al., 57 

2015). This review aims to present the current data from studies of humans and animal 58 

models that point to the role of the gut microbiota in maintaining retinal physiology. We also 59 

discuss the opportunities that may exist to use the gut microbiota as a target for preventive 60 

and therapeutic strategies as well as for the diagnosis of retinal diseases. 61 

 62 
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2. Gut microbiota and its derived metabolites in patients with retinal 63 

neurodegenerative diseases 64 

  65 

2.1. Diabetic retinopathy  66 

Diabetic retinopathy (DR) is a complication that affects approximately 30% of individuals 67 

with diabetes (Wong et al., 2016). Prolonged duration of diabetes, hyperglycemia, and 68 

systemic hypertension are strongly associated with DR. The disease starts with a mild non-69 

proliferative stage (retinal microaneurysms) that may evolve to a proliferative stage whose 70 

features include neovascularization and vitreous or preretinal hemorrhages. Patients with DR 71 

may also develop diabetic macular edema. Although DR has long been regarded a 72 

microvascular disease, recent studies suggest that retinal neurodegeneration precedes vascular 73 

changes (Lynch and Abramoff, 2017; Zafar et al., 2019). Alterations in the composition of the 74 

gut microbiota have been reported in patients with diabetes (Knip and Siljander, 2016; Yang 75 

et al., 2021) and evidence points to the contribution of these microbial changes to disease 76 

pathophysiology (de Groot et al., 2021; Vrieze et al., 2012; Wang et al., 2019; Yu et al., 77 

2019). Although it had been suspected, the role of the gut microbiota in the development of 78 

DR has only recently been investigated. The fecal microbiota of a very small cohort in Saudi 79 

Arabia was analyzed using culture-based techniques and molecular identification targeting 80 

Bacteroides (Table 1) (Moubayed et al., 2019). No change was found between the fecal 81 

microbiota of diabetic patients with or without retinopathy. However, the small size of the 82 

cohort and the culture-based investigation methods used may have contributed to limitations 83 

in the study. More recently, two independent studies in China and in southern India reported 84 

alterations of the gut microbiota associated with DR (Table 1) (Das et al., 2021; Huang et al., 85 

2021). In both studies, no difference in the alpha-diversity indices ―which reflect the richness 86 

and diversity within the ecosystem ― was observed between the fecal microbiota of diabetic 87 

patients without and those with DR. In addition to alterations associated with diabetes, several 88 

modifications were observed at phylum and genera levels between the fecal microbiota of DR 89 

patients and that of controls and/or diabetic patients without DR. However, these alterations 90 

were not similar in the two studies. Among the most represented phyla, a decrease in 91 

Actinobacteria was reported in DR patients compared to controls and to diabetic patients 92 

without DR in the Indian cohort, whereas the relative abundance of this phylum was 93 

unchanged in the Chinese cohort (Das et al., 2021; Huang et al., 2021). Moreover, in the 94 

Chinese cohort Firmicutes were less abundant in the DR group than in the two other groups 95 
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(Huang et al., 2021). In the Indian cohort, a decrease in the abundance of 13 genera and an 96 

increase in the abundance of six genera were observed in DR patients compared to diabetic 97 

patients without DR (Das et al., 2021). However, the biological consequences of these 98 

changes for the host remain difficult to predict since the abundance of genera with 99 

detrimental/pathogenic or with beneficial potential was found to be increased or decreased in 100 

DR patients. The alterations observed in the Chinese cohort were different to those in the 101 

Indian study, but so were the analysis methods (Huang et al., 2021). From this cohort, a 102 

biomarker set of 25 bacterial families was identified that can distinguish diabetic patients with 103 

DR from patients without DR and from controls (Huang et al., 2021). However, these results 104 

have to be confirmed in independent cohorts. Very recently, the relative abundance of the 105 

predominant phyla was compared in the fecal microbiota of Indian diabetic patients with or 106 

without sight-threatening DR (Khan et al., 2021). No difference was observed between the 107 

two groups (Table 1). However, data from this study suggest that the relative abundance ratio 108 

of Bacteroidetes to Firmicutes, which are the dominant gut microbial phyla, might be 109 

considered a marker associated with DR development.    110 

Choline, L-carnitine, betaine, and other choline-containing compounds that are present 111 

in the human diet are metabolized by the gut microbiota to generate trimethylamine (TMA), 112 

which is further converted to trimethylamine-N-oxide (TMAO) in the liver and transported to 113 

the tissues (Janeiro et al., 2018). Alterations in TMAO have been associated with pathological 114 

conditions in rodents and humans, including diabetes (Liu et al., 2021; Nowinski and Ufnal, 115 

2018; Shan et al., 2017). A cross-sectional study that included 40 patients without type 2 116 

diabetes, 50 diabetic patients without DR, and 74 diabetic patients with non-proliferative or 117 

proliferative DR revealed that elevated plasma levels of TMAO were associated with DR and 118 

its severity (Liu et al., 2021). Metabolomic studies also brought clues about the involvement 119 

of the gut microbiota in DR. Nuclear magnetic resonance (NMR)-based metabolomic 120 

exploration of eye fluids in controls and diabetic patients with and without DR led to the 121 

identification of DR-associated alterations in metabolic pathways of energy metabolism and 122 

amino acids (Barba et al., 2010; Jin et al., 2019). Among the changes observed was a 123 

decreased level of succinate in both the aqueous humor and the vitreous humor of DR patients 124 

compared to non-diabetic controls and/or diabetic patients without DR (Barba et al., 2010; Jin 125 

et al., 2019). Interestingly, succinate has been shown to be produced in large amounts during 126 

the fermentation of dietary fibers by the gut microbiota (De Vadder et al., 2016). However, 127 

whether the metabolic changes observed in eye fluid ensue from alterations in the gut 128 

microbiota remains to be determined.  129 
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 Altogether, these data suggest a role of the gut microbiota in the development of DR. 130 

However, discrepancies in the studies regarding the microbial signature that could be 131 

associated with the disease show that other studies are needed to better characterize the 132 

microbial alterations that are specifically associated with DR, particularly the changes that 133 

drive the switch from diabetic status without DR to a diabetic status with DR. Indeed, diabetes 134 

- the pathological condition that constitute the pre-requisite to develop DR - is already 135 

associated with deep restructuration of the gut microbiota (Gurung et al., 2020). Prospective 136 

cohort studies would be valuable and would represent powerful tools for better characterizing 137 

the temporal remodeling of the gut microbiota in relation to the evolution of the diabetes and 138 

the development of DR.     139 

 140 

2.2. Glaucoma 141 

Glaucoma comprises a group of optic neuropathies characterized by progressive and 142 

irreversible damage to the optic nerve (Wang et al., 2020). It leads to visual impairment if 143 

untreated. The causes of glaucoma are complex, but elevation of intraocular pressure has been 144 

identified as a major risk factor. However, the mechanisms that lead to glaucomatous 145 

degeneration are still not fully understood. Only a few studies have analyzed the composition 146 

of the gut microbiota in glaucomatous patients. Gong and colleagues determined the 147 

composition of the fecal microbiota from a Chinese cohort comprising 30 patients with 148 

primary open-angle glaucoma (POAG), the main form of glaucoma, and 30 age- and sex-149 

matched non-POAG controls (Table 2) (Gong et al., 2020). No difference in alpha-diversity 150 

was observed between the POAG and non-POAG patients. An over-representation of 151 

Prevotellaceae, Escherichia coli, and another unidentified Enterobacteriaceae was found in 152 

the fecal microbiota of POAG patients, whereas Megamonas and Bacteroides plebeius were 153 

more prevalent in controls. The authors speculated that the pro-inflammatory properties of 154 

Prevotella spp. and E. coli could contribute to neuronal inflammation and immune damage in 155 

glaucoma. In addition to the composition of the gut microbiota, Gong and colleagues also 156 

analyzed and compared the serum metabolic phenotype of POAG and non-POAG patients. 157 

Interestingly, they identified alterations in the metabolomic profile in POAG patients and 158 

showed that some of them correlated with changes in the abundance of some bacteria in gut 159 

microbiota, particularly that of Megamonas (Gong et al., 2020). However, more studies are 160 

needed to prove a causal relationship. Another study investigated the composition of the gut 161 

microbiota in Caucasian female patients with normal-tension glaucoma (NTG), in those with 162 

ocular hypertension (OHT), and in controls (Anne Katrine Toft-Kehler, 2020). No difference 163 
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in the fecal microbiota composition was found between the groups (Table 2). However, this 164 

study had some limitations, including the number of participants, the medications taken by 165 

patients, and the wide age range of the participants enrolled in the study (between 50 and 96 166 

years of age). Besides, other studies suggest a role of the pathogenic Gram-negative bacteria 167 

Helicobacter pylori in the pathogenesis of glaucoma. However, an association of H. pylori 168 

infection with POAG is still debated (Doulberis et al., 2020). Another feature suggesting that 169 

microbiota could influence glaucoma is modulation of the levels of some metabolites that are 170 

related to the gut microbiota metabolism in host fluids of patients with glaucoma. Comparison 171 

of the metabolomic profiles of the plasma and of the aqueous humor in POAG and non-172 

POAG patients revealed, among other changes, a reduced concentration of polyamines such 173 

as spermine and spermidine in POAG patients (Buisset et al., 2019; Leruez et al., 2018). 174 

Interestingly, polyamines can be synthesized by intestinal bacteria and gain the bloodstream 175 

via the colonic mucosa (Kibe et al., 2014; Tofalo et al., 2019). Another example is the 176 

elevated levels of TMA, a bacteria-derived metabolite that has been reported in the aqueous 177 

humor of patients with advanced POAG compared to patients with cataract (Skrzypecki et al., 178 

2021). Finally, it should be noted that some other studies suggest a role of the oral microbiota 179 

in glaucoma (Anne Katrine Toft-Kehler, 2020; Astafurov et al., 2014; Lim et al., 2021; Polla 180 

et al., 2017).  181 

 182 

2.3. Age-related macular degeneration 183 

Age-related macular degeneration (AMD) is a progressive chronic disease of the retina that 184 

causes damage to the macula, a small central retinal area specialized in central vision 185 

(Chakravarthy et al., 2010). Two stages of the disease are distinguished. The early stage is 186 

characterized by the formation of large deposits called “drusen” and pigmentary abnormalities 187 

in the retina. The late stage of AMD can be subdivided into two forms: a non-exudative (or 188 

dry) form and an exudative (or wet) form. The non-exudative form is characterized by 189 

macular atrophy caused by an accumulation of drusen beneath the retinal pigment epithelium 190 

(RPE) and Bruch’s membrane that damages the RPE and may cause indirect photoreceptor 191 

cell death. The exudative form is characterized by choroidal neovascularization (CNV), which 192 

leads to RPE detachment and to RPE and photoreceptor cell death. The etiology of AMD is 193 

complex and not yet fully understood (Lambert et al., 2016). Interestingly, some 194 

environmental risk factors associated with AMD, such as diet, influence the composition and 195 

functions of the gut microbiota (Redondo-Useros et al., 2020; Singh et al., 2017). In addition, 196 

dysbiosis of the gut microbiota contributes to the establishment and strengthening of an 197 
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inflammatory environment as well as to the development of metabolic disorders, both of 198 

which are pathological conditions associated with AMD (Al Bander et al., 2020; Dabke et al., 199 

2019; Rozing et al., 2020; Shanahan and Sheehan, 2016; Sonnenburg and Backhed, 2016; Tan 200 

et al., 2020b). The fecal microbiota in patients with neovascular AMD has been determined 201 

by shotgun metagenomic sequencing in two studies from the same Swiss research group 202 

(Table 3) (Zinkernagel et al., 2017; Zysset-Burri et al., 2020). This technology enables the 203 

identification and the profiling of the microbial genes of a sample (the metagenome). In the 204 

first study, the number of participants enrolled was small (12 patients with neovascular AMD 205 

and 11 age- and sex-matched healthy controls) (Zinkernagel et al., 2017). Differences in the 206 

bacterial communities were observed between AMD patients and controls. Notably, an 207 

increase in the relative abundance of the phylum Firmicutes and a decrease in that of the 208 

phylum Bacteroidetes were observed in the patients with AMD. In addition, the fecal 209 

microbiota of AMD patients was enriched in bacteria belonging to the genera Anaerotruncus 210 

and Oscillibacter and the species Ruminococcus torques and Eubacterium ventriosum, 211 

whereas the fecal microbiota of controls was enriched in Bacteroides eggerthii. Apart from 212 

providing information about the taxonomic composition of the microbiota, comparison of the 213 

metagenomes revealed differences in the functional profiles of the fecal microbiota between 214 

patients with neovascular AMD and healthy controls. Indeed, the fecal microbiota of AMD 215 

patients lacked bacteria responsible for fatty acid elongation, whereas it was enriched in 216 

bacteria with increased L-alanine fermentation, glutamate degradation, and arginine 217 

biosynthesis capabilities.  218 

 A higher number of patients were enrolled in the second study (57 patients with 219 

neovascular AMD and 58 age- and sex-matched healthy controls (Zysset-Burri et al., 2020). 220 

Principal component analyses revealed differences in the relative abundance of microbial 221 

species but not in the relative abundance of functional profiles between patients with 222 

neovascular AMD and controls. Comparison of the relative abundances between the two 223 

groups identified the class Negativicutes as being increased in the fecal microbiota of patients 224 

with neovascular AMD, and the genera Bacteroides, and to a lesser extent Oscillibacter, as 225 

being increased in controls (Zysset-Burri et al., 2020). Interestingly, using multivariate 226 

association with linear models, Zysset-Burri and colleagues identified a correlation between 227 

polymorphisms in the gene encoding complement factor H that are associated with AMD 228 

(Maller et al., 2006) and variations in the abundance of a cluster of bacteria, including 229 

Bacteroides species, Ruminococcus torques, the order Clostridiales, and the class 230 

Negativicutes, belonging to the phylum Firmicutes. In addition, the fecal microbiota of 231 
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patients with neovascular AMD was enriched in genes of the ribonucleoside degradation 232 

pathway, and the species Bacteroides uniformis, Odoribacter unclassified, and Eubacterium 233 

eligens were negatively correlated with the pyrimidine ribonucleoside degradation pathway.  234 

 Zinkernagel and Zysset-Burri studies indicate a shift toward Firmicutes being 235 

increased in patients with AMD and Bacteroidetes being more abundant in controls. 236 

Interestingly, changes in the Firmicutes and Bacteroidetes abundances have been associated 237 

with obesity and various other diseases (Kho and Lal, 2018).  238 

 Lin and colleagues recently revealed in a review article results raising from the 239 

analysis of the gut microbiota composition in an independent clinical case-control study 240 

enrolling 85 advanced AMD and 49 healthy control subjects (Lin et al., 2021). Although 241 

details of the study have not yet been published, they reported alterations in the gut 242 

microbiota of AMD patients that were characterized by an enrichment in Prevotella, 243 

Holdemanella, Desulfovibrio, and a reduced abundance in Oscillospira, Blautia, and Dorea 244 

(Lin et al., 2021) (Table 3). They also showed that intake of AREDS supplement (vitamins C 245 

and E, beta-carotene, copper and zinc; (Hammond and Johnson, 2002)) was associated with 246 

an enhancement of the alpha diversity (Lin et al., 2021). Interestingly, they also observed that 247 

AMD-associated risk alleles, particularly ARMS2 and CFH risk alleles, were associated with 248 

alterations of the gut microbiota including a decrease in the alpha-diversity and an increase in 249 

potentially harmful bacteria (IgA-bound bacteria) (Lin et al., 2021).  250 

 Some discrepancies between the studies (e.g., for Oscillibacter) and a lack of 251 

consensus in the observation highlight the need to examine other independent cohorts in order 252 

to better characterize the gut microbiota associated with AMD as well as factors that may 253 

influence the modulation of its composition in such a disease context. Age is a major risk 254 

factor of AMD and this demographic factor as well as other environmental factors related 255 

with ageing (e.g., medication, place of residence) are associated with gut microbiota changes 256 

(O'Toole and Jeffery, 2015). Thus, it appears important to take into consideration such 257 

confounding factors. Based on the available data, it appears that, as for other chronic diseases, 258 

host genetic factors as well as dietary supplements might contribute in shaping the gut 259 

microbiota of AMD patients.     260 

Beyond data on fecal microbiota obtained via metagenomics, it is interesting to note 261 

that data from metabolomic analyses on the plasma of patients with AMD also suggest 262 

changes in the composition and functionality of the gut microbiota are associated with the 263 

disease (Acar et al., 2020; Osborn et al., 2013). Indeed, the gut microbiota is involved in 264 

producing secondary bile acids by modifying primary bile acids. A metabolome-wide 265 
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association study identified among other metabolite changes that bile acids were decreased in 266 

patients suffering from neovascular AMD (Marin et al., 2015; Osborn et al., 2013; Ridlon et 267 

al., 2014). 268 

 269 

3. The gut microbiota and its derived metabolites: what animal models tell 270 

us about their influence on retinal physiology 271 

 272 

3.1. Gut microbiota and lipid composition of the retina 273 

Lipids represent approximately 20% of the dry weight of the retina, making this the tissue 274 

with the highest lipid content in the body after adipose tissue and the brain. Lipids play 275 

critical roles in the development of the retina and the maintenance of its structure and 276 

functionality. A specific feature of the retina is its high content of polyunsaturated fatty acids 277 

(PUFAs) and in particular docosahexaenoic acid (DHA), a PUFA of the n-3 series. DHA, 278 

which can represent up to 50% of total fatty acids in the photoreceptor outer segments, is 279 

involved in visual processes and the maintenance of retinal homeostasis. Retinal lipids consist 280 

mostly of phospholipids (87.3% and 58.3% of total lipids in the human neuroretina and retinal 281 

pigment epithelium, respectively), with plasmalogens (Pls) representing approximately 10% 282 

of these glycerophospholipids (Acar et al., 2007; Bretillon et al., 2008). Pls are characterized 283 

by a vinyl-ether bond at the sn-1 position of the glycerol backbone, which differentiates them 284 

from diacylglycerophospholipids and their ester bond. Plasmenyl-ethanolamine (PlsEtn) is the 285 

most widely represented class of Pl in both the neural retina and the RPE (Acar et al., 2007). 286 

In the neural retina, the major species of PlsEtn are those containing PUFAs, arachidonic acid 287 

(AA, C20:4n-6; in PlsEtn16:0/20:4 and PlsEtn18:0/20:4), or DHA (C22:6n-3; in 288 

PlsEtn18:0/22:6) at their sn-2 position (Saab et al., 2014b). Such PUFAs are the precursors of 289 

bioactive molecules such as prostaglandins, leukotrienes, resolvins, and protectins. Apart from 290 

being a reservoir for these PUFAs, Pls play a role in the protection against oxidative stress 291 

(Brites et al., 2004; Stables and Gilroy, 2011). Defects in Pls are suspected to contribute to the 292 

pathophysiology of retinopathies such as glaucoma and retinopathy of prematurity (Acar et 293 

al., 2009; Saab et al., 2014a; Saab et al., 2014b). 294 

Accumulating evidence from human and animal studies points to the key role of the 295 

gut microbiota in the modulation of host lipids through regulation of several aspects of lipid 296 

metabolism, such as de novo biosynthesis or intestinal absorption, transport, and storage in 297 



11 

 

host tissue (Backhed et al., 2004; Ghazalpour et al., 2016; Kindt et al., 2018; Martinez-Guryn 298 

et al., 2018; Velagapudi et al., 2010; Villette et al., 2020). One of the first pieces of evidence 299 

showing that the gut microbiota could influence the retinal lipid content was provided over 10 300 

years ago by Orešič and colleagues when they compared the lipidome of retinas from germ-301 

free mice (i.e., mice raised without microbiota) and conventionally raised mice (Oresic et al., 302 

2009). Their study showed that the presence of the gut microbiota was associated with an 303 

elevation of the retinal content in PlsEtn, particularly in PlsEtn18:0/20:4. Recent data from 304 

our laboratory complete this observation by showing that, beyond its presence, the 305 

composition of the gut microbiota may also influence the lipid content of nervous tissues 306 

(Albouery et al., 2019). Indeed, we showed that colonization of germ-free mice by the fecal 307 

microbiota from old donor mice results in significant changes in the cortex lipidome 308 

compared with germ-free mice colonized by the fecal microbiota from young donor mice. 309 

Another study that analyzed the functional activity of the gut microbiota in patients with 310 

AMD by metagenomics supported the hypothesis of an influence of the gut microbiota on the 311 

retinal lipids. In this work, although no causal relationship was established with the retinal 312 

lipid content, a reduction in the expression of genes involved in fatty acid elongation was 313 

observed in the gut microbiota of AMD patients compared with age-matched controls 314 

(Zinkernagel et al., 2017). Fatty acid elongation serves in the biosynthesis of long-chain 315 

PUFAs such as DHA from short-chain precursors. This finding makes sense considering the 316 

pathophysiology of AMD, for which a high supply of long-chain PUFAs such as DHA has 317 

been shown to be protective (Liu et al., 2010; Zinkernagel et al., 2017).  318 

 319 

3.2. Influence of gut microbiota and gut microbiota-derived metabolites on retinal 320 

inflammation 321 

It is now well established that the gut microbiota contributes to the development of the 322 

immune system and that dysbiosis is a central player in the promotion of inflammatory 323 

conditions, ranging from localized acute colitis to low-grade systemic inflammation (Aldars-324 

Garcia et al., 2021; Buford, 2017; Tilg et al., 2020). The contribution of the gut microbiota 325 

through its presence and its composition in driving inflammatory-related pathologies has been 326 

well characterized in several animal models (Chassaing and Gewirtz, 2014). In humans, 327 

dysbiosis has been linked to inflammation in numerous pathological conditions such as 328 

inflammatory bowel diseases, metabolic disorders, and some age-related neuroinflammatory 329 

diseases, including Alzheimer’s disease (Megur et al., 2020; Neurath, 2020; Tilg et al., 2020). 330 

Among other mechanisms, studies have highlighted the role of bacterial cell wall compounds 331 
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(e.g., lipopolysaccharide and peptidoglycan) or bacterial-derived metabolites (e.g., short-chain 332 

fatty acids [SCFAs]) in driving low-grade inflammation (Cani et al., 2007). 333 

Over the past few decades, evidence has accumulated on the influence of the gut 334 

microbiota on retinal inflammation in various pathological contexts. In the eye, autoimmune 335 

uveitis is characterized by inflammation of the uvea (iris, ciliary body, choroid) and 336 

neuroretina (Amador-Patarroyo MJ, 2013). Studies on mouse models of experimental 337 

autoimmune uveitis (EAU) have provided evidence for a role of the gut microbiota in the 338 

modulation of the responses and behavior of uveitogenic T lymphocytes as well as in the 339 

development of intraocular inflammation (Horai et al., 2013; Horai et al., 2015; Janowitz et 340 

al., 2019; Nakamura et al., 2016). This topic has been extensively discussed in a recent review 341 

(Salvador et al., 2020). Interestingly, oral administration of propionate, one of the SCFAs 342 

produced in the colon through the fermentation of dietary fibers by intestinal bacteria, has 343 

been shown to attenuate immune-mediated uveitis in a mouse strain-dependent manner 344 

(Nakamura et al., 2017). 345 

A role of the gut microbiota in inflammation associated with the development of 346 

retinopathy in diet-induced metabolic disorders has also been demonstrated. Increased 347 

amounts of pro-inflammatory cytokines (interleukin [IL]-1beta, IL-6, and tumor necrosis 348 

factor [TNF]-alpha) were observed at both systemic and choroid levels in mice fed a high-fat 349 

diet (HFD; (Andriessen et al., 2016). The phenotype was reversed following oral intake of a 350 

broad-spectrum antibiotic, neomycin, and partially reversed following the transfer of fecal 351 

microbiota from mice fed a regular-chow diet to recipient HFD-fed mice (Andriessen et al., 352 

2016). Other data suggest that the gut microbiota influences the retinal inflammatory status in 353 

DR conditions. Indeed, long-term exposure of db/db mice to intermittent fasting ―a condition 354 

associated with restructuring of the gut microbiota, reinforcement of gut barrier integrity, and 355 

a decrease in circulating peptidoglycans― leads to a reduction in the number of IBA-1+ cells 356 

that are markers of microglial activation as well as to decreased infiltration by CD45+ 357 

hematopoietic cells in the retina (Beli et al., 2018). In addition, it has been reported that 358 

administration of ursodeoxycholic acid (UDCA), a secondary bile acid generated by gut 359 

bacteria, improves the DR-like phenotype in a streptozotocin (STZ)-induced diabetic mouse 360 

model through the attenuation of retinal inflammation (Chung et al., 2017; Ouyang et al., 361 

2018). Oral administration of UDCA reduced the number of IBA-1+ cells in retinal ganglion 362 

cells and retinal inner plexiform layers, and also decreased the activation of the NF-kappaB 363 

pathway and the expression level of mRNAs encoding pro-inflammatory cytokines (TNF-364 

alpha, IL-1beta, and IL-6) in retinas of STZ-induced diabetic mice (Ouyang et al., 2018). 365 
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Similarly, the increased retinal expression of MCP-14 and TNF-alpha observed in STZ-366 

induced diabetic mice was limited by intraperitoneal injection of UDCA (Chung et al., 2017). 367 

Retinitis pigmentosa (RP) is a heterogeneous group of inherited neurodegenerative 368 

retinal disorders characterized by a progressive bilateral degeneration of the photoreceptors, 369 

leading to night blindness and progressive visual field defects (Ferrari et al., 2011). RP is 370 

associated with chronic activation of microglial cells, which are resident immune cells within 371 

the retina (Gupta et al., 2003). Systemic treatment with tauroursodeoxycholic acid (TUDCA), 372 

a secondary biliary acid, was shown to reduce the number and the activation of microglial 373 

cells in P23H rats, a model of RP (Noailles et al., 2014). 374 

 375 

3.3. Influence of gut microbiota and gut microbiota-derived metabolites on pathological 376 

vascularization in the retina 377 

Obesity and type 2 diabetes are conditions that influence the development of AMD and DR, 378 

two diseases whose hallmarks include retinal neovascularization processes (Adams et al., 379 

2011; DeFronzo et al., 2015; Zhang et al., 2016). Andriessen and colleagues have elegantly 380 

demonstrated that the gut microbiotal dysbiosis associated with diet-induced metabolic 381 

disorders contributes to retinal neovascularization (Andriessen et al., 2016). Indeed, they 382 

showed that an HFD-fed mouse model of exudative AMD displayed systemic and choroidal 383 

inflammation as well as an exacerbated CNV. A set of experiments, including the transfer of 384 

cecal microbiota from HFD- or chow-diet-fed mice to recipient mice, revealed that the gut 385 

microbiota drives the vascular phenotype. Although a causal relationship was not firmly 386 

demonstrated, the influence of the gut microbiota composition on the development of retinal 387 

vascular abnormalities was strengthened by another study. The authors showed that long-term 388 

exposure of mice to intermittent fasting altered the gut microbiota composition and prevented 389 

the development of acellular capillaries in the retina of db/db mice, a potential model for DR 390 

(Beli et al., 2018).  391 

Several studies support a protective role of bile acids in mechanisms related to 392 

abnormal vascularization. It has been shown in rats that systemic administration of UDCA 393 

and TUDCA reduced laser-induced CNV lesions (Woo et al., 2010). UDCA also provides 394 

protection of the vascular integrity in an STZ-induced DR model (Chung et al., 2017; Ouyang 395 

et al., 2018). Long-term exposure to intermittent fasting, a condition associated with the 396 

prevention of diabetic microvascular complications, was associated with an increase in 397 

plasma levels of TUDCA (Beli et al., 2018). TUDCA is an agonist of the bile acid receptor 398 

TGR5. Interestingly, pharmacological activation of TGR5 by the bile acid agonist INT-767 399 
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led to a reduction in the development of acellular capillaries in DBA/2J mice treated with STZ 400 

and fed an HFD, an accelerated model of DR (Beli et al., 2018). 401 

 402 

3.4. Influence of gut microbiota and gut microbiota-derived metabolites on retinal 403 

neurodegeneration 404 

The dry form of AMD is characterized by a progressive macular degeneration of the retinal 405 

pigment epithelium that precedes photoreceptor cell loss and by lipofuscin accumulation and 406 

drusen formation. Feeding mice a high-glycemic-index diet (HD) is associated with age-407 

related retinal lesions (Rowan et al., 2017; Uchiki et al., 2012; Weikel et al., 2012). 408 

Interestingly, Rowan and colleagues showed that switching mice from an HD to an isocaloric 409 

low-glycemic-index diet during the last 6 months of life prevented the development of age-410 

related eye disorders. In this study, although the experimental setting did not identify a causal 411 

relationship, it was shown that modifications in the microbiome and metabolome were 412 

associated with the retinal phenotype (Rowan et al., 2017). 413 

Chen and colleagues recently provided evidence that the gut microbiota is a 414 

contributing factor to glaucoma pathophysiology (Chen et al., 2018). They showed that 415 

transient elevation of intraocular pressure induced T-cell infiltration into the retina, an event 416 

mediating prolonged retinal neurodegeneration. In addition, they observed that glaucomatous 417 

T-cell responses targeted both human and bacterial heat shock proteins (HSP). Interestingly, 418 

HSP-specific T-cell response and neurodegeneration were abolished in germ-free mice, thus 419 

suggesting that exposure to the commensal microbial flora is required to induce HSP-specific 420 

T-cell response in neurodegeneration (Chen et al., 2018).  421 

 Another element linking the gut microbiota to the physiology of the neural retina is the 422 

neuroprotective effects of certain secondary biliary acids. This topic has been extensively 423 

reviewed recently (Daruich et al., 2019). Briefly, TUDCA was shown to protect retinal 424 

ganglion cells and photoreceptors from cell death and stress and to preserve the retinal 425 

function in several models of retinal disorders (Daruich et al., 2019). In addition, it was 426 

reported that TUDCA promotes the phagocytosis of photoreceptor outer segments by retinal 427 

pigment epithelial cells, a crucial process for retinal homeostasis (Murase et al., 2015). 428 

Finally, other data suggest that SCFAs such as butyrate could modulate intraocular pressure 429 

(Skrzypecki et al., 2018). 430 

   431 
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4. Targeting the gut microbiota as a strategy for the prevention and the 432 

treatment of retinal diseases 433 

 434 

Evidence is accumulating on the existence of a gut microbiota–retina axis and on the 435 

influence of the gut microbiota on the development and progression of retinal disorders. 436 

Hence, manipulating the gut microbiota appears to be an attractive and promising strategy for 437 

preventing or limiting symptoms of retinal diseases. Several strategies for modifying the gut 438 

microbiota in this context are discussed hereafter. Their precision range from the transfer of 439 

complex microbial communities (e.g., fecal microbiota transplant, FMT) to the delivery of 440 

specific microbiota-derived metabolites (e.g., postbiotics). Among the other approaches that 441 

we present, some induce shift in bacterial communities (e.g., prebiotics and diet) while others 442 

introduce selected bacterial species (e.g., probiotics) into the gut microbiota or are designed to 443 

deplete the gut microbiota of some bacterial species (e.g., phage therapy).  444 

 445 

4.1. Probiotics 446 

The term “probiotic” refers to “live microorganisms that, when administered in adequate 447 

amounts, confer a health benefit on the host” (Hill et al., 2014). The most common strains 448 

used as probiotics are lactic acid bacteria and bifidobacteria. However, other species such as 449 

Akkermansia muciniphila or Faecalibacterium prausnitzii are considered promising next-450 

generation probiotic candidates (Cani and de Vos, 2017; Martin et al., 2018). The general 451 

features of probiotics are to support homeostasis of the digestive tract, to modulate the 452 

immune system, and to balance the gut microbiota. Supplementation with probiotics can also 453 

have extraintestinal effects. Indeed, the beneficial effects of specific probiotics on 454 

neurological disorders have been described in animal models and in humans (Sasmita, 2019; 455 

Westfall et al., 2017). Interestingly, results from experimental studies suggest that 456 

supplementation with probiotics could also protect the retina from deleterious conditions. 457 

Some proof in this regard originated from the organism model Drosophila melanogaster, in 458 

which the administration of Lactiplantibacillus plantarum DR7 was shown to alleviate eye 459 

neurodegeneration (rough eye phenotype) induced by the expression of Alzheimer’s Aβ42 460 

peptide (Tan et al., 2020a). In addition, oral administration of the probiotic strains Escherichia 461 

coli Nissle 1917 or IRT-5 (a mixture consisting of Lacticaseibacillus casei, Lactobacillus 462 

acidophilus, Limosilactobacillus reuteri, Bifidobacterium bifidum, and Streptococcus 463 

thermophilus) was able to reduce the severity of EAU in mice, at least partly by modulating 464 
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the immune system (Dusek et al., 2020; Kim et al., 2017). The positive effects of oral 465 

supplementation with probiotics have also been described for ocular structures other than the 466 

retina. Indeed, L. plantarum NK151 and B. bifidum NK175 as well as the ITR5 probiotics 467 

have been shown to improve dry eye symptoms in mice (Choi et al., 2020; Kim et al., 2017; 468 

Moon et al., 2020; Yun et al., 2021). In addition, dietary supplementation with the probiotic 469 

strain Lacticaseibacillus rhamnosus GG has been shown to be effective in antagonizing the 470 

disturbances in retinoid metabolism caused by the pollutant perfluorobutane sulfonate in the 471 

gut and the eye of zebrafish (Hu et al., 2020).  472 

 The use of probiotics as live vectors to deliver therapeutic molecules is a strategy 473 

drawing the attention of scientists and pharmaceutical companies. Thanks to accumulating 474 

knowledge on their safety (GRAS and QPS certifications) and beneficial health effects, as 475 

well as engineering tools that have been developed, several lactic acid bacteria and 476 

bifidobacteria are considered good candidates for such a strategy (Bermudez-Humaran and 477 

Langella, 2017; Plavec and Berlec, 2019). The potential of two engineered lactobacilli in 478 

protecting the mouse retina from DR has been investigated by Li and colleagues (Crackower 479 

et al., 2002; Verma et al., 2020b). They designed two recombinant Lacticaseibacillus 480 

paracasei ATCC 27092 to express and secrete ACE2 or angiotensin-(1-7) (Ang-(1-7)), two 481 

proteins belonging to the renin–angiotensin system (Patel et al., 2016), in fusion with the non-482 

toxic subunit B of cholera toxin, a transepithelial carrier. A protective role has been reported 483 

for ACE2/Ang-(1-7) in uveitis and DR (Dominguez et al., 2016; Qiu et al., 2014; Shil et al., 484 

2014; Verma et al., 2012). Oral administration of ACE2- or Ang-(1-7)-L. paracasei showed 485 

efficacy in limiting retinal inflammation and neurovascular degeneration in mouse models of 486 

DR (Verma et al., 2020a; Verma et al., 2020b). Although they are considered as safe and well 487 

tolerated by healthy subjects, long-term use of probiotics might entail risk under certain 488 

contexts (e.g., probiotic translocation to extra intestinal sites in patients with damaged 489 

intestinal barrier or compromised immunity, transfer of antibiotic-resistant traits to 490 

commensal or pathogenic intestinal bacteria) (Yelin et al., 2019).    491 

  492 

4.2. Prebiotics 493 

The term “prebiotic” refers to “a substrate that is selectively utilized by host microorganisms 494 

conferring a health benefit” (Gibson et al., 2017). This later relies on changes in the 495 

microbiota composition (e.g., stimulation of bifidobacteria and lactobacilli but also other taxa 496 

such as Faecalibacterium spp. or A. muciniphila) and metabolism (e.g., fermentation of the 497 

substrate and production of metabolic products such as SCFAs). Beneficial effects of 498 
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prebiotics are not restricted to the gastrointestinal compartment; evidence showing that they 499 

can also influence the health status of extraintestinal organs was reported for the brain 500 

(Collins and Reid, 2016). The most extensively studied and documented dietary prebiotics 501 

come from carbohydrates (e.g., non-digestible oligosaccharides fructans and galactans). 502 

Intragastric administration of chitosan oligosaccharide (COS) have been shown to attenuate 503 

oxidative stress-induced retinal damages in rats (Fang et al., 2013). Although alterations of 504 

the composition of the gut microbiota by COS have been documented, involvement of these 505 

microbial changes in the beneficial effects of COS on the retina remains to be evaluated since 506 

COS can be absorbed through the intestinal epithelia (Muanprasat and Chatsudthipong, 2017; 507 

Zhang et al., 2018). Other substances such as polyphenols are also regarded as prebiotics 508 

since their beneficial effects on health involve their biotransformation by the gut microbiota, 509 

modulation of the gut microbiota composition, and production of microbial metabolites 510 

(Collins and Reid, 2016; Mithul Aravind et al., 2021). Interestingly, oral supplementation 511 

with resveratrol has been shown to have beneficial effects on retinopathies (Abu-Amero et al., 512 

2016). However, it remains challenging to determine which part of the observed effects is 513 

related to resveratrol per se, its derived metabolites, or modifications of the gut microbiota 514 

consecutive to its administration.  515 

 To note that besides the abundant literature describing their beneficial effect on health, 516 

some studies reported that the use of certain prebiotics such as inulin could have possible 517 

harmful effects under specific contexts such as genetical susceptibility or pre-existing 518 

microbial dysbiosis (Miles et al., 2017; Singh et al., 2018).  519 

 520 

4.3. Synbiotics 521 

The term “synbiotic” refers to “a mixture comprising live microorganisms and substrate(s) 522 

selectively utilized by host microorganisms that confers a health benefit on the host” 523 

(Swanson et al., 2020). The substrate(s) is called a “synergistic synbiotic” when it is 524 

selectively utilized by the allochthonous microorganisms. If the synbiotic includes a prebiotic 525 

that has been designed to be utilized by the autochthonous microorganisms, it is then called a 526 

“complementary synbiotic.” The effects of oral supplementation with synbiotic formulations 527 

on neurodegenerative or ocular diseases have been little explored to date, either in model 528 

organisms or in humans (Arora et al., 2020; Askari and Moravejolahkami, 2019; Chisari et al., 529 

2017; Peterson, 2020). 530 

 531 
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4.4. Paraprobiotics (also called “ghosts,” “non-viable probiotics,” or “inactivated 532 

probiotics”) 533 

Paraprobiotics are defined as “non-viable microbial cells (either intact or broken) or crude cell 534 

extracts which when administered (either orally or topically) in adequate amounts confer a 535 

benefit to the consumer” (Nataraj et al., 2020). Their beneficial health effects are mediated by 536 

the metabolites/molecules contained in the inactivated microorganisms. Morita and colleagues 537 

explored the efficacy of heat-killed L. paracasei KW3110 in protecting the retina against 538 

several stress conditions. They showed that long-term intake of this paraprobiotic modulated 539 

the gut microbiota composition in aged mice. Among other changes, the relative abundance of 540 

bifidobacteria (health-promoting bacteria) was increased and that of Streptococcaceae 541 

(bacteria with pro-inflammatory potential) was decreased in the gut microbiota of aged mice 542 

supplemented with heat-killed L. paracasei KW3110 compared to age-matched controls 543 

(Morita et al., 2018b). Supplementation with this parabiotic was effective in alleviating 544 

inflammation associated with aging (at the gut, systemic, and retinal levels) or induced in the 545 

retina by blue light exposure (Morita et al., 2018b; Morita et al., 2018c). It also protected 546 

against age-related retinal ganglion cell loss and blue light-induced photoreceptor 547 

degeneration (Morita et al., 2018b; Morita et al., 2018c). Some data suggest that heat-killed L. 548 

paracasei KW3110 could prevent chronic eye disorders, including eye fatigue (Morita et al., 549 

2018a; Yamazaki et al., 2020). 550 

 551 

4.5. Postbiotics 552 

Postbiotics refers to “non-viable bacterial products, cell constituents or metabolic products 553 

from microorganisms that have biologic activity in the host” (Nataraj et al., 2020). Like 554 

prebiotics and paraprobiotics, since postbiotics do not contain live microorganisms the risks 555 

associated with their intake are minimized, while their beneficial effects are promoted, at least 556 

partly. Examples of postbiotics are (a) cell-free supernatants obtained from microorganism 557 

cultures and containing secreted bioactive molecules having beneficial health effects (e.g., 558 

anti-inflammatory and/or anti-oxidant properties and/or ability to reinforce the intestinal 559 

barrier), (b) exopolysaccharides that are produced and released by microorganisms, and (c) 560 

metabolites produced by the gut microbiota such as SCFAs, which are generated from dietary 561 

fibers or urolithin A, which is generated from dietary polyphenols (Zolkiewicz et al., 2020).  562 

 563 

4.6. Fecal microbiota transplant 564 
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FMT consists in transferring stool from a donor in a “healthy” state to the gastrointestinal 565 

tract of a recipient individual. The aim is to recover the homeostatic status of the gut 566 

microbiota at the compositional and functional levels (Ng et al., 2020). The potential of such a 567 

strategy to influence host physiology was highlighted by Gordon’s research group in 2006, 568 

who reported that the phenotype of obese mice could be transferred to germ-free mice via 569 

FMT (Turnbaugh et al., 2006). In addition, the efficacy of FMT has also been demonstrated in 570 

the treatment of Clostridioides difficile infections in patients (Mullish et al., 2018). These 571 

findings turned attention to the use of FMT for the treatment of other diseases associated with 572 

dysbiosis such as inflammatory bowel diseases, metabolic syndrome, or autism (Hazel and 573 

O'Connor, 2020; Kang et al., 2019; Kootte et al., 2017; Vrieze et al., 2012). However, several 574 

issues are still under debate and research is ongoing before this technique can be further used 575 

in humans (e.g., the safety of donor feces regarding the risks of transmitting other pathogenic 576 

microorganisms, criteria for donor selection, better formulations and better methodology for 577 

delivery, etc.). 578 

 579 

4.7. Phage therapy 580 

Phages are viruses that infect and kill bacteria. They are present in all microbial 581 

environments, including the gastrointestinal tract (Mushegian, 2020; Sausset et al., 2020). 582 

Two groups of bacteriophages are distinguished according to their replication cycle: the lytic 583 

cycle and the lysogenic cycle. The lytic (or virulent) bacteriophages infect bacterial hosts and 584 

subvert them to produce phage progeny. Then, they induce bacterial host death upon lysis, 585 

thus releasing newly formed phages. The lysogenic (or temperate) bacteriophages integrate 586 

their nucleic acid in the genome of the host bacterium or as an extrachromosomal plasmid. 587 

They can be maintained as prophages in their bacterial host for several generations until 588 

induction of the lytic cycle. Bacterial surface molecules and phage receptor-binding proteins 589 

define the tropism of the phage to the bacteria. Phage therapy in bacterial infection relies on 590 

the use of phages to attack the targeted bacteria (Hassan et al., 2021; Principi et al., 2019). 591 

Used a century ago to cure patients with dysentery, cholera, or plague, their utilization was 592 

eclipsed in Western countries by the advent of antibiotics. However, faced with the rise of 593 

antibiotic resistance due to the extensive use of antibiotics in human health and agriculture, 594 

phage therapy is re-emerging as an attractive alternative. Among the advantages that phage 595 

therapy offers over antibiotics is the targeting of specific bacterial strains. Knowledge has 596 

accumulated over the past decade on phage–bacteria interactions (Sausset et al., 2020). Data 597 

obtained from experimental models and humans suggest that phage therapy could be a 598 
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valuable approach to target gut pathogens and bacteria resistant to antibiotics (Galtier et al., 599 

2017; Ott et al., 2017; Principi et al., 2019). The use of phage therapy to re-establish eubiosis 600 

in a pathological condition associated with dysbiosis or to help maintain its stability is also 601 

being extensively explored. Interestingly, a shift in the virome composition has been observed 602 

in the gut microbiota of patients with inflammatory bowel diseases (Norman et al., 2015). 603 

Whether this change in phage composition is a cause or a consequence of bacterial dysbiosis 604 

remains to be elucidated.  605 

   606 

4.8. Diet 607 

The composition of diet and dietary habits are recognized as modulators of the gut microbiota 608 

(Barber et al., 2021; Leeming et al., 2019). Intrinsic and extrinsic factors influence the 609 

efficacy and responsiveness of dietary interventions. The composition and function of the gut 610 

microbiota can be rapidly modulated upon short-term, substantial dietary changes. However, 611 

studies suggest that long-term habits play a role in shaping an individual’s stable gut 612 

microbiota. In addition, responsiveness to dietary interventions might depend on the starting 613 

composition of the individual’s gut microbiota and the disease status (Cotillard et al., 2013; 614 

Sonnenburg and Backhed, 2016; Walker et al., 2011). Both the balance (low versus high 615 

intake) and the nature of macronutrients (carbohydrates, proteins, and fats) influence the gut 616 

microbiota. Indigestible carbohydrates (fermentable dietary fibers; see “Prebiotics” section) 617 

and omega-3 PUFAs are among the best-documented macronutrients, which have been 618 

reported to support a healthy gut microbiota (Menni et al., 2017; Noriega et al., 2016; 619 

Rinninella et al., 2019; Watson et al., 2018). Interestingly, protective effects of omega-3 620 

PUFAs have been demonstrated in various pathological conditions, including metabolic and 621 

neurodegenerative disorders and retinal diseases (Bousquet et al., 2008; Calon et al., 2004). 622 

At least in part, the beneficial effect of omega-3 PUFAs in metabolic disorders seems to be 623 

related to their impact on the gut microbiota (Bidu et al., 2019).  624 

Several observational studies suggest that dietary omega-3 PUFAs protect the retina 625 

against AMD initiation and progression (van Leeuwen et al., 2018). In this context, it has 626 

been recently reported that a 2-month supplementation with omega-3 PUFAs 627 

(eicosapentaenoic acid [EPA] and DHA) to aged mice delays features of normal age-related 628 

retinal degeneration (Prokopiou et al., 2019). Moreover, the results of studies in humans and 629 

experimental models support the beneficial effects of dietary omega-3 PUFAs against DR 630 

(Datilo et al., 2018; Sala-Vila et al., 2016; Suzumura et al., 2020; Yee et al., 2010). The 631 

beneficial effects of omega-3 PUFAs in retinal diseases have been attributed to their structural 632 
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role in membranes, their functional roles as signaling molecules, and their precursor role for 633 

bioactive molecules that regulate numerous biological processes such as inflammation, cell 634 

survival and differentiation, metabolism, and oxidative stress (Gong et al., 2017; SanGiovanni 635 

and Chew, 2005). However, in light of their impact on the composition and function of the 636 

microbiota, one can assume that part of the beneficial effects of dietary omega-3 PUFAs on 637 

the retina could be driven indirectly by the gut microbiota. 638 

Another example illustrating how diet-induced changes in the gut microbiota can 639 

affect retinal physiology is that of Western diet (WD). Consumption of WD is associated with 640 

the development of diabetes and progression of AMD (Chiu et al., 2014). As discussed in the 641 

sections 3.2 and 3.3, Andriessen and colleagues have shown that the alterations of the gut 642 

microbiota associated with the consumption of a HFD influence the inflammatory status as 643 

well as the pathological vascularization of the retina in mice (Andriessen et al., 2016). 644 

Although more studies are needed to prove a causal relationship with changes in the gut 645 

microbiota, HFD-fed mice also exhibited an altered retinal lipid composition (Albouery et al., 646 

2020). In addition to the high fat and low fiber content, the high content of WD in sugar is 647 

also a factor that affects the gut microbiota (Do et al., 2018). Exposition of rodents to high-648 

fructose diet has been reported to impair the functionality of cone photoreceptors as well as to 649 

exacerbate the development of choroidal neovascularization in rats (Thierry et al., 2014; 650 

Thierry et al., 2015). However, the role of the gut microbiota in such phenotype remains also 651 

to be demonstrated. In addition, and as discussed in section 3.4, Rowan and colleagues 652 

reported that consuming high-glycemia (HG) diet was associated with the development of 653 

AMD features, which could be prevented/reversed by switching from HG to low-glycemia 654 

diet (Rowan et al., 2017). These retinal phenotypes correlated with compositional and 655 

functional changes of the gut microbiota (Rowan et al., 2017).  656 

Several studies also support the role of micronutrients such as zinc, carotenoids, and 657 

vitamins C, E and D, in protecting against AMD. The putative role of the gut microbiota in 658 

the retinal effects of these micronutrients has been widely discussed by Rinninella and 659 

colleagues (Rinninella et al., 2018). 660 

 661 

Finally, besides the nature of the diet, dietary practices could also support healthy gut 662 

microbiota. Notably, an emerging body of evidence suggests that nutritional restriction could 663 

have beneficial effects on the gut microbiota, particularly by enriching it in 664 

protective/beneficial bacteria (Rinninella et al., 2020). Data from FMT experiments indicate 665 

that these nutritional restriction-induced microbial changes contribute to improving metabolic 666 
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and inflammatory phenotypes associated with the pathogenesis of various diseases (Rinninella 667 

et al., 2020). Interestingly, restructuring of the gut microbiota by intermittent fasting prevents 668 

features related to DR in mice (Beli et al., 2018). 669 

 670 

Other promising approaches to control the composition and/or the functionality of 671 

microbial populations are the subject of intensive research. They include the use of genome-672 

targeting CRISPR-Cas systems ― an approach that would enable the selective removal of 673 

bacterial strains ― or the use of compounds interfering with quorum-sensing systems. The 674 

latter systems are used by bacteria to communicate with each other and allow for the control 675 

of specific processes such as expression of virulence factors or production of secondary 676 

metabolites (Belizario and Napolitano, 2015; Gomaa et al., 2014; Polkade et al., 2016).  677 

 678 

Several strategies to restore eubiosis or prevent dysbiosis have been developed and 679 

others are still under investigation, some of them being promising. However, to date little is 680 

known about the effectiveness of these therapies on retinal diseases, particularly in humans. 681 

To be effective, the choice of the strategy to restore / re-balance the gut microbiota should be 682 

adjusted to the type of dysbiosis targeted, which leads to consider personalized therapies 683 

rather than systematic therapies. In addition, in light of the potential harmful side effects that 684 

are associated with certain therapies based on the modulation of the gut microbiota or that 685 

seems to be driven by host factors, it appears that more researchers are needed in the field and 686 

that a specialized medical supervision should accompany implementation of such therapies in 687 

patients.  688 

  689 

5. The profile of the gut microbiota and/or its derived metabolites as a 690 

valuable tool for the diagnosis of retinal diseases 691 

  692 

Using the gut microbiota composition and/or its related metabolite profile as a diagnostic tool 693 

for diseases associated with dysbiosis is a concept whose strength and reliability have been 694 

tested in compelling studies for diseases such as cancers (e.g., colorectal cancer, 695 

hepatocellular carcinoma) or type 2 diabetes (Baba et al., 1989; Qin et al., 2012; Ren et al., 696 

2019). In combination with other biomarkers it could constitute a valuable tool for the early 697 

diagnosis of retinal diseases. Microbiota-based biomarkers to discriminate between patients 698 

with and without retinopathies have already been proposed (Huang et al., 2021; Khan et al., 699 
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2021; Zysset-Burri et al., 2020). However, more cross-sectional studies with diverse 700 

populations are needed to strengthen this tool, particularly to make emerging robust microbial 701 

signatures specific to the disease and take into account host-related heterogeneity (lifestyle, 702 

dietary habits, ethnicity, etc.).  703 

 704 

6. Conclusion 705 

It has become evident that the physiology of the retina is under the influence of the gut 706 

microbiota. Indeed, although more data are needed, studies in humans suggested that 707 

dysbiosis is associated with retinopathies. In addition, accumulating evidence from animal 708 

models indicates that the gut microbiota influences retinal physiology and health status 709 

(Figure 1). However, while the identification of the molecular actors and pathways in the gut 710 

microbiota–brain dialogue is already well advanced, little is known about the gut microbiota–711 

retina axis. It now appears urgent to fill this gap. Especially if the involvement of the gut 712 

microbiota in the development of retinopathies is proven, it could constitute a target for the 713 

design of tools both for diagnosis and for preventive and/or therapeutic strategies.  714 

Unlike other pathologies such as inflammatory bowel diseases or some cancers, for which a 715 

body of evidence points to specific alterations of the gut microbiota, there is not clear 716 

microbial signatures associated with retinal pathologies in humans to date. Discrepancies may 717 

arise from several factors such as the low number of independent studies available 718 

(particularly for AMD) but also to the influence of genetic and/or environmental factors (e.g. 719 

dietary habits, drug treatments or stool collection). In addition, more microbiota-health studies 720 

will help to allow distinguishing correlation from causation. To date, most of the studies have 721 

been descriptive, making it impossible to evaluate the contribution of the gut microbiota as 722 

the causative factor of retinopathies. More research is needed to better characterize how the 723 

compositional and functional restructuring of the gut microbiota in humans (not only when 724 

the disease is diagnosed but also in the early stages of disease) affects host physiology.  725 
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Table 1. Bacterial alterations observed in the fecal microbiota of patients with diabetic 1286 

retinopathy (DR) 1287 

Country Effective n 

(control group) 

Method Microbiota alterations7 

Saudi Arabia1 

 

 

 

 

 

 

 

India2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

China3 

 

 

 

 

 

 

 

 

 

 

n=9 T2DM5 without 

DR; n=8 T2DM with 

DR; (n=18) 

 

 

 

 

 

n=25 T2DM without 

DR; n=28 T2DM 

with DR; (n=30) 

 

 

 

 

 

 

 

 

 

 

 

 

n=25 DM6 without 

DR; n=25 DM with 

DR; (n=25) 

 

 

 

 

 

 

 

 

Inoculation on different selective 

culture media; enumeration on agar 

plates; PCR amplification on 

presumptive Bacteroides colonies 

and sequencing (Applied biosystem 

sequence analyzer) using 16S rRNA 

AllBac 296F and 412R primers 

 

Amplification of the V3–V4 region 

of 16S rRNA gene and sequencing on 

Illumina HiSeq platform 

 

 

 

 

 

 

 

 

 

 

 

 

Amplification of the V3–V4 region 

of 16S rRNA gene and sequencing on 

Illumina MiSeq platform 

 

 

 

 

 

 

 

 

Slight and negligible variation 

among T2DM patients with or 

without retinopathy 

 

 

 

 

 

At the phylum level8:  

� in DR: Actinobacteria  

At the genera level:  

� in DR: Bifidobacterium, 

Mitsuokella, Streptococcus, 

Klebsiella, Desulfovibrio, 

Lachnobacterium, Erwinia, 

Treponema, Methanobrevibacter, 

Haemophilus, Asteroleplasma, 

Anaerovibrio, Weissella, 

� in DR: Akkermansia, 

Phascolarctobacterium, Alistipes, 

Shigella, Cloacibacillus, 

Enterococcus 

 

At the phylum level8:  

� in DR: Firmicutes  

At the genera level: 

8 genera detected only in the DM 

including Dielma, Pygmaiobacter, 

Anaerostignum, Murdochiella, 

Azospira and with 90% belonging 

to Erysipelotrichaceae, 

unclassified_c_Bacilli, and 

Ruminococcaceae families 

22 genera detected only in the DR 
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1(Moubayed et al., 2019); 2(Das et al., 2021); 3(Huang et al., 2021); 4(Khan et al., 2021) 1288 

;5T2DM (type 2 diabetes mellitus); 6DM (diabetes mellitus); 7Only results of the comparison 1289 

between diabetic patients with or without DR are presented; 8Among the 4th most abundant 1290 

phyla (Firmicutes, Bacteroidetes, Proteobacteria, Actinobacteria)  1291 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

India4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n=21 T2DM without 

DR; n=37 T2DM 

with DR 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Amplification of the V4 region of 

16S rRNA gene and sequencing on 

Illumina MiSeq platform 

 

including Acidaminococcus, 

Coriobacteriaceae, 

Dolosigranulum, Comamonas, 

Paraeggerthella, Leptolyngbya, 

Uruburuella, Oscillospira, 

Sulfuritalea, Rikenellaceae, 

Chryseobacterium and with 89% 

belonging to Acidaminococcaceae, 

Muribaculacea, Atopobiaceae, and 

norank_o_Coriobacteriales 

families.   

Gut microbial biomarkers: 

identification of 25 bacterial 

families that could distinguish DR 

from DM and controls and with 

Pasteurellaceae being the best 

discriminating value. 

 

At the phylum level: 

No statistically significant 

difference in the relative abundance 

among the 17 identified phyla 
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Table 2. Bacterial alterations observed in the fecal microbiota of patients with glaucoma 1292 

1(Gong et al., 2020); 2(Anne Katrine Toft-Kehler, 2020); 3POAG (primary open-angle 1293 

glaucoma); 4 in POAG patients compared with non-POAG patients ; 5NTG (normal tension 1294 

glaucoma); 6OHT ocular hypertension; 7in OHT patients compared with NTG patients. 1295 

Country Effective n 

(control group) 

Method Microbiota alterations 

 

China1 

 

 

 

 

 

 

 

 

Europe2 

n=30 POAG3 (n=30) 

 

 

 

 

 

 

 

 

n=10 patients with 

NTG5; n=11 patients 

with OHT6 (n=11) 

 

Amplification of the V4 

region of 16S rRNA gene 

and sequencing on Illumina 

MiSeq platform 

 

 

 

 

 

Amplification of the V4 

region of 16S rRNA gene 

and sequencing on Illumina 

MiSeq platform 

At the family level4:  

� Prevotellaceae 

At the genera level2: 

� unidentified_Enterobacteriaceae 

� Megamonas 

At the species level2: 

� Escherichia coli 

� Bacteroides plebeius 

 

At the family level7:  

� (trend) Rikenellaceae   
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Table 3. Bacterial alterations observed in the fecal microbiota of patients with age-1296 

related macular degeneration (AMD) 1297 

1 (Zinkernagel et al., 2017); 2 (Zysset-Burri et al., 2020); 3 (Lin et al., 2021); 4 in AMD patients 1298 

compared with controls. 1299 

Country Effective n 

(control group) 

Method Microbiota alterations 4 

Switzerland
1
 

 

 

 

 

 

 

 

 

Switzerland
2
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

USA
3
 

n=12 neovascular 

AMD (n=11) 

 

 

 

 

 

 

 

n=57 neovascular 

AMD (n=58) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n=85 advanced AMD  

n=49 

Shotgun metagenomic 

sequencing on Illumina 

HiSeq platform 

 

 

 

 

 

 

Shotgun metagenomic 

sequencing on Illumina 

HiSeq platform 

 

 

 

 

 

 

 

 

 

 

 

 

 

- 

At the family level: 

� Oscillospiraceae 

At the genera level: 

� Anaerotruncus, Oscillibacter 

At the species level: 

� Ruminococcus torques, Eubacterium 

ventriosum 

� Bacteroides eggerthii 

 

At the class level: 

� Negativicutes 

At the genera level: 

� Oscillibacter 

At the species level: 

� Bacteroides spp. 

Gut microbial biomarkers:  identification of 7 

bacterial taxa as potential biomarkers to 

discriminate between AMD patients and 

controls (the class Negativicutes, the order 

Selenomonadales and the species 

Phascolarctobacterium, Bacteroides 

cellulosilyticus, Sutterella wadsworthensis, 

Bifidobacterium longum, and Bacteroides 

caccae). 

 

At the genera level: 

� Prevotella, Holdemanella, Desulfovibrio, 

and other bacteria  

� Oscillospira, Blautia and Dorea 
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 1301 

 1302 

Figure Legend 1303 

Figure 1. Gut microbiota–retina axis: what we have already learned from animal 1304 

models. Evidence has been provided on the influence of the gut microbiota on retinal 1305 

physiology (lipid composition) as well as on the regulation of different processes in the retina, 1306 

particularly inflammation, angiogenesis, and neurodegeneration. 1307 
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