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In Central America, coffee is mainly grown in agroforestry systems. This practice modifies 23 

the microclimate, which, in turn, influences coffee growth and development. However, modeling 24 

these microclimate modifications is a challenge when trying to predict the development of a 25 

disease in the understory crop, based on variables usually monitored in weather stations exposed 26 

to full sunlight. Furthermore, critical variables for plant disease development, such as leaf 27 

wetness duration and leaf temperatures, are generally not measured by weather stations. In our 28 

study, we sought to build models explaining daily minimum and maximum coffee leaf 29 

temperatures, daily coffee leaf wetness duration, and minimum and maximum air temperatures in 30 

agroforestry systems with a single shade tree species, which are common in Central America, and 31 

which were characterized by shade tree height, canopy openness and light gap distribution. The 32 

modeled variables were mainly explained by one or more meteorological variables provided by 33 

reference weather stations exposed to full sunlight. The presence of shade trees resulted in a 34 

buffer effect, reducing daily maximum air and leaf temperatures, and increasing daily minimum 35 

air and leaf temperatures. Moreover, except for the daily minimum air temperature under shade, 36 

shade tree characteristics affected these microclimatic variables. Indeed, the buffer effect on the 37 

daily maximum air temperature increased with shade trees 7 m tall or over, whereas for extreme 38 

leaf temperatures, this effect seemed to be further intensified by a dense and homogeneous 39 

canopy. The tallest shade trees also tended to provide conditions that reduced coffee leaf wetness 40 

duration. The coffee leaf stratum affected the daily maximum leaf temperature, with a top layer 41 

intercepting radiation for the lower strata, but had no effect on the daily minimum leaf 42 

temperature, detected at night. The models developed were simple equations allowing 43 

interpretation of shade tree height, the effects of canopy characteristics on the microclimate and 44 

were therefore useful for designing and managing agroforestry system. The more accurate models 45 

could be incorporated into an early warning system for coffee pests and diseases in the region. 46 



 47 
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 50 

INTRODUCTION 51 

 52 

Agroforestry is a cropping practice that consists in combining one or more tree species with 53 

a crop production based on annual or perennial plants. While the word agroforestry is recent, this 54 

practice is traditional for certain crops, such as coffee. Since the 1970s, the modernization of 55 

coffee cultivation has led to a significant conversion of traditional diversified agroforestry 56 

systems into agroforestry systems with fewer tree species and even monoculture systems 57 

(Perfecto et al. 1996; Jha et al. 2014). These modernized full-sun systems have increased yields 58 

through the introduction of high-yielding varieties and increased use of chemical inputs that are 59 

all the more useful since the crop is fully exposed to sunlight. However, production costs have 60 

also increased significantly, which probably explains why coffee is still mainly grown under 61 

shade in regions where smallholders are mostly represented, such as Central America (Fernandez 62 

1984). In this area, more than 40 species of trees are used in coffee agroforestry systems (Dix et 63 

al. 1999).  64 

Agroforestry offers many benefits: food security through income diversification and self-65 

consumption of products from the farm (wood, fruit), improved coffee quality, reduction of 66 

coffee production bienniality, biodiversity conservation including pollinators, regulation of 67 

certain diseases and pests, improved soil water status, increased light use efficiency and carbon 68 

sequestration (Perfecto et al. 1996; Muschler 2001; DaMatta 2004; Lin 2007; Jha et al. 2014; 69 

Charbonnier et al. 2017; Avelino et al. 2018; Schnabel et al. 2018). This practice is therefore 70 



considered to be an agroecological practice that promotes the resilience of agroecosystems (Hillel 71 

and Rosenzweig 2010; Lasco et al. 2014). However, disadvantages to its use have also been 72 

reported since shade trees compete with coffee plants for light, nutrients (Campanha et al. 2004; 73 

Stigter 2015) and even for water under certain conditions (Padovan et al., 2015), thus hampering 74 

blossoming and the achievement of high yields (DaMatta and Rena 2002). Agroforestry also 75 

influences the dynamics of coffee diseases and pests in different directions, mainly through its 76 

effects on the microclimate (Schroth et al. 2000; Staver et al. 2001; Avelino et al. 2011; Allinne 77 

et al. 2016; Avelino et al. 2018). Most studies have demonstrated the overall effect of coffee-78 

based agroforestry systems on different microclimate variables (Butler 1977; Barradas and Fanjul 79 

1986; Gutierrez and Vaast 2002; Morais et al. 2006; Siles et al. 2010; Pezzopane et al. 2011; 80 

Coltri et al. 2019). Air, leaf and soil temperatures are buffered, leaf wetness is increased, wind 81 

speed and solar radiation are reduced, rainfall is intercepted and redistributed, and raindrops have 82 

a higher kinetic energy (Monteith et al. 1991; Stigter 2015; Vezy et al. 2018; Avelino et al. 83 

2020). However, only a few studies have modeled how the microclimate is affected by different 84 

characteristics of these agroforestry systems, such as planting density and shade tree height, or 85 

canopy opening rate and light gap distribution (van Oijen et al. 2010a; Vezy et al. 2020). At 86 

present, simulation models based on physical phenomena are available to simulate flows 87 

involved in the major coffee growth mechanisms of photosynthesis, respiration and transpiration 88 

(van Oijen et al. 2010a; Rodríguez et al. 2011; Charbonnier et al. 2013; Vezy et al. 2018, 2020), 89 

and even coffee canopy temperatures under shade trees (Vezy et al., 2018). However, these 90 

process models are based on physical phenomena whose descriptors, such as the global radiation 91 

extinction coefficient of the trees and tree leaf area index (Taugourdeau et al. 2014), are difficult 92 

to measure. Some studies developed simple equations to forecast minimum night crop 93 

temperatures, with a view to predicting frost events (Georg 1978; Lhomme and Guilioni 2004), 94 



but these models were still using complex parameters that were difficult to measure. 95 

Alternatively, to process models that are useful for research but difficult to apply widely, 96 

empirical equations using only easy-to-measure characteristics would offer several interesting 97 

perspectives and allow large-scale applications. Indeed, in order to regulate the microclimate to 98 

suit the seasonal needs of the crop and improve disease and pest management, practices such as 99 

shade tree pruning could help to adjust these easy-to-measure characteristics when needed 100 

(Niether et al. 2018). In addition, the ability to estimate the microclimate under different 101 

agroforestry systems based on their characteristics and data from weather stations fully exposed 102 

to sunlight would improve the accuracy of crop growth model predictions and pest and disease 103 

forecasts (Merle et al. 2020), which would be an important achievement prior to their 104 

introduction in a warning system (van Maanen and Xu 2003). 105 

In our study, we investigated the relative importance of different simple agroforestry 106 

system characteristics to explain the microclimate in the understory, considering meteorological 107 

data provided by nearby weather stations fully exposed to sunlight. To that end, we set up six 108 

trials at six sites in an altitudinal gradient, where the microclimate of several agroforestry systems 109 

was recorded along with that of full sun conditions. We focused on different agroforestry systems 110 

with a single shade tree species, which are common in Central America. Shade tree height, 111 

canopy openness and light gap distribution were measured. 112 

 113 

MATERIALS AND METHODS 114 

 115 

Location of the studied coffee-based single-species agroforestry systems 116 

This study was carried out in Costa Rica from July 2018 to January 2019 in seven coffee 117 

plantations distributed in a gradient ranging from 740 to 1400 m a.s.l. The selection of these 118 



plantations was based on the possibility to establish a coffee plot fully exposed to sunlight used 119 

as a reference and a minimum of two coffee plots in agroforestry systems with a single shade tree 120 

species, considering a minimum plot radius of 20 m. Four plantations were selected in Cartago 121 

province and three in San Jose province (Table 1).  122 

The first plantation in Cartago province was located in Pavones at an altitude of 740 m a.s.l. 123 

and included two plots with the Catimor coffee variety grown in agroforestry systems with a 124 

single shade tree species, namely Erythrina poeppigiana and Cordia alliodora. The second site 125 

was located in Palomo at an altitude of 770 m a.s.l. and included a plot planted with the Catimor 126 

coffee variety grown in an agroforestry system with C. alliodora. Due to its altitude close to that 127 

of the Pavones site and the availability of only one agroforestry system, this site was not studied 128 

over the whole duration of the test (Fig. 1). The third plantation studied in Cartago province was 129 

located near the town of El Guayabo at an altitude of 840 m a.s.l. and provided three plots with 130 

the Catimor coffee variety cultivated in agroforestry systems with a single shade tree species, 131 

namely E. poeppigiana, Musa spp. and Gliricidia sepium. The last plantation studied in this 132 

province was located near the village of Cachí at an altitude of 1140 m a.s.l. and had two plots 133 

with the Caturra coffee variety cultivated in agroforestry systems with the species E. poeppigiana 134 

and Musa spp alone.  135 

In the province of San José, two plantations were selected at altitudes of 1000 m a.s.l. and 136 

1400 m a.s.l. near the town of San Marcos. In the 1000 m a.s.l. plantation, three plots were 137 

studied: one plot with the Obata coffee variety grown in agroforestry systems based on Vochysia 138 

guatemalensis and two plots with the Catuaí rojo coffee variety grown in agroforestry systems 139 

based on Musa spp. and E. poeppigiana alone. Finally, the last site of the province of San José 140 

was located near the town of Aserrí at an altitude of 1270 m a.s.l. and the plots studied were three 141 

agroforestry systems with a single shade tree species, namely Acrocarpus fraxinifolius, E. 142 



poeppigiana and Musa spp. At this site, the Catimor variety was grown in the shaded plot with A. 143 

fraxinifolius and the variety Catuaí rojo in the other two plots. Most of the studied shade tree 144 

species are commonly found in agroforestry systems in Central America (Staver et al. 2001; van 145 

Oijen et al. 2010b).  146 

 147 

Microclimatic data recording 148 

Since we had a total of 12 dataloggers, it was decided that a maximum of 2 to 3 sites could 149 

be equipped simultaneously and that each site would have weather stations during three separate 150 

21-day recording periods (Fig. 1). The three recording periods of 21 days carried out in the six 151 

sites represent a total of approximately 380 days of recording. At the Palomo site, the weather 152 

stations were installed for only one recording period as explained previously. 153 

Each of the weather stations included eleven to twelve sensors connected to a Campbell 154 

CR1000 or Campbell CR1000X (Campbell Scientific) datalogger to measure daily microclimatic 155 

variables that are drivers of coffee leaf rust disease caused by Hemileia vastatrix, one of the most 156 

harmful diseases of the coffee tree (Merle et al. 2020). The stations were placed in the center of 157 

each plot and included an air temperature and relative humidity sensor positioned 1.5 meters from 158 

the ground (HMP45C), four leaf wetness sensors 1.2 meters from the ground, oriented in four 159 

opposite directions (Dielectric LWS) and six T-type thermocouples (copper/constantan) placed at 160 

three different heights on two coffee plants. Each thermocouple was subdivided into four 161 

secondary thermocouples placed in contact with leaf laminas on the underside of four leaves from 162 

the same stratum (Miller 1971). The leaf temperature measurements were therefore an average of 163 

four leaves. Only the stations located in the reference plots with full sun exposure had a rain 164 

gauge placed above coffee trees 2 meters from the ground (TE525MM, accuracy 0.1 mm). The 165 

dataloggers recorded data every five seconds and stored average, minimum and maximum values 166 



every fifteen minutes. Data were retrieved from the dataloggers weekly using PC200W 4.5 167 

Datalogger Support Software (Campbell Scientific). 168 

 169 

Characterization of plot shade tree height and canopy openness 170 

To account for shade tree growth due to seasonal microclimatic variations as well as 171 

pruning practices, we chose to measure shade tree height and canopy openness above the coffee 172 

plants, which vary along year, rather than focusing on seedling density (Table 1). We measured 173 

the shade tree height with a clinometer. Canopy openness (%) was calculated by using 174 

hemispherical photographs analyzed with Gap Light Analyzer software (Frazer et al. 1999). The 175 

hemispherical photographs were taken using a GoPro camera placed above the coffee plants and 176 

equipped with a fish eye lens allowing the capture of images with an ultra-wide angle (Fig. 2). 177 

The software then estimated the percentage of canopy openness for different angles by manually 178 

classifying the pixels with a software feature that manages the contrast level. Given that this 179 

classification is arbitrary, it was operated by a single person (Weiss et al. 2004). 180 

 181 

Description of variables 182 

Given our objective of using the models in warning systems based on a network of weather 183 

stations fully exposed to sunlight, we decided to work on daily variables, which is the most 184 

common format used to process weather data. Leaf wetness duration and leaf temperatures are 185 

important for predicting fungal foliar diseases (Magarey et al. 2005). However, leaf wetness and 186 

leaf temperature are not usually measured in unshaded weather stations. For that reason, in 187 

addition to modeling the microclimate in the understory of agroforestry systems as a function of 188 

shade tree characteristics, we decided to model these microclimatic variables as a function of 189 

others, usually recorded in weather stations. Specifically, we chose to develop five models for: 190 



the daily leaf wetness duration (HoursLW), the minimum and daily maximum leaves 191 

temperatures (MinTleaf and MaxTleaf respectively), the daily minimum and maximum air 192 

temperatures under agroforestry systems (MinTairShade and MaxTairShade respectively). The 193 

daily leaf wetness duration was calculated by averaging the duration per hour of the four leaf 194 

wetness sensors, and then by summing these hourly durations. The daily minimum and maximum 195 

leaves temperatures was calculated by averaging the values recorded by the two thermocouples of 196 

each coffee stratum. The daily minimum and maximum air temperatures under agroforestry 197 

systems was the values provided by the air temperature and relative humidity sensor placed in 198 

these systems. 199 

To explain these five microclimatic variables, we chose to use only variables usually 200 

measured by the weather station networks of the region. Thus, we selected only the daily 201 

minimum and maximum air temperatures (MinTairSun and MaxTairSun respectively), the daily 202 

average relative humidity (RHSun) and the total daily precipitation (RainfallSun), provided by the 203 

reference weather station that we had placed in the full sun exposed plot at each site. 204 

The plots were classified according to a factor characterizing their agroforestry system, 205 

named classAgroforSyst. It included eight modalities representing the combination of two levels 206 

of canopy openness, two levels of light gap distribution, and two levels of shade tree height 207 

(Table 2). A ninth modality, representing plots fully exposed to sunlight, was created for the 208 

models explaining the variables HoursLW, MinTleaf and MaxTleaf. Canopy openness was 209 

considered low when <50% and high when ≥50%. To characterize the level of light gap 210 

distribution, we chose four lines of gap fractions from the zenith rather than the larger angle to 211 

exclude the tops of neighboring coffee plants and only characterize the shade provided by the 212 

trees (Fig. 2 C). As an estimation of light gap distribution, we then used the standard error of the 213 

ratios of canopy openness and the area of the 80 gap-fractions included in the four lines. The 214 



higher the standard error, the more irregular was the light gap distribution. To create two classes 215 

for the variables of light gap distribution and shade tree height we used the party package 216 

(Hothorn et al., 2006) in R 3.6.1 (R Development Core Team 2019), which builds a tree-based 217 

regression by recursive binary partitioning (Table 2). 218 

The MinTleaf and MaxTleaf variables had the particularity of being measured on three leaf 219 

strata of the coffee plant. We studied the effect of coffee leaf strata in these two models 220 

(CoffeeLeafStratum: Bottom, Middle, Top).  221 

 222 

Statistical analysis  223 

For each of the five variables HoursLW, MinTleaf, MaxTleaf, MinTairShade and 224 

MaxTairShade, we first studied the distributions of the microclimatic variables to focus on 225 

domains of definition with a sufficient number of observations. We then used the boosted 226 

regression tree analysis to evaluate the linearity of relationships and obtain a relative ranking of 227 

all the variables tested for each model (Table 2). This machine learning algorithm is increasingly 228 

being used in ecological modeling due to the flexibility of regression trees, which enables 229 

complex ecological responses to be modeled (Elith et al., 2008; Bhatt et al., 2013). The model 230 

consisted of a linear combination of regression trees. The relative importance of each variable 231 

was estimated using the number of times a variable was selected for splitting, weighted by the 232 

squared improvement of the model following each splitting, and averaged over all regression 233 

trees (Friedman, 2001; Williams et al., 2010). The linearity of the dependence is checked using 234 

the partial dependence function showed the marginal effect of each variable on the count 235 

response after averaging the effects of all the other variables (Bhatt et al., 2013). 236 

The five dependent variables were then fitted to a Gaussian distribution using generalized 237 

linear models (GLM) and keeping the independent variables with the greatest relative level of 238 



influence only (Table 3), the sum of whose influences accounted for 95% of the dependent 239 

variable. To compare factor modality effects, we used Tukey's multiple comparison post hoc test. 240 

In order to assess the validity of the equations on an independent dataset, two plots were 241 

excluded from the entire construction of the model (BRT and GLM), the plot of the site at the 242 

altitude of 770 m, under shade provided by tall shade trees, and the plot of the banana 243 

agroforestry system at the altitude of 1140 m.  In these two plots, the predicted and observed 244 

values were then compared using the root mean square error. The extreme values excluded from 245 

the model building stage were similarly used for evaluation purposes. All the statistical analyses 246 

were performed with R 3.6.1 (R Development Core Team 2019) and with an alpha level of 0.05. 247 

Boosted regressions trees were constructed using the gbm package version 2.1.5 (Greenwell et al, 248 

2019) and the dismo package (Hijmans et al., 2017). GLM were fitted using the lme4 package 249 

version 1.1-21 (Bates et al., 2015), and we carried out Tukey's multiple comparison post hoc test 250 

using the multcomp package version 1.4-12 (Hothorn et al. 2020). 251 

 252 

RESULTS 253 

 254 

Description of the study microclimate and shade tree characteristics 255 

Thanks to the altitudinal gradient, we could measure a wide range of microclimatic 256 

conditions. On the total of 380 days of recording, we observed a good distribution of rainy days 257 

with 120 days without rain, 80 days with rainfall between 0.1 and 1 mm, 58 days with rainfall 258 

between 1 and 5 mm and 122 days with rainfall ranging from 5 to 103 mm (Fig. 1). In terms of 259 

air temperature, we observed minimum and maximum temperatures ranging from 8.0 to 20.4 °C 260 

and from 18.4 to 34.1 °C respectively (Table 2). The temperature of the coffee leaves varied from 261 

7.3 to 20.4 °C for the minimum daily temperature and from 17.7 to 48.8 ° C for the maximum 262 



daily temperature. Regarding the leaf wetness duration, it varied from 0 to 24 hours per day with 263 

an average duration of 17 hours (Annex). 264 

Tree height in the agroforestry systems we studied ranged from 2.8 m to 26.5 m and canopy 265 

openness from 12 to 90% depending on the tree species, date of establishment and pruning 266 

applied. Indeed, during the study, a tree pruning was carried out in several plots that included E. 267 

poeppigiana or Musa spp., increasing canopy openness, light gap distribution sometimes and 268 

decreasing shade tree height (Table 1). 269 

 270 

Model of the daily minimum and maximum air temperatures under agroforestry 271 

systems 272 

The results of the exploratory analysis carried out using the boosted regression tree 273 

approach enabled us to classify, in order of importance, the variables tested in the models 274 

explaining the daily minimum and maximum air temperatures in agroforestry systems 275 

(MinTairShade and MaxTairShade respectively) (Table 3).  276 

Considering only the variables with the highest level of influence and representing about 277 

95% of the dependent variable, the only variable selected was MinTairSun, with a relative 278 

importance rate of around 95%, and its effect on MinTairShade was significantly positive (p < 279 

0.001) (Equation 1 whose parameter values are presented in table 4). The variables MaxTairSun, 280 

RHSun, RainfallSun and classAgroforSyst had negligible effects. 281 

 282 

Equation 1: ��������ℎ�	
 =  � +  � × ����������  283 

 284 



On the model definition domain, i.e. at minimum air temperatures in full sunlight between 285 

12 and 20°C, the temperature of the air under shade is always higher than that in full sunlight 286 

with a difference of less than 1°C.  287 

The comparison of predicted and observed values gave root mean square errors of 0.46 on 288 

the data used to build the model, 0.96 on the extreme data excluded from the data set and 0.71 on 289 

the independent data set (Fig. 3A, C and E). 290 

 291 

The exploratory analysis showed that the MaxTairSun variable described about 79% of the 292 

MaxTairShade variable. The variables MinTairSun and classAgroforSyst represented together a 293 

relative influence of around 17% and the other variables had importance levels below 5% (Table 294 

3). These three independent variables were selected to build the MaxTairShade estimation model, 295 

but MinTairSun did not show a significant effect (p = 0.056). Thus, MaxTairSun had a positive 296 

effect (p < 0.001) and the effect of the factor classAgroforSyst illustrated a negative effect of 297 

taller shade trees (Equation 2 whose parameter values are presented in table 4).  298 

 299 

Equation 2: ��������ℎ�	
 =  �� +  �� × ���������� +  ��,������������ !�" 300 

 301 

For this model, only a few cases, mainly for low maximum temperatures in agroforestry 302 

systems based on short trees, showed a higher maximum air temperature under shade than in full 303 

sunlight. Indeed, in the range of definition of this model, i.e. maximum air temperatures in full 304 

sunlight from 23 to 33°C, only 25% of the values were found below 28°C. For very high 305 

maximum air temperatures with full sun exposure, the maximum air temperature under shade 306 

could be 4°C lower.  307 



This model was less efficient in terms of prediction accuracy than the model of 308 

MinTairShade estimation. Indeed, the root mean square error between predicted and observed 309 

values used to build the model was 1.11 (Fig. 3B). In addition, the validation on extreme values, 310 

excluded from the analysis, and on the independent dataset showed that predicted and observed 311 

values were linked by root mean square errors of 1.22 and 1.23, respectively (Fig. 3D and F). 312 

 313 

Model of the daily minimum and maximum leaf temperature 314 

By using the boosted regression tree approach, we determined the relative importance of 315 

the variables tested in the models explaining the daily minimum and maximum leaf temperatures 316 

(MinTleaf and MaxTleaf respectively) (Table 3). MinTleaf was described mainly by MinTairSun, 317 

then in decreasing order of importance by the variables classAgroforSyst, MaxTairSun, RHSun, 318 

RainfallSun, and CoffeeLeafStratum. With respect to the MaxTleaf variable, the maximum value 319 

of the full sun temperature (MaxTairSun) was the most important variable but, unlike the 320 

MinTleaf variable, the following variables also had a major weight: CoffeeLeafStratum, 321 

classAgroforSyst, MinTairSun, RainfallSun and RHSun.  322 

Considering only the variables with the highest level of influence and representing about 323 

95% of the dependent variable, we selected the variables MinTairSun, classAgroforSyst, 324 

MaxTairSun, and RHSun for the model explaining MinTleaf. From these variables, the 325 

subsequent model development phase resulted in the conservation of three variables that had a 326 

significant effect on MinTleaf: MinTairSun, RHSun and classAgroforSyst. 327 

Considering quantitative microclimatic variables, MinTairSun and RHSun had a positive 328 

effect on MinTleaf (p < 0.001 and p = 0.026 respectively). In terms of factors, we found a 329 

significant influence of classAgroforSyst showing a positive effect of all of the agroforestry 330 

systems compared to the full sun exposure (p < 0.001). The result of the pair-wise comparison of 331 



the different modalities of classAgroforSyst did not show a clear difference related to any of the 332 

three characteristics: shade tree height, canopy openness and light gap distribution (Equation 3 333 

whose parameter values are presented in table 4). However, agroforestry systems combining a 334 

low canopy openness and a regular light gap distribution were responsible for a greater increase 335 

in the daily minimum leaf temperature.   336 

 337 

Equation 3: ����#
�$ = %� +  %� × ���������� + %� × &'��� + %(,������������ !�" 338 

 339 

To explain MaxTleaf, we selected all the tested variables because the least influential 340 

variable had a relative influence of 8% (Table 3). In this model, the variables conserved for their 341 

significant effect were MaxTairSun for its positive effect (p < 0.001), RHSun for its negative 342 

effect (p < 0.001), MinTairSun for its negative effect (p = 0.020), and the factors 343 

CoffeeLeafStratum (p < 0.001) and classAgroforSyst (p < 0.001). Conversely, the variable 344 

RainfallSun did not have a significant effect (p = 0.34). We found significant differences between 345 

the three modalities of CoffeeLeafStratum with a positive effect of the upper strata (Equation 4 346 

whose parameter values are presented in table 4). The pair-wise comparison of the different 347 

modalities of classAgroforSyst highlighted that the modality with short shade trees, high canopy 348 

openness and a regular light gap distribution was not significantly different from the modality of 349 

full sun exposure, unlike the other modalities.  350 

 351 

Equation 4: ����#
�$ = δ� + δ� × ���������� + δ� × ���������� +  δ
(

× &'��� +352 

 δ*,������������ !�"  +  δ+,,���--.-�� "��"/0 353 

 354 

Under shade, the daily minimum leaf temperature was higher than in full sunlight, with a 355 

difference of 0.18 to 1.04°C, while the daily maximum leaf temperature was often lower with a 356 



difference of 1.62 to 4.91°C.  According to the model generated, the leaves of the upper stratum 357 

of the coffee plant had a maximum temperature 2°C higher than those of the intermediate 358 

stratum, and 5.95°C higher than those of the lower stratum. 359 

The minimum leaf temperature estimation model gave better prediction results with a root 360 

mean square error of 0.67 between predicted and observed values (Fig. 4A) compared to 3.01 for 361 

the maximum leaf temperature estimation model (Fig. 4B). The evaluation of these models on the 362 

extreme values extracted from the definition domain also resulted in a better predictive accuracy 363 

of the MinTleaf estimation model compared to the MaxTleaf estimation model, with root mean 364 

square errors between predicted and observed values of 1.06 and 3.16 respectively (Fig. 4C and 365 

D). The validation on the independent dataset illustrated the same trend with root mean square 366 

errors of 0.72 for MinTleaf and 2.93 for MaxTleaf (Fig. 4E and F). 367 

 368 

Model of the daily leaf wetness duration 369 

The exploratory phase of the analysis revealed that the variable HoursLW was mainly 370 

explained by the variables RHSun, classAgroforSyst, MaxTairSun, RainfallSun and MinTairSun 371 

(Table 3).  372 

The model building stage for HoursLW resulted in the conservation of four variables with a 373 

significant effect. RHSun had a positive effect (p < 0.001), MaxTairSun had a negative effect (p < 374 

0.001), RainfallSun had a weak positive effect (p = 0.020) and classAgroforSyst showed a 375 

tendency of taller shade trees to decrease more the number of hours with leaf wetness than 376 

systems with shorter shade trees. Indeed, among the agroforestry systems with smaller shade 377 

trees, the system with a high canopy openness and an irregular light gap distribution was the only 378 

one that showed a significant difference from the system with full sun exposure, whereas among 379 

the agroforestry systems with taller shade trees, there was only one system showing no difference 380 



with the system with full sun exposure (Equation 5 whose parameter values are presented in table 381 

4). 382 

 383 

Equation 5: '1��234 = 5� + 5� × &'��� + 5� × ���������� + 5( × &���$�##��� +384 
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 386 

In the agroforestry systems with tall trees, the leaf wetness duration was higher than in the 387 

full sunlight systems, with a maximum difference of up to 2 hours. 388 

A comparison of the model's predictions provided root mean square errors of 2.87 with the 389 

data used for its construction (Fig. 5A), of 3.73 with the extreme values excluded from model 390 

building (Fig. 5B), and 2.38 with the independent dataset (Fig. 5C). The model inaccuracy was 391 

higher for non-rainy days since the RMSE was 3.50 versus 2.59 for rainy days. 392 

 393 

DISCUSSION 394 

 395 

The main drivers for predicting the microclimate in agroforestry systems were the variables 396 

provided by weather stations located in full sunlight and nearby. However, except for the daily 397 

minimum air temperature in these systems, the data provided by the stations in full sunlight were 398 

not sufficient to predict the microclimate under shade. Indeed, different agroforestry systems in 399 

terms of tree height, canopy openness or even regularity of light gap distribution showed 400 

different effects on the microclimate. This could explain the different effects of agroforestry 401 

systems on the development of coffee pests and diseases (Merle et al. 2019). Therefore, 402 

predicting their development only using data from stations in full sunlight, without taking into 403 



account the particularities of agroforestry systems, could lead to significant prediction 404 

inaccuracies. 405 

 406 

Estimated daily minimum temperatures of air under shade and of coffee leaves  407 

The daily minimum coffee leaf temperature and air temperature under shade were mainly 408 

determined by the daily minimum air temperatures in full sunlight. Although this variable was 409 

sufficient to predict the minimum daily air temperature under shade, the minimum daily 410 

temperature of coffee leaves was explained by other microclimatic variables, but also by the 411 

characteristics of the agroforestry systems. Indeed, the positive effect of the daily mean relative 412 

humidity in full sunlight on the daily minimum leaf temperature may have been due to the fact 413 

that relative humidity is lower on cloudless days and the absence of cloud leads to a greater 414 

cooling of temperatures at night. The buffer effect we found for the presence of shade trees 415 

compared to full sun exposure on the minimum temperature of coffee leaves has already been 416 

observed (Morais et al. 2006; Soma 2015). We also found that agroforestry systems with a dense 417 

and homogeneous canopy displayed a greater buffer effect, increasing the daily minimum coffee 418 

leaf temperature. We suggest that this effect is due to the canopy uniformity preventing 419 

exchanges with the outside air. The fact that the coffee leaf stratum had no effect on the daily 420 

minimum leaf temperature was certainly due to the absence of radiation intercepted by the top 421 

stratum at night when the minimum temperature was detected. In their definition domain, both 422 

models showed that the minimum temperatures of air and coffee leaves were higher under 423 

agroforestry systems with differences of around 1°C (Siles et al. 2010). 424 

 425 

Estimated daily maximum temperatures of air under shade and of coffee leaves  426 



The daily maximum temperatures of air under shade and of coffee leaves were mainly 427 

explained by the daily maximum air temperature in full sunlight. With respect to the daily air 428 

maximum temperature under shade, the strong overall buffering effect of trees on the maximum 429 

air temperature under shade is well known (Barradas and Fanjul 1986; Jaramillo-Robledo and 430 

Gómez-Gómez, 1989; Siles et al. 2010; López-Bravo et al. 2012; Sida et al. 2018). However, in 431 

our study, it was mostly explained by one factor of agroforestry systems: shade tree height. Tall 432 

trees made it possible to isolate a larger layer of air, which therefore heated up less easily than the 433 

shallow layer of air delimited under short trees. This buffer effect was also observed in the case 434 

of the daily maximum temperature of coffee leaves, but it seemed to be related both to the height 435 

of the trees (Muschler 1998; Siles et al. 2010; Soma 2015; Vezy et al. 2018) and to the density 436 

and regularity of the canopy. A dense canopy with a regular light gap distribution made it 437 

possible to isolate a layer of air that was less easily heated than a system with an irregular canopy 438 

openness (Renaud and Rebetez, 2009). This phenomenon resulted in a lower temperature of the 439 

air surrounding the leaves. The upper coffee leaf stratum probably acted as a layer protecting the 440 

lower ones from radiation (Siles et al. 2010; Ngao et al. 2017), thus reducing their daily 441 

maximum temperature.  442 

The weak negative effect of the daily minimum air temperature in full sunlight and the 443 

negative effect of the relative humidity in full sunlight on the daily maximum leaf temperature 444 

could be related to the fact that lower relative humidity induced stomatal closure that stopped 445 

plant transpiration resulting in leaf heating (Lange et al. 1971). The effect of the minimum air 446 

temperature in full sunlight on the daily maximum leaf temperature was possibly due to cloudy 447 

days responsible for an increase in this minimum temperature and a decrease in the maximum 448 

temperature because of a lower level of radiation. 449 



These two models predicting maximum temperatures exhibited less accuracy than models 450 

predicting minimum temperatures (Ferrez et al. 2011), doubtless because of the very 451 

heterogeneous sunlight conditions interacting with the coffee leaf angle and orientation on the 452 

plant (Miller 1971; Butler 1977). Another phenomenon that could partially explain this 453 

inaccuracy is the increase or decrease in wind speed depending on the agroforestry system, which 454 

are responsible for air conductance changes (Judd et al. 1996; Stigter et al. 2002; Pezzopane et al. 455 

2011). 456 

 457 

Estimated daily leaf wetness duration  458 

The daily leaf wetness duration was mainly explained by a positive effect of the daily 459 

average relative humidity in full sunlight, as described by other studies (Smith 1958; Shaw 1973; 460 

Sentelhas et al. 2008). Actually, rainfall only showed a weak positive effect on the daily leaf 461 

wetness duration, which can be attributed to three causes. The first cause is the nature of the 462 

variable being measured, since daily rainfall is a sum of rainfall over 24 hours that does not 463 

consider rain distribution. From that point, daily rainfall does not provide as much information as 464 

average relative humidity on the duration of rainy periods during the day and therefore on leaf 465 

wetness duration (Sentelhas et al. 2008). The other causes are related to tree effects on 466 

precipitations in the understory, which reduces the effect of rains on leaf wetness, as rain 467 

interception by shade trees (Siles et al., 2010) and the probable reduction of dew formation by 468 

night under shade (Marrou et al. 2013), as minimum coffee leaf temperature is higher in this 469 

condition. Leaf wetness is also under the influence of temperatures. The maximum air 470 

temperature in full sunlight had a negative effect on the daily leaf wetness duration, indicating 471 

that warmer conditions are conducive to leaf wetness drying. In addition, trees hinder leaf drying 472 

by intercepting light (Charbonnier et al. 2013) and reducing wind speed (Stigter et al. 2002; 473 



Pezzopane et al. 2011; Gagliardi et al. 2020). However, these effects that occur during the day, 474 

seem secondary, as taller shade trees tended to decrease the daily leaf wetness duration compared 475 

to full sun exposed plots. We verified, with the data at hand, that the reduction of dew formation 476 

at night in the understory was a key factor reducing coffee leaf wetness. Coffee leaves took 477 

longer to be wetted by dew under tall shade trees. The second effect of trees could be on wind. 478 

Indeed, it has been shown that turbulence, which can enhance leaf drying, can be observed within 479 

the canopy, particularly when windbreak solidity is high (Judd et al. 1996).   480 

Our equation gave less accurate results probably because we used the daily average, 481 

commonly provided by a weather station, rather than the number of hours of relative humidity 482 

above 90%. In addition, it is possible that the absence of a very pronounced dry season during the 483 

trial was responsible for a higher model inaccuracy for non-rainy days. Despite its inaccuracy, 484 

our equation had the advantage of estimating the daily coffee leaf wetness duration in full 485 

sunlight like Sentelhas et al. (2006), but also in agroforestry systems. 486 

 487 

CONCLUSION 488 

 489 

In our study, simple equations were developed to estimate five variables that are useful in 490 

predicting the development of plant fungal diseases (Magarey et al. 2005) in plantations exposed 491 

to full sunlight and in agroforestry systems. These models were based on (1) meteorological 492 

variables commonly provided by reference weather stations located in full sunlight and (2) easily 493 

measurable characteristics in agroforestry systems. Models estimating the daily maximum leaf 494 

temperature and the daily leaf wetness duration did not show high accuracy, but highlighted the 495 

importance of indicating the presence and height of shade trees to reduce estimation error. By 496 

identifying tree height, canopy openness and light gap distribution as the main agroforestry 497 



system factors influencing the studied microclimatic variables, our equations offer opportunities 498 

to optimize agroforestry system design and management, for example, by carrying out pruning to 499 

modify the canopy openness and the light gap distribution, and help manage coffee leaf rust. By 500 

deciding to use only weather variables commonly provided by weather station networks, easy-to-501 

measure shade tree characteristics and to model daily variables, we sought to promote their use in 502 

warning systems. However, incorporating meteorological variables such as wind and cloud cover 503 

could improve the accuracy of the leaf wetness duration and maximum leaf temperature models 504 

and are therefore variables that deserve to be more commonly measured by weather station 505 

networks in the region. To evaluate the suitability of these equations for disease and pest 506 

predictions under mono-specific shade in Central America, it would be valuable to compare 507 

predictions given by pest and disease models using modeled microclimatic variables under shade 508 

to predictions using models based on meteorological variables in full sun. Lastly, it would be 509 

interesting to complete these results by carrying out such a study in diversified systems with 510 

several shade tree species and incorporate these equations into a local disease warning system 511 

that would improve prediction by considering the cropping system of each coffee producer. 512 
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Fig. 1. Organization of the successive installations of 

weather stations on the plots of each site from July 

2018 to January 2019 and data of daily rainfall (black 

bar plot), daily minimum temperature (empty dots) and 

daily maximum temperature (full dots) of the weather 

stations in the full sun reference plot.  

Af = Acrocarpus fraxinifolius; Ca = Cordia alliodora; 

Ep = Erythrina poeppigiana; FS = Full sun; Gs = 

Gliricidia sepium; Ie = Inga edulis; M = Musa spp.; Vg 

= Vochysia guatemalensis. 



 

 

Fig. 2. Hemispherical photographs analyzed with Gap Light Analyzer software (A), which classified the 

pixels using the contrast level (B) to compute the canopy openness of four lines of gap fractions from the 

zenith (C). Examples of a regular light gap distribution (D) and an irregular light gap distribution (E). 

Photographs by Rogelio Villarreyna-Acuña 

 



 

    

Fig. 3. Graphs illustrating predicted daily minimum and maximum air temperatures under shade as a 

function of the observed values on the dataset used to build the model (A and B), on the extreme values 

from the domain of definition excluded from the model building stage (C and D) and on the independent 

dataset including the site at an altitude of 770 m a.s.l. and the coffee plot with a banana agroforestry 

system at the site at an altitude of 1140 m a.s.l. (E and F); RMSE = root mean square error. 



 

Fig. 4. Graphs illustrating predicted daily minimum and maximum leaf temperatures as a function of the 

observed values on the dataset used to build the model (A and B), on the extreme values from the domain 

of definition excluded from the model building stage (C and D) and on the independent dataset including 

the site at an altitude of 770 m a.s.l. and the coffee plot with a banana agroforestry system at the site at 

an altitude of 1140 m a.s.l. (E and F); RMSE = root mean square error. 



 

    

Fig. 5. Graphs illustrating predicted daily leaf wetness duration as a function of the observed values on 

the dataset used to build the model (A), on the extreme values from the domain of definition excluded 

from the model building stage (B) and on the independent dataset including the site at an altitude of 770 

m a.s.l. and the coffee plot with a banana agroforestry system at the site at an altitude of 1140 m a.s.l. 

(C); RMSE = root mean square error. 



 

TABLE 1. Studied coffee plots GPS data, altitude, shade tree species, shade tree height, canopy openness and light gap distribution 

(R=Regular and I=Irregular) during the three periods of recording (P1 = 1st period, P2 = 2nd period and P3 = 3rd period)  

Site 
(Province) 

GPS data 
Altitude 
(m a.s.l.) 

Shade tree 
species 

Shade tree height (m) Canopy openness (%) Light gap distribution 

P1 P2 P3 P1 P2 P3 P1 P2 P3 

Pavones 
(Cartago) 

9º54´34´´ N 
83º37´55´´ W 

740 

- - - - - - - - - - 
Erythrina 

poeppigiana 
3.8 4.1 4.1 57 63 40 I I I 

Cordia alliodora 14.6 14.8 14.8 64 57 51 I I I 
Palomo 
(Cartago) 

9º59´27´´ N 
83º38´14´´ W 

770 
- - - - - - - - - - 
C. alliodora 18.5 - - 56 - - I - - 

El Guayabo 
(Cartago) 

9º57´25´´ N 
83º39´50´´ W 

840 

- - - - - - - - - - 
E. poeppigiana 6.5 7.9 7.9 67 21 21 I I I 
Gliricidia sepium 4.8 5.5 12,5* 79 71 48 I I I 
Musa spp. 6.6 6.1 6.1 61 50 50 I I I 

San Marcos 
(San Jose) 

9º35´36´´ N 
84º01´29´´ W 

1000 

- - - - - - - - - - 
E. poeppigiana 5.8 2.8 3.5 74 90 59 I R I 
Musa spp. 7.0 7.0 7.0 53 47 37 I I I 
Vochysia 

guatemalensis 
10.5 10.8 10.9 36 32 27 I I I 

Cachí 
(Cartago) 

9º48´38´´ N 
83º49´20´´ W 

1140 
- - - - - - - - - - 
E. poeppigiana 6.8 7.2 7.2 16 12 27 R R R 
Musa spp. 6.9 6.2 6.2 37 44 46 I I I 

Aserrí  
(San Jose) 

9º46´8´´ N 
84º06´30´´ W 

1270 
- - - - - - - - - - 
E. poeppigiana 21.2 21.2 21.2 37 25 40 R R I 
Inga edulis 4.4 4.8 4.8 76 45 20 I I R 

San Marcos 
(San Jose) 

9º39´29´´ N 
84º02´44´´ W 

1400 

- - - - - - - - - - 
Acrocarpus 

fraxinifolius 
26.4 26.5 26.5 51 59 69 R R I 

E. poeppigiana 6.9 7.8 7.8 62 70 53 I I I 
Musa spp. 7.2 5.8 5.8 56 88 73 I R I 

* change for a plot with older shade trees 



TABLE 2 

Description of the five microclimatic dependent variables and their tested independent variables, 

including microclimatic quantitative variables provided by a weather station exposed to full sunlight and 

plot characteristic factors 

Variables Description Unit Range 

Dependent    
HoursLW Daily number of hours of leaf wetness - [0; 24] 
MinTleaf Daily minimum leaf temperature °C [7.3; 20.4] 
MaxTleaf Daily maximum leaf temperature °C [17.7; 48.8] 
MinTairShade Daily minimum air temperature under agroforestry °C [8.0; 20.4] 
MaxTairShade Daily maximum air temperature under agroforestry °C [18.4; 34.1] 

Independent    
Microclimatic quantitative variables   

MinTairSun Daily minimum air temperature in full sunlight °C [8.1; 20.4] 
MaxTairSun Daily maximum air temperature in full sunlight °C [18.4; 32.7] 
RHSun Daily average relative humidity in full sunlight % [61; 100] 
RainfallSun Daily rainfall in full sunlight mm [0; 103] 

Characteristic factors   
classAgroforSyst Type of agroforestry system:  

Shade tree height ≥ 7m, canopy openness ≥ 50% and light gap distribution (> 2.6) 
Shade tree height ≥ 7m, canopy openness ≥ 50% and light gap distribution (≤ 2.6) 
Shade tree height ≥ 7m, canopy openness < 50% and light gap distribution (> 2.6) 
Shade tree height ≥ 7m, canopy openness < 50% and light gap distribution (≤ 2.6) 
Shade tree height < 7m, canopy openness ≥ 50% and light gap distribution (> 2.6) 
Shade tree height < 7m, canopy openness ≥ 50% and light gap distribution (≤ 2.6) 

Shade tree height < 7m, canopy openness < 50% and light gap distribution (> 2.6) 
Shade tree height < 7m, canopy openness < 50% and light gap distribution (≤ 2.6) 
Full sunlight (modality specific to HoursLW, MinTleaf and MaxTleaf) 

CoffeeLeafStratum Coffee leaf stratum: Bottom; Middle; Top (specific to MinTleaf and MaxTleaf) 

 



TABLE 3 

Relative levels of influence (%) of each independent variable on the dependent variables provided by 

the boosted regression tree analysis 

 

 

Independent variables 

Dependent variables 

MinTairShade MaxTairShade MinTleaf MaxTleaf HoursLW 

MinTairSun 95.3 9.2 84.2 9.3 6.3 

MaxTairSun 1.4 78.6 2.8 30.0 7.8 

RHSun 1.5 3.2 2.3 7.9 66.3 

RainfallSun 0.6 2.2 1.8 6.1 7.1 

classAgroforSyst 1.2 6.8 7.8 22.2 12.5 

CoffeeLeafStratum - - 1.1 24.5 - 

 



 

TABLE 4 

Description of the parameter estimates of the models MinTairShade, MaxTairShade, MinTleaf, MaxTleaf and HoursLW  

  Models 

  MinTairShade MaxTairShade MinTleaf MaxTleaf HoursLW 

Independent 
variables 

 
Parameter value 
[±standard error] 

Parameter value 
[±standard error] b 

Parameter value 
[±standard error] b 

 
Parameter value 
[±standard error] b 

 
Parameter value 
[±standard error] 
b 

 

Intercept  α1 = 1.23 [± 0.14] β1 = 3.84 [± 0.63] - γ1 = 0.28 [± 0.21] - δ1 = 18.6 [± 1.64] - ε1 = -37.07 [± 2.69] - 

MinTairSun  α2 = 0.94 [± 0.0087] - - γ2 = 0.92 [± 0.0071] - δ3 = -0.074 [± 0.033] - - - 

MaxTairSun  - β2 = 0.77 [± 0.021] - - - δ2 = 0.86 [± 0.031] - ε3 = -0.16 [± 0.049] - 

RHSun  - - - γ3 = 0.0058 [± 0.0026] - δ4 = -0.13 [± 0.014] - ε2 = 0.66 [± 0.021] - 

RainfallSun  - - - - - - - ε4 = 0.023 [± 0.0097] - 

classAgroforSyst a A - β3 = 1.13 [± 0.22] b γ4 = 0.62 [± 0.039] d δ5 = -2.79 [± 0.] b ε5 = -1.69 [± 0.29] a 

B - β3 = 0 a γ4 = 0.18 [± 0.11] ab δ5 = -4.01 [± 0.47] ab ε5 = -1.42 [± 0.77] ab 

C - β3 = 1.54 [± 0.22] c γ4 = 0.76 [± 0.038] cf δ5 = -3.12 [± 0.17] b ε5 = -1.02 [± 0.28] a 

D - β3 = 0.77 [± 0.24] b γ4 = 0.87 [± 0.048] ef δ5 = -4.91 [± 0.22] a ε5 = -1.95 [± 0.37] a 

E - β3 = 2.70 [± 0.22] e γ4 = 0.58 [± 0.033] d δ5 = -1.65 [± 0.15] c ε5 = -1.81 [± 0.26] a 

F - β3 = 2.99 [± 0.28] e γ4 = 0.56 [± 0.071] cd δ5 = 0.40 [± 0.32] d ε5 = -1.09 [± 0.53] ab 

G - β3 = 2.71 [± 0.25] e γ4 = 0.52 [± 0.064] bd δ5 = -1.62 [± 0.29] c ε5 =   0.34 [± 0.40] b 

H - β3 = 2.46 [± 0.29] e γ4 = 1.04 [± 0.075] e δ5 = -3.78 [± 0.34] ab ε5 = -0.49 [± 0.56] ab 

I - - - γ4 = 0 a δ5 = 0 d ε5 = 0  b 

CoffeeLeafStratum Bottom - - - - - δ6 = 0 a - - 

Middle - - - - - δ6 = 2.01 [± 0.13] b - - 

Top - - - - - δ6 = 4.95 [± 0.13] c - - 
a: A: Shade tree height ≥ 7m, canopy openness ≥ 50% and irregular light gap distribution (> 2.6) 
   B: Shade tree height ≥ 7m, canopy openness ≥ 50% and regular light gap distribution (≤ 2.6) 
   C: Shade tree height ≥ 7m, canopy openness < 50% and irregular light gap distribution (> 2.6) 
   D: Shade tree height ≥ 7m, canopy openness < 50% and regular light gap distribution (≤ 2.6) 
   E: Shade tree height < 7m, canopy openness ≥ 50% and irregular light gap distribution (> 2.6) 
   F: Shade tree height < 7m, canopy openness ≥ 50% and regular light gap distribution (≤ 2.6) 
   G: Shade tree height < 7m, canopy openness < 50% and irregular light gap distribution (> 2.6) 
   H: Shade tree height < 7m, canopy openness < 50% and regular light gap distribution (≤ 2.6) 
   I: Full sun exposure 
b:   by model and by factor, the modalities that do not share a letter are significantly different 




