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Abstract  13 

Further characterization to properly assess the fate of organic matter quality during 14 

anaerobic digestion and organic carbon mineralization in soils is required. Organic 15 

matter quality based on its accessibility and complexity was employed to successfully 16 

classify 28 substrate/digestate pairs through principal components and hierarchical 17 

clustering analysis. The two first components explained 58.02% of the variability and 18 

four main groups were separated according to the feedstock type. A decrease in the 19 

accessibility (16-66%) and an increase in the complexity (34-98%) of the most 20 

accessible fractions was noticed. Besides, an increase of non-biodegradable compounds 21 

(17-66%) was globally observed after anaerobic digestion. The observed trends in the 22 

conversion of organic matter during anaerobic digestion have allowed to fill the gap in 23 

the modeling of the anaerobic digestion process chain. Indeed, partial least squares 24 

regressions have accurately predicted the organic matter quality of digestates from their 25 

inputs (R² = 0.831, Q² = 0.593) although the digester operational conditions 26 
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(temperature and hydraulic retention time) were non-explicative enough. As a novel 27 

approach, the predicted digestate quality was used to feed a partial least squares 28 

regression model previously developed to predict organic carbon mineralization in soil. 29 

The combined models have predicted experimental organic carbon mineralization in soil 30 

(R² = 0.697) with a model quality similar to the model for organic carbon mineralization 31 

in soil (R² = 0.894). This is the first study that has successfully conceived an additional 32 

step in the prediction of organic matter fate from raw substrate before anaerobic 33 

digestion to soil carbon mineralization. 34 

 35 

Abbreviations  36 

3D, three dimension; AD, anaerobic digestion; BMP, biochemical methane potential; C, carbon; C_bio, 37 

biodegradable carbon; COD, chemical oxygen demand; DOM, Dissolved Organic Matter; EPS, 38 
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RMSE, Root Mean Square Error, RMSE_CV, Root Mean Square Error for Cross Validation; RMSEP, 44 

RMSE calculated on validation dataset; PC1, Principal Component 1; PC2, Principal Component 2; Pf(i), 45 

fluorescence proportion for a zone (i); SEOM, Slowly Extractable Organic Matter; SPOM, Extractable 46 

Soluble from Particulate Organic Matter; T, Temperature; TS, total solids; Vf (i), fluorescence volume for 47 

a zone (i); VS, volatile solids 48 
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1. Introduction 54 

The current waste management model has started to evolve towards more sustainable 55 

and resource recovery strategies (Fonoll et al., 2016; Vidal-Antich et al., 2021). 56 

Anaerobic Digestion (AD) is a biological process widely used to convert the organic 57 
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matter (OM) present in different wastes into methane (Fernández-Domínguez et al., 58 

2020; Vinardell et al., 2021), along with the production of both OM and nutrient-rich 59 

by-product called digestate (Fernandez-Bayo et al., 2018; Guo et al., 2018). Nowadays, 60 

digestates represent alternative fertilizers used in agriculture either as organic 61 

amendment or fertilizer depending on the process, post-treatment and substrate type 62 

(Akhiar et al., 2017; Guilayn et al., 2020). However, digestate efficiency as organic 63 

amendment mainly depends on their OM stability (Kögel-Knabner, 2002), which 64 

remains a topic of ongoing research.  65 

A need for accurate OM characterization added to the strict limitations by legislation on 66 

contaminants, such as heavy metals for the agricultural reuse of specific feedstock, are 67 

points of main consideration to enhance digestate management (Khakbaz et al., 2020). 68 

Digestate stability has to be properly assessed before land application (Tambone et al., 69 

2013; Maynaud et al., 2017). Digestates often acquire higher biological stability and 70 

nutrient availability (particularly nitrogen) than raw substrates, enhancing the interest 71 

for land use (Provenzano et al., 2011). During AD, recalcitrant compounds are 72 

concentrated since the labile organic structures are preferentially degraded (Insam et al., 73 

2015). Nonetheless, this stabilization could occur due to the interaction of different 74 

factors, including (i) degradation and solubilization of simple compounds, (ii) molecular 75 

complexification, (iii) complex microbial-related products release from biomass growth 76 

and decay (Aemig et al., 2016). 77 

For a suitable agronomic valorization of digestates, evaluating the OM fate during AD 78 

and soil carbon (C) mineralization is a meaningful aspect to reduce associated 79 

environmental impacts (e.g. C loss, greenhouse gases emission) or favor ecosystem 80 

service like soil C sequestration that contributes to climate change mitigation (Minasny 81 

et al., 2017). Thus, wider efforts are needed to better understand how OM from non-82 
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digested substrate is transformed into digestate OM (Shakeri Yekta et al., 2019; 83 

Tambone et al., 2015).  84 

Standard methods to measure the biodegradability of organic wastes through 85 

biodegradability assays are laborious and time-consuming. At least, 30 and 90 days are 86 

required for anaerobic biodegradation potential tests and aerobic biodegradation during 87 

soil incubations, respectively (Jimenez et al., 2017). Hence, biochemical fractionation is 88 

a much more time-saving method to characterize the structural nature of organic wastes 89 

and assess waste biodegradability using successive chemical extractions (Teglia et al., 90 

2011a). The Soest (1963) fractionation method was widely applied to associate OM 91 

composition with biodegradability (Fernandes et al., 2009; Gunaseelan, 2007; Triolo et 92 

al., 2012). Based on this fractionation method, the Iroc indicator (i.e. indicator of 93 

residual organic C in soils) has been developed as a proxy of the potentially remaining 94 

OM after application in soils for various organic amendments (Lashermes et al., 2009).  95 

Moreover, it was successfully used to predict the long term evolution of OM in soils 96 

after repeated applications of these organic amendments (Levavasseur et al., 2021).  97 

However, biodegradable substrates and digestates were not included in the panel of OM 98 

used for the development of the Iroc indicator. In addition, the Soest fractionation 99 

method presented limitations in predicting the biodegradability for a wide range of 100 

organic residues using biomethane potential tests (BMP) (Mottet et al., 2010). 101 

Therefore, less aggressive methods were requested as a more representative way for 102 

anaerobic biodegradability prediction (Bareha et al., 2018; Mottet et al., 2013).  103 

With this purpose, Jimenez et al. (2015) suggested a less aggressive fractionation 104 

method coupled with 3D fluorescence on the extracted fractions. These authors  105 

successfully classified sixty organic residues based on their OM quality, which is 106 

defined by the OM accessibility (i.e. compounds availability to microorganisms for intra 107 
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or extra-cellular degradation) and complexity (i.e. molecules structure) of organic 108 

waste. This methodology is a promising approach compared with single spectroscopic 109 

techniques. Indeed, it has allowed an accurate assessment of the OM quality (Muller et 110 

al., 2014; Zhang et al., 2019) and has defined new inputs for AD modeling approaches 111 

(Jimenez et al., 2020). Interestingly, in Jimenez et al. (2017), the OM quality of 82 112 

samples, comprising organic waste of different origin, was used to accurately predict 113 

both BMP and potential C mineralization in soil using Partial Least Square (PLS) 114 

regression. Similarly, Bareha et al. (2018) have properly evaluated the correlation 115 

between substrates organic nitrogen accessibility indicators with C biodegradability 116 

using an extracellular polymeric substances (EPS) fractionation method modified from 117 

Jimenez et al. (2015) in PLS regressions. The accessibility and complexity of a treated 118 

substrate will probably vary during AD. However, no studies have been focused before 119 

on the prediction of digestate OM quality from their corresponding inputs. This 120 

approach would make it possible to further predict the potential C mineralization of 121 

digestates in soil as described in Jimenez et al. (2017). Therefore, models could be an 122 

interesting alternative to fill this gap, saving time and providing new tools to improve 123 

AD performance.   124 

Feedstock typology stands as a key factor to understand the final OM quality of 125 

digestates (Rocamora et al., 2020). Indeed, Fourier-transform infrared spectroscopy 126 

(FTIR) analysis showed that the main spectroscopic features in digestates depend on the 127 

composition of the initial biomass (Provenzano et al., 2011). Nevertheless, structural 128 

changes of labile and recalcitrant fractions of OM were reported comparing the nuclear 129 

magnetic resonance (NMR) spectra of different substrates and their subsequent 130 

digestates (Laera et al., 2019; Shakeri Yekta et al., 2019). However, the OM quality 131 

evolution due to AD has not been evaluated for a broad range of feedstock. Nonetheless, 132 
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it could provide relevant information for different sectors implementing AD (e.g. farms, 133 

wastewater treatment plants, solid waste treatment plants). 134 

This study aims to assess the OM accessibility and complexity evolution during AD for 135 

a wide variety of feedstocks. To this end, 28 substrate/digestate pairs including different 136 

feedstock nature were classified using statistical analyses to evaluate how both 137 

feedstock type and AD parameters influenced OM quality in the final digestate. Finally, 138 

a model based on linear regression was proposed to predict digestate OM quality from 139 

their inputs. The predicted quality was used to feed the PLS model for C 140 

biodegradability in soil proposed by Jimenez et al. (2017) to determine the digestates 141 

organic C mineralization in soil after land spreading. 142 

 143 

2. Material and methods  144 

2.1. Substrate/digestate pairs 145 

Twenty-eight substrate/digestate pairs (a total of 56 samples) were collected from 146 

different waste treatment plants in France. The selected organic substrates, including 147 

diverse types of feedstocks and origins, were anaerobically digested in laboratory or 148 

full-scale reactors under different digester operational conditions (Table 1). The studied 149 

samples comprised 6 digestate types from the digestate fertilizing-value typology 150 

reported in Guilayn et al. (2019). Each sample was characterized in terms of 151 

accessibility and complexity as assessed by the biochemical fractionation method 152 

coupled with 3D fluorescence developed in Jimenez et al. (2015) and described below. 153 

Biochemical fractionation was conducted on the freeze-dried particular matter and 154 

fluorescence on the aqueous phase. 155 
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2.2. Fractionation method 156 

Following the reported methodology in Jimenez et al. (2017), all the fresh samples were 157 

centrifuged (ca. 18,600 g for 30 min) at 4ºC as a first step. The aqueous phase, namely 158 

dissolved organic matter (DOM), was separated. Total Solids (TS) and Volatile Solids 159 

(VS) on the raw sample as in the resulting particulate phase were determined (APHA, 160 

2005). Then, the particulate phase was freeze-dried and ground (1 mm) and a quantity 161 

of 0.5 g of freeze-dried sample was subjected to the successive chemical extractions (30 162 

mL of each extractant). After every extraction stage, the sample was centrifuged 163 

(18,600 g, 20 min, 4 ºC) and the liquid phase was filtered (0.45 µm) and kept for 164 

analyses. All tests were carried out in duplicate. The resulting fractions from the 165 

fractionation method, ordered from more to less accessible, were defined as: (1) 166 

Extractable Soluble from Particulate Organic Matter (SPOM), (2) Readily Extractable 167 

Organic Matter (REOM), (3) Slowly Extractable Organic Matter (SEOM), (4) Poorly 168 

Extractable Organic Matter (PEOM), (5)  Non-Extractable Organic Matter (NEOM). 169 

Chemical oxygen demand (COD) and 3D fluorescence spectroscopy were performed on 170 

the four liquid extracted fractions (DOM, SPOM, REOM, PEOM). Regarding the 171 

fractionation method reproducibility, the measurement error is below 5% (data not 172 

shown).                        173 

COD was determined on the extracts in duplicate using Aqualytic® Vario COD kits (0-174 

1500 mg O2/L) analyzed using an ultraviolet (UV) spectrophotometer MultiDirect from 175 

Aqualytic®. Samples were diluted with deionized water if required. Units were in 176 

mgO2/L and mg O2/g TS for the liquid and solid phases, respectively.  177 

2.3. Fluorescence spectroscopy analysis 178 

The 3D fluorescence spectroscopy analyses were conducted on the obtained liquid 179 

fractions using a spectrofluorimeter Perkin Elmer LS55. The excitation wavelengths 180 
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varied from 200 to 600 nm and the values were recorded every 0.5 nm between 200 and 181 

600 nm, with increments of 10 nm. The resulting spectra were divided into seven 182 

different zones (I-VII) corresponding to a biochemical family with common complexity 183 

level for spectra interpretation, as described by Jimenez et al. (2014) and He et al. 184 

(2011): I, protein-like (Tyrosine); II, protein-like (Tryptophane), III, protein-like 185 

(Tyrosine, Tryptophane and microbial products); IV, fulvic acid-like; V, inner filter, 186 

glycolated protein-like; VI, melanoidin-like and lignocellulose-like; VII, humic acid-187 

like. Afterward, the obtained data were processed to calculate the fluorescence volume 188 

of each zone Vf (i) and then the fluorescence proportion of each zone Pf  (i) as described 189 

in Eqs. (1) and (2), respectively. 190 

��(�)(�. �./
� �� · ���) = ��_���
(�)/�������� ×  1/

!(")

∑ !(")$
%&'

                            (Eq.1)                     191 

(�(�)(%) =  ��(�)/ ∑ ��(�)*
"+� × 100                                                                                   (Eq.2)                     192 

 193 

Where:  194 

Vf (i) is the normalized volume of a zone i (U.A./ mg O2 ·  L-1) 195 

Vf_raw is the raw fluorescence volume of a zone i (U.A./ mg O2 ·  L-1) 196 

CODsample  is the COD concentration of the sample (mg O2 ·  L-1) 197 

S(i) is the area of a zone i (nm2) 198 

Pf (i) is the fluorescence proportion of a zone i (%) 199 

Moreover, a fluorescence complexity index (FCI) was calculated between the 200 

proportions of fluorescence volumes of the most complex molecules zones (IV-VII) and 201 

the less complex molecules zones (I-III), as stated in Eq. (3) (Aemig et al., 2016). 202 

-. =
∑ /0

$
%&1 (")

∑ /0
2
3&' (")

                              (Eq.3) 203 

 204 

2.4. Statistical analysis 205 
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Principal component analysis (PCA), Hierarchical Clustering Analysis (HCA) and their 206 

corresponding plots were carried out in R (4.0.3) (R Development Core Team, 2021). 207 

The displayed groups for the PCA individuals were determined by HCA clustering. 208 

Both analyses were conducted on a total of 56 samples (28 substrate/digestate pairs) 209 

considered individually. A Euclidean distance matrix with center-scaled variables was 210 

calculated before HCA analysis and the number of groups was determined heuristically.  211 

PCA was performed on center-scaled variables. A total of 34 variables for each sample 212 

was evaluated. Six variables were related to the accessibility of the sample and 213 

corresponded to the biochemical fractions (DOM, SPOM, REOM, SEOM, PEOM, 214 

NEOM) and 28 variables were linked to the complexity of the sample (seven 215 

fluorescence variables for each extracted fraction). Tukey’s methodology was followed 216 

for the displayed boxplots. 217 

In order to determine a linear prediction model of digestate quality from substrates 218 

quality, PLS regressions were performed using SIMCA software from UMETRICS. In 219 

its simplest form, a linear model specifies the linear relationship between a dependent 220 

(response) variable Y, and a set of X predictor variables, the X's. Cross-validation was 221 

then performed to test the model’s quality. K-fold cross-validation was used. The 222 

database was divided into 7 blocks and some samples were selected as validation 223 

samples. This step was repeated. The mean and standard deviation of the scores were 224 

calculated to estimate the bias and the variance of validation performance. The 225 

validation step was performed on 5 samples not used in the calibration step among the 226 

28 samples, chosen as representative of each type of digestate: Sludge_2_D, PS + Cow 227 

Food_D,  PS + Cow Manure_D, MW4_D and CM3_D. 228 

The parameters from the PLS models used to assess model quality are the following: 229 
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Correlation coefficient: R². 230 

Root Mean Square Error (RMSE): used as an accuracy measurement of differences 231 

between predicted values and measured model values.  232 

RMSE_CV: which is the RMSE for the cross-validation and was applied as prediction 233 

model error. 234 

RMSEP: RMSE calculated on the validation dataset. 235 

Q²: percentage of variation of Y predicted by the PLS model according to cross-236 

validation. This parameter indicates how well the model predicts the data. A large Q² 237 

(>0.5) indicates good predictivity.  238 

The PLS model was based on 33 variables: the fractionation percentage of COD 239 

(DOM+SPOM, REOM, SEOM, PEOM, NEOM) and the fluorescence percentage of the 240 

seven zones coming from each fraction. The PLS model coefficients are presented in 241 

Supplementary Material. The same X-Variables as Jimenez et al. (2017) model have 242 

been used. Thus, DOM and SPOM fractions have been pooled and only SPOM 243 

fluorescence percentage has been considered. To combine the PLS model for C 244 

biodegradability in soil from Jimenez et al. (2017) and the digestate quality PLS model,  245 

experimental data obtained from soil C mineralization tests as described in Jimenez et 246 

al. (2017) have been used. Fourteen digestates have been tested among the 28 samples 247 

previously defined. Table 2 presents the digestates considered and their respective 248 

biodegradable C percentage. 249 

 250 

3. Results and Discussion  251 

3.1. Substrates and digestates classification 252 
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PCA and HCA analyses were conducted on 33 variables describing the accessibility and 253 

complexity of the OM for the 56 samples considered individually. Scores and loadings 254 

from PCA are presented in Figure 1a and 1b, respectively. HCA clusters are illustrated 255 

in Figure 1c. The PCA analysis has showed that the first two components explained 256 

58.02% of the total variance, meaning that the samples were rather well described by 257 

the used characterization data. These results are in accord with previous studies 258 

focusing on organic waste classification (Jimenez et al., 2015) or the characterization of 259 

post-treated digestates (Maynaud et al., 2017). From the HCA, four main groups were 260 

identified by different colors (A, B, C, D) in PCA and HCA plots (Figure 1a and 1c).  261 

The Component 1 (PC1) was described by the complexity of the molecules, from the 262 

simplest samples on the right part of the loadings plot (mainly fluorescences zones II-263 

III, related to simple sugars/proteins and microbial products with low complexity) to the 264 

most complex samples on the left part (mainly fluorescences zones VI-VII, linked to 265 

humic acids, lignocellulose and melanoidin). Hence, PC1 was significantly (p-value < 266 

0.05) correlated to simple and intermediate fluorescence zones, such as REOM_I_II, 267 

SEOM_I_II and PEOM_I_IV variables (R2 = 0.77, 0.67 and 0.66, respectively). 268 

Meanwhile,  it was anti-correlated (p-value < 0.05) to complex fluorescence zones (VI-269 

VII), particularly REOM_I_VII, REOM_I_VI and SEOM_I_VI variables (R2 = -0.94, -270 

0.90 and -0.87, respectively).  271 

The second component (PC2) was explained by the complexity added to the 272 

accessibility of the sample. A significant (p-value < 0.05) and positive correlation was 273 

observed between REOM_C (R2 = 0.74) and fluorescence zones from I to III 274 

(SPOM_I_III, REOM_I_I and SEOM_I_I, with R2 = 0.78, 0.67 and 0.65, respectively). 275 

Contrarily, a significant (p-value < 0.05) and negative correlation was defined between 276 

PEOM_C (R2 = -0.79) and fluorescence zones of intermediate complexity as 277 



12 
 

REOM_I_IV, SEOM_I_IV, SEOM_I_V (R2 = -0.95, -0.85, and -0.85, respectively). 278 

Biochemical fractionation variables were among the main variance contributors for PC2 279 

which allowed to identify the most accessible samples on the top (essentially due to 280 

REOM) from the less accessible samples (mainly PEOM) on the bottom. DOM fraction 281 

was not correlated with SPOM/REOM/SEOM nor to PC1 but to a lesser extent (R2 = -282 

0.59 and p-value <0.05). SEOM was positively correlated with the most accessible 283 

fractions (SPOM and REOM) while PEOM was negatively correlated with REOM and 284 

SEOM, as previously stated by Jimenez et al. (2015) and Aemig et al. (2016). Zhang et 285 

al. (2019) also showed that SEOM fraction shared protein-like compounds fluorescent 286 

peaks with SPOM and REOM fractions whereas PEOM presented a humic-like 287 

compound peak as the main peak. Indeed, NMR spectroscopy on the solid fraction 288 

showed that SEOM was mainly composed of proteins (Laera et al., 2019). NEOM 289 

fraction was non-explicative enough in this study.  290 

Figure 1c shows the four groups established from the HCA analysis based on the 291 

extracted fractions and their complexity of each sample: (A) pig slurry and slurry 292 

mixtures with primary sludge, agro-industrial waste or biowaste, (B) manure, fibers and 293 

municipal solid waste, (C) pig slurry mixtures with fiber or food wastes, and (D) sludge. 294 

All the groups were strictly related to the feedstock type, highlighting its influence on 295 

organic waste classification, which is supported by other authors (Akhiar et al., 2021; 296 

Bareha et al., 2018; Guilayn et al., 2019). Groups B, C, and D came from a different 297 

main cluster than Group A, probably due to a higher DOM content related to complex 298 

fluorescence zones (VI-VII) that could arise from the degradation of refractory 299 

compounds of other fractions (Zhang et al., 2019). The high reported complexity in 300 

animal slurries could be related to particular recalcitrant alkyl-C (e.g. sterols, lipids, 301 

cutin) (Tambone et al., 2019). Group B was defined by PEOM (poorly accessible C) 302 
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and fluorescence zones IV and V. Indeed, these types of substrates are characterized to 303 

present high C/N and TS besides complex proteins and humic/fulvic acids (Akhiar et 304 

al., 2017). Finally, Groups C and D were related to low complexity zones (I-III) while 305 

sludge showed higher fluorescence proportions on zones III than pig slurry mixtures. In 306 

fact, zone III corresponds to protein content and microbial by-products, typically related 307 

to activated sludge metabolism and growth/decay (Fang et al., 2015). These results have 308 

been also reported by Zhang et al. (2019), who showed that the characteristic presence 309 

of protein-like organics (zones II and III) was in the SPOM and REOM fractions of 310 

sludge. 311 

Interestingly, a broad variance on pig slurry mixtures clustering from fluorescence 312 

zones I-III to VI-VII was found depending on the co-substrate added (e.g. pairs of pig 313 

slurry + fiber co-substrate were clustered in Group C but spatially distributed close to 314 

Group B, which is mainly composed of fiber-rich samples). Notwithstanding that the 315 

percentage of co-substrate in raw mass was mainly below 20%, the addition of a co-316 

substrate seems to influence their classification and should be considered to properly 317 

classify organic wastes (see Table 1). 318 

Most of the digestates were clustered together with their substrates, confirming that the 319 

main OM complexity and accessibility prevailed after AD (Provenzano et al., 2014). 320 

Nevertheless, within the same cluster, variations in the classification between substrates 321 

and digestates have been observed. Since the OM accessibility and complexity 322 

conversion after AD remains unclear, it is discussed in the following section. 323 

3.2. OM accessibility and complexity: revealed groups characterization 324 

3.2.1. OM accessibility and fluorescence complexity index of substrates 325 
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The proportion of total COD in the biochemical fractions and the FCI (defined in 326 

Section 2.3) of substrates profiles have been evaluated to define each group and are 327 

summarised in Figure 2. 328 

The proportions of COD for each extracted fraction varied between groups according to 329 

the different origins of the sample (Figure 2). The largest proportion of COD for Group 330 

A was in the DOM fraction (30-55%), indicating a notable content of water-soluble 331 

organic substances in slurries, such as simple sugars (e.g. sucrose, glucose and 332 

fructose), proteins (mainly globular protein), volatile fatty acids or soluble recalcitrant 333 

compounds. High DOM fraction content was also reported by Laera et al. (2019) (76% 334 

of total COD) for a substrate from a household, slaughterhouse and industrial waste co-335 

digestion plant. For Groups B and C, PEOM fraction was the main COD fraction 336 

extracted and ranged between 22 and 58% of total COD. Indeed, these results are 337 

consistent since the PEOM fraction is rich in hemicellulose, cellulose-like, starch and 338 

certain proteins (Laera et al., 2019), which characterizes the fibrous feedstocks of 339 

Groups B and C. Finally, Group D extracted COD was dominated by the NEOM 340 

fraction (23-33%). Similar values of NEOM (30-40%) have been reported by different 341 

authors for sludge samples (Jimenez et al., 2015; Maynaud et al., 2017).  342 

Comparing the accessibility between groups, Group D had the highest SEOM (27%) 343 

and SPOM (22%) fractions probably due to high complex protein content (mainly 344 

fibrous proteins) and simple sugars/proteins in sludge samples. Group C presented the 345 

highest REOM (25%) and NEOM (39%) fractions probably because of the protein and 346 

lipid content provided by food wastes. Group B presented the highest PEOM fraction 347 

(58%), while the NEOM fraction was the second extracted fraction for all the groups 348 

(except for Group D), indicating that all wastes had a considerable amount of non-349 
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extractable OM. Whilst, SPOM and REOM fractions showed low percentages of the 350 

total extracted COD for all the groups.  351 

Regarding the FCI of the substrates, Groups A and B had higher FCI in all fractions 352 

compared with Groups C and D (Figure 2). Indeed, Group C and D were mainly 353 

characterized by fluorescence regions I to III likely they have less complex 354 

proteins/lignified compounds than Groups A and B. Only the FCI of the SPOM fraction 355 

of Group C (1.03-1.50) was higher than the one of the other Groups. The highest FCI 356 

for all groups was for Groups A and B and corresponded to the less accessible fractions 357 

(SEOM and PEOM), as reported by Muller et al. (2014). Concerning the FCI of each 358 

group, the FCI of the SEOM fraction was the highest for the Group A (3.60). In fact, 359 

this fraction targets recalcitrant compounds such as humic-like acids, fulvic-like acids 360 

and complex proteins, which could explain that Group A was previously defined by 361 

complex fluorescence zones (VI-VII) (see Figure 1). The FCI of the PEOM fraction 362 

showed the highest values for Group B and D (2.94 and 1.97, respectively) whereas 363 

Group C displayed slight differences in the FCI for all the extracted fractions.  364 

Fluorescence spectroscopy was also performed on some DOM fractions samples (PS, 365 

CM/S and HM/S + Slu, BW + CS + AI, Sludge_6 and Sludge_7). However, this data 366 

was not considered in this study because (i) all the DOM fractions in the dataset were 367 

not analyzed and (ii) Jimenez et al. (2017) did not consider it in their model. 368 

Nonetheless, the fluorescence percentage for zone I to VII of SPOM and DOM of these 369 

6 samples were similar for the evaluated substrates. Zhang et al. (2019) reported similar 370 

results for sewage sludge. Therefore, DOM fluorescence was not relevant for an 371 

accurate prediction of the final C mineralization in soil concerning the present study 372 

(see Supplementary Material).  373 
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3.2.2. OM accessibility and fluorescence complexity index conversion after AD 374 

The anaerobic biodegradability of OM also depends on the chemical nature of the 375 

compounds, therefore, the more accessible fractions will not strictly be the more 376 

biodegradable fractions (Bareha et al., 2019; Mottet et al., 2010). However, simpler 377 

compounds (e.g. soluble sugars or proteins) will be extracted in the most easily 378 

extractable fractions, while lignocellulose-like compounds are normally present in the 379 

last extracted fractions. To evaluate these considerations, Table 3 shows the proportions 380 

of COD for each extracted fraction and the FCI evolution between the substrates and 381 

their corresponding digestates after AD. Meanwhile, Figure 3 displays the proportions 382 

of COD for each extracted fraction (described in Section 2.2) and FCI profiles for the 383 

digestates samples of each group. 384 

From the four groups evaluated, general assumptions can be drawn regarding the 385 

influence of AD in the OM quality of digestates. The SPOM and REOM fractions have 386 

decreased after AD whereas the FCI increased for all feedstock groups (except SPOM 387 

and REOM complexity of Group C which decreased). Aemig et al. (2019) have also 388 

reported the highest biodegradation yields for the most accessible fractions (74% and 389 

69% for SPOM and REOM, respectively) after sewage sludge AD. Thus, SPOM and 390 

REOM have shown the lowest percentage of extracted COD (less than 10% of total 391 

COD) for all digestates. Indeed, the sum of SPOM+REOM in digestates ranged between 392 

3 and 27% of the total COD samples (data not shown). Low extracted COD proportions 393 

for the most accessible fractions were also found in Bareha et al. (2018) and Laera et al. 394 

(2019), where the sum of SPOM, REOM and SEOM was below the 10% of total COD.  395 

Similarly, the sum of SPOM + REOM only accounted for the 2.7-10.6% of the total 396 

COD of digestates OM by Maynaud et al. (2017). In accordance with the present study, 397 

Aemig et al. (2019) and Zhang et al. (2019) have also reported an increase of the FCI 398 
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for SPOM and REOM fractions since simple fluorescence peaks remarkably decreased 399 

after anaerobic digestion.  400 

Regarding the DOM fraction, Group A kept the highest COD content in DOM (26-38%) 401 

after AD. This could suggest that, DOM fraction could contain non-biodegradable 402 

compounds or that AD could produce accessible but complex molecules (Jimenez et al., 403 

2015; Lashermes et al., 2009), which has also been shown during composting (Peltre et 404 

al., 2011). Indeed, Zhang et al. (2019) showed that refractory organic compounds (i.e. 405 

complex compounds) could be accumulated in DOM due to solubilization. In the 406 

studied dataset, the DOM fraction has been displayed to be variable among the groups. 407 

Actually, SPOM and DOM digestates spectra have been observed to present 408 

differences, although without a significative general trend (see Supplementary 409 

Material).   410 

The SEOM fraction was kept similar or increased depending on the group. Laera et al. 411 

(2019) have also noticed a SEOM fraction increase from 7 to 15% after AD. These 412 

authors have associated it with the concentration of protein from the growth/decay of 413 

microorganisms and to a preferable consumption of simple soluble compounds. 414 

Similarly, the SEOM reduction was smaller compared with SPOM and REOM fractions 415 

for sewage sludge and cow manure digestion, as they are expected to have more 416 

complex and therefore less degradable compounds (Somers et al., 2021; Zhang et al., 417 

2019). The FCI of SEOM has tended to increase in the digestate of Groups A and C. 418 

Meanwhile, the FCI of SEOM of Group B and D remained constant, whilst the SEOM 419 

accessibility decreased, probably due to the biodegradation of non-fluorescent 420 

compounds, as previously reported by Aemig et al. (2019).  421 
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PEOM fraction has also varied among feedstock types. The Groups with high initial 422 

PEOM fraction (B and C) has shown a decrease while an increase was observed for the 423 

Groups with low initial PEOM fraction (A and D). Similar findings were previously 424 

reported in Bareha et al. (2018) and Aemig et al. (2016). These authors have reported a 425 

PEOM fraction decrease for cow manure (i.e. rich in PEOM) and an increase for sewage 426 

sludge (i.e. poor in PEOM), respectively. Therefore, higher degradation rates of PEOM 427 

fraction (cellulose and hemicellulose) during AD could be expected when other simpler 428 

molecules are missing (Tambone et al., 2013). Biodegradable cellulose/hemicellulose in 429 

the PEOM fraction of Groups B and C have probably contributed to higher 430 

biodegradability of the PEOM fraction. However,  the PEOM fraction of Groups A and 431 

D could contain non-identified complex compounds (e.g. complex proteins) that 432 

increase the recalcitrance to AD. The FCI of PEOM has increased for all groups (except 433 

for Group C). In contrast, Aemig et al. (2016) have reported no evolution on the FCI for 434 

the less accessible fractions during sewage sludge digestion. Nevertheless, a slight 435 

increase of the fluorescence intensity of humic-like compounds peaks in PEOM fraction 436 

after AD (suggesting poor biodegradability and high complexity of this fraction), was 437 

reported as a possible re-polymerization of humic acid (Tang et al., 2018; Zhang et al., 438 

2019). 439 

The NEOM fraction has increased for all groups after AD and represented between 25 440 

and 63% of the total COD in digestates. This lignocellulose-type fraction is 441 

concentrated after AD due to its recalcitrance and poor biodegradability in anaerobic 442 

conditions (Usman Khan and Kiaer Ahring, 2021). Thus, digestates are expected to be 443 

enriched in recalcitrant compounds, enhancing their suitability as soil amendment 444 

compared to the raw substrates (Jimenez et al., 2017; Pognani et al., 2010; Shakeri 445 

Yekta et al., 2019; Teglia et al., 2011b).  446 
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The obtained results have shown that the OM conversions shared a similar pattern 447 

regardless of the feedstock type: (i) an increase of complexity for the majority of the 448 

fractions, (ii) a global decrease of accessibility of the most accessible fractions (SPOM 449 

and REOM), and (iii) an increase of the non-extractable organic matter (NEOM) 450 

fraction. Nonetheless, it should be noted that the discussed evolution of the OM quality 451 

does not distinguish between the contribution due to the exogenous OM (i.e. substrate) 452 

and the endogenous OM (i.e. microbial-related products). The contribution of each 453 

compartment will be prioritized in forthcoming studies.  454 

The accessibility conversion pattern is in agreement with Aemig et al. (2016), who have 455 

also shown a decrease for the most accessible fractions (named DOM, S-EPS and RE-456 

EPS) during AD (22-65%, 49-50%, 23-35%, respectively), whereas NEOM relatively 457 

increased. Similarly, cow manure AD was evaluated by Somers et al. (2021) and a 458 

significant decrease in DOM, SPOM and REOM fractions of 24%, 62%, and 61%, was 459 

associated with methane production and hydrolysis of organic matter. Laera et al. 460 

(2019) have also noted a remarkable decrease from 76 to 28% for the DOM fraction 461 

between raw and digested mixtures of household, slaughterhouse and industrial wastes. 462 

Besides, an increase from 9% to 47% for PEOM + NEOM was also reported by these 463 

authors. Moreover, Zhang et al. (2019) have also showed a decrease after AD from 464 

46.74% to 39.42% for DOM, SPOM and REOM fractions and the FCI increased for all 465 

the extracted fractions. Furthermore, the FCI of the REOM fraction was increased by 466 

34% during cow manure AD (Somers et al., 2021) whereas a non-significant increase in 467 

the FCI of SEOM and PEOM during sludge and cow manure AD was stated by Aemig 468 

et al. (2019, 2016) and Somers et al. (2021), respectively. Therefore, general trends on 469 

OM accessibility and complexity evolution during AD have been observed. 470 
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Additionally, the prediction of OM accessibility and complexity of digestates from their 471 

inputs have been further assessed. 472 

 473 

3.3. Prediction of digestate OM quality from substrate OM quality 474 

3.3.1.  PLS model for the prediction of digestate OM quality 475 

PLS regression was applied on 28 observations (substrate/digestate pair) split in two 476 

datasets: a calibration dataset (23 samples) and a validation dataset (5 samples). Seven 477 

models were tested (Table 4). Model n°1 used the substrate fractions DOM+SPOM, 478 

REOM, SEOM and PEOM as X-variables to predict the digestate fractions (i.e. 479 

DOM+SPOM, REOM, SEOM and PEOM). NEOM fraction was not included as this 480 

fraction is calculated by difference. Model n°2 was similar to Model n°1 with the 481 

addition of the reactor temperature (T) as X-Variable. Model n°3 was the Model n°1 482 

with the addition of Hydraulic Retention Time (HRT) as X-Variables and Model n°4 483 

merged Models n°2 and 3. 484 

Model n°5 used both fractions and fluorescence percentage in each fraction measured in 485 

the substrates (32 variables) as X-variables to predict the same 32 Y-variables in the 486 

digestates. Models n°6, 7 and 8 were based on Model n°5 with the addition of the T, 487 

HRT and both variables as X-variables, respectively. Table 4 presents the quality 488 

parameters of each model. The errors of calibration, cross-validation and prediction 489 

using cross-validation methods (RMSE, RMSE_CV, and RSMEP) of each Y-variable in 490 

each model are specified in the Supplementary Material.  491 

According to Table 4, all the models have shown good quality performances with Q² > 492 

0.5 and correlation coefficients of prediction were between 0.691 and 0.832. Models n°5 493 

to 8 had better correlation coefficients than Models n°1 to 4 and smaller calibration 494 
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errors (cf. RMSE in Supplementary Material). Indeed, the addition of fluorescence 495 

variables from Model nº1 to nº5 improved the prediction of the 32 variables with 7 496 

components. Overall, for Model nº5, R² was 0.831 and specific R² for each fraction 497 

prediction was 0.869, 0.910, 0.736 and 0.882 for respectively DOM+SPOM, REOM, 498 

SEOM and PEOM. Furthermore, the prediction error RMSEP was lower in Model n°5 499 

for the fractions prediction than Model n°1 (see Supplementary Material). 500 

The Model n°2 and 4 had the best performances among the models using only fractions 501 

and operational parameters as X-Variables. Indeed, the addition of T (Model n°2) and 502 

the addition of HRT (Model n°3) as X-variables increased R²Y but needed a component 503 

addition. However, HRT addition did not improve the quality parameters R²Y and Q² 504 

(Model n°4 in Table 4). This trend was not the same in the case of Models n°6 to 8 in 505 

comparison with Model n°5 without operational parameters. Indeed, despite a little 506 

increase of R²Y when T was added as X-variables (Model N°6), the prediction accuracy 507 

(Q²) was decreased when HRT and T were added. The results obtained in Model n°2 508 

have shown that T was anti-correlated (p-value < 0.05) with SEOM (R² = -0.593) and, 509 

less significantly with DOM+SPOM (R² = -0.313). However, reactors T were mainly 510 

mesophilic except for MW digestates (55 °C). These digestates were associated with 511 

lower DOM+SPOM and SEOM fractions than the others. Consequently, relying on our 512 

dataset, the impact of T was related to the substrate type. To test the impact of T alone, 513 

it would have been interesting to get substrate/digestate pairs from various feedstocks at 514 

both mesophilic and thermophilic temperature.  515 

Similarly, the obtained results in Model n°3 have shown that HRT was negatively 516 

correlated with REOM (R2 = -0.628) and, positively correlated with PEOM (R2 = 517 

0.397).  However, low HRT values were mainly found for sludge digestion whereas 518 

high HRT values were associated with cow manure digestates. Sludge digestate groups 519 
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were related to a high value of REOM and SEOM fractions whereas cow manure 520 

digestates were characterized by high values of PEOM and low values of DOM+SPOM. 521 

Again, it was not possible to distinguish the effect of HRT from substrate impact on 522 

digestate quality prediction. Moreover, in the Model n°4, weight coefficients showed 523 

that HRT and T were considered as the least important variables for quality prediction 524 

(Supplementary Material).  525 

As the operational conditions have been determined as non-explicative enough in this 526 

study, and considering the high quality of the prediction, Model n°5 was selected. 527 

Besides, the  predicted variables of digestates quality are necessary for the PLS model 528 

for C biodegradability in soil. To go further, the impact of the most significant X-529 

variables affecting the prediction of Y-variables derived from the calculation of the 530 

weight of each variable for Model n°5 (without T and HRT) was analyzed (data not 531 

shown).  532 

The characteristics of input OM  remarkably influenced the prediction of the digestate 533 

OM characteristics, meaning that the main pattern of accessibility present in feedstock 534 

input remained in digestate OM  after AD. The variables of the most complex 535 

fluorescence zones from substrate impacted significantly the digestate quality. The 536 

recalcitrant compounds contained in the substrate were preserved in their subsequent 537 

digestate, as possible humus precursors (Guilayn et al., 2020; Tambone et al., 2010). 538 

Nonetheless, for the prediction of the simpler fluorescence zones, other factors such as: 539 

(i) solubilisation/complexification of biodegradable/non-biodegradable compounds, (ii) 540 

preferential compounds degradation, (iii) hydrolysis, (iv) prevalence of recalcitrant 541 

compounds, (iv) compounds contribution from other fractions are possible hypothesis 542 

that contribute to the explanation of the resulting prediction. Therefore, this is the first 543 

approach to understand how OM quality varies with AD based on accessibility and 544 
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complexity for a wide range of feedstock. The addition of the T and the HRT as X-545 

variables to predict OM quality and accessibility confirmed that the operational 546 

conditions were not informative enough for the studied dataset. To properly evaluate the 547 

impact of the operational conditions on the prediction of digestate quality, the digestion 548 

of the same substrate subjected to different T or HRT should be conceived in future 549 

investigations. 550 

3.3.2. Coupling digestate quality prediction with PLS model for carbon 551 

biodegradability in soil prediction 552 

To validate the digestate quality PLS model found, the PLS model for C 553 

biodegradability in soil was applied on the digestate quality predicted by Model n°5. 554 

Among all the samples that were used for the digestate quality model, 14 samples were 555 

incubated in soil and biodegradable carbon (C_bio) was obtained after 91 days (Table 556 

2).  557 

First, the PLS model for C biodegradability in soil was tested. A comparison between 558 

the 14 predicted values of proportion of biodegradable C in the digestates and 559 

experimental data obtained through soil incubation was plotted in Figure 4a. Results 560 

have shown that the PLS model for C biodegradability in soil was successfully able to 561 

predict the biodegradable organic C of the 14 digestates (R2 = 0.739) with low bias. 562 

Then, Model n°5 was combined with the PLS model for C biodegradability in soil to 563 

predict C_bio. Figure 4b shows that the C_bio prediction was not altered by the models’ 564 

combination. Indeed, the combined models were able to predict the experimental data 565 

(R2 = 0.697) with a similar bias as in Jimenez et al. (2017). The 5 validation samples 566 

that were used for Model n°5 were plotted in black in Figure 4a and b. Prediction error 567 

of C_bio obtained by the combined models ranged between 1% and 7%, with R2 = 568 
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0.828, which represents a high quality of prediction. Therefore, the reproducibility of 569 

the model was confirmed. Moreover, the model validation was performed with external 570 

data not included in the dataset used for model calibration. Finally, the 28 pair samples 571 

were used to compare both models’ predictions as presented in Figure 4c. Results 572 

showed that C_bio prediction by the combined models is quite similar to C_bio 573 

prediction by Jimenez et al. (2017) (R2 = 0.894). 574 

Thus, Model nº5 provided an extra step on OM fate prediction from raw substrate to soil 575 

C mineralization to better understand AD influence on OM accessibility and complexity 576 

before land disposal. Additionally, the present study related multiple aspects of 577 

scientific interest such as waste characterization, anaerobic transformation processes of 578 

OM and soil C mineralization and supposes an innovative approach to enhance the 579 

modeling of the AD process chain. Nonetheless, future actions could be addressed to 580 

improve the models’ application when specific substrates are subjected to different AD 581 

operational conditions and soil typologies.  582 

 583 

4. Conclusions 584 

The prediction of digestate OM quality from their input was evaluated. PCA and HCA 585 

analysis have allowed to classify 28 substrate/digestate pairs covering a wide diversity 586 

of OM. This classification was based on the extracted fractions from the OM 587 

(accessibility) and their complexity assessed by fluorescence.  Substrates and their 588 

respective digestates were clustered together according to the feedstock type. 589 

Nonetheless, common trends on the conversions of OM quality were observed, 590 

indicating potential for the prediction of digestate quality of the entire dataset regardless 591 

of the feedstock type. Thus, this study proposed a digestate quality PLS model that 592 
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accurately predicted (Q² = 0.593) the digestates OM quality from the substrate OM 593 

characteristics. However, future investigations should be focused on subjecting the same 594 

substrate to different T or HRT to properly evaluate the impact of operational conditions 595 

on the prediction of digestate quality. The predicted digestate OM characteristics 596 

validated the prediction of their biodegradability in soils using the PLS model for C 597 

biodegradability in soil previously developed. This work performed the combination of 598 

both models. OM conversion during AD and soil C mineralization was precisely 599 

predicted using a rapid analysis indicator (biochemical fractionation and 3D 600 

fluorescence). Such combined models brought a major contribution in the modeling of 601 

the AD process chain favoring the development of decision-making tools to properly 602 

manage the digestates. 603 
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Table 1. Summary of the raw substrate/digestate pairs type, origin and digester 816 

operational conditions  817 

aType of feedstock: AIW: agroindustrial waste; BW: biowaste; CM: cow manure; CS: cow slurry; HM: horse manure; PS: pig 818 

slurry; PSluAI: primary sludge from agroindustry; S: slurry; Slu: Sludge. bDigestate type based on Guilayn et al. (2019): (1) Fibrous 819 

feedstock (2) Sewage sludge, Biowaste, food agroindustrial residues (FAI)  mono/co-digestion; (3) Organic fraction of municipal 820 

solid waste (OFMSW), Food waste (FW), FAI, PS mono/co-digestion; (4) Manure/other co-digestion; (5) OFMSW and BW 821 

mono/co-digestion; (6) Fibrous feedstock: Cattle manure, green waste, silage.  822 

 823 

 824 

 825 

 826 

 827 

 828 

 829 

 830 

 831 

 832 

 833 

 834 

 835 

 836 

 837 

 838 

Type of feedstocka 
Digestate 

typeb 

Number of  

substrate/digestate 

pairs 

Scale Origin T (ºC) HRT (d) 

Cow manure 4 5 Industrial Farms 35-41 56-75 
Cow manure mixtures:  2     
CM + Straw  1 Industrial Farms 35-37 56 
50% CM/S + 23% HM/S + 27% Slu  1 Industrial Farms 35-37 56 
Straw 1 1 Lab scale Farms - - 

Biowaste 2 1 Industrial 
Municipal solid 

waste plant 
55 21 

Biowaste mixtures:  1     

50% BW + 20% CS + 30% AIW 5 1 Industrial 
Municipal solid 

waste plant 
37 90 

Municipal Waste 5 4 Industrial 
Municipal solid 

waste plant 
55 20-28 

Pig Slurry 3 1 Industrial Farms 38 60 
Pig Slurry mixtures:  6     
45% PS + 40% PsluAI + 15% others 3 1 Lab scale Farms 38 60 
93% PS + 7% Cow Food 3 1 Lab scale Farms 38 24 
93% PS + 7% Horse Food 3 1 Lab scale Farms 38 24 
80% PS + 20% Maize Silage 1 1 Lab scale Farms 38 25 
62% PS + 38% CM 1 1 Lab scale Farms 38 24 
80% PS + 20% BW 3 1 Lab scale Farms 38 21 

Sludge 2 7 Industrial 
Wastewater 

treatment plant 
37 15-25 
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Table 2. Biodegradable carbon percentage after soil incubation of several studied 839 

digestates coming from Jimenez et al. (2017) data 840 

Digestate name C_bio (%C) 

Sludge2_D 39% 

Sludge7_D 31% 

CM3_D 15% 

MW1_D 25% 

MW3_D 32% 

MW4_D 19% 

MW5_D 27% 

PS +BW_D 46% 

PS + Cow Food_D 43% 

PS + Cow Manure_D 24% 

PS + Horse Food_D 35% 

PS + Maize Silage_D 44% 

BW_D 24% 

PS + PrimSluAI_D 31% 
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Table 3. Proportions of COD for each extracted fraction and fluorescence complexity 859 

index evolution after AD in the different groups. The results display the relative 860 

percentage of the increase or decrease as expressed in Tambone et al. (2013).  861 

Relative conversion ranges: +: 0 to 25%; ++: 25 to 50%; +++: 50 to 75%; ++++: 75 to 100%; -: 0 to -25%; --: -25 to -50%; ---: -50 862 

to -75%; ----: -75 to -100%. Relative percentage = (final value in the digestates - initial value in the substrates)/initial value in the 863 

substrates) × 100. N.A. = no presence of DOM for Group B (solid digestates) 864 

 865 

 866 

 867 

 868 

 869 

 870 

 871 

 872 

 873 

 874 

 875 

 876 

 877 

 878 

 879 

 880 

 881 

 882 

 883 

 884 

 885 

 886 

Accessibility (% in COD)  Fluorescence complexity index (-) 

Group DOM SPOM REOM SEOM PEOM NEOM  SPOM REOM SEOM PEOM 

A -- -- -- + ++ ++  ++++ ++ + ++ 

B N.A. -- - - - ++  ++ ++ 0 + 

C ++++ --- -- ++ -- +  -- - +++ - 

D -- -- -- - + ++  ++ ++ 0 +++ 
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Table 4. Quality parameters of the PLS models  887 

Model 

Variables  Model quality 

X Y 
Components 

number 
R²X R²Y Q² 

Model n°1 
DOM+SPOM; REOM; 

SEOM; PEOM 
DOM+SPOM; REOM; 

SEOM; PEOM 

 2 0.892 0.691 0.621 

Model n°2 
DOM+SPOM; REOM; 

SEOM; PEOM;T 
DOM+SPOM; REOM; 

SEOM; PEOM 

 3 0.919 0.763 0.681 

Model n°3 
DOM+SPOM; REOM; 
SEOM; PEOM;HRT 

DOM+SPOM; REOM; 
SEOM; PEOM 

 3 0.922 0.757 0.639 

Model n°4 
DOM+SPOM; REOM; 
SEOM; PEOM;HRT;T 

DOM+SPOM; REOM; 
SEOM; PEOM 

 4 0.938 0.775 0.587 

Model n°5 
DOM+SPOM; REOM; 

SEOM; PEOM;Pf_i 
DOM+SPOM; REOM; 

SEOM; PEOM;Pf_i 

 7 0.953 0.831 0.593 

Model n°6 
DOM+SPOM; REOM; 
SEOM; PEOM;Pf_i;T 

DOM+SPOM; REOM; 
SEOM; PEOM;Pf_i 

 7 0.950 0.832 0.588 

Model n°7 
DOM+SPOM; REOM; 

SEOM; PEOM;Pf_i; HRT 
DOM+SPOM; REOM; 

SEOM; PEOM;Pf_i 

 7 0.951 0.829 0.58 

Model n°8 
DOM+SPOM; REOM; 

SEOM; PEOM;Pf_i;T;HRT 
DOM+SPOM; REOM; 

SEOM; PEOM;Pf_i 

 7 0.949 0.830 0.576 
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907 

 908 

Figure 1. Scores plot (a) and loadings (b) obtained from the PCA analysis, and (c) HCA 909 

analysis for the 56 samples studied. PCA individuals are distinguished by shape and 910 

color according to the HCA revealed groups (A-D). Ellipses show 95% confidence 911 

intervals. Loadings intensity color (plot b) is related to the variables contribution, from 912 

low (1) to high (4). Groups: (A) pig slurry and slurry mixtures with primary sludge, 913 

agro-industrial waste or biowaste, (B) manure, fibers and municipal solid waste, (C) pig 914 

slurry mixtures with fiber or food wastes, and (D) sludge 915 
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 921 
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 922 

 923 

 924 

Figure 2. Accessibility (a) and fluorescence complexity index (b) boxplots of substrates 925 

for the HCA revealed groups. Groups: (A) pig slurry and slurry mixtures with primary 926 

sludge, agro-industrial waste or biowaste, (B) manure, fibers and municipal solid waste, 927 

(C) pig slurry mixtures with fiber or food wastes, and (D) sludge 928 
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 952 

Figure 3. Accessibility (a) and fluorescence complexity index (b) boxplots of digestates 953 

for the HCA revealed groups. Groups: (A) pig slurry and slurry mixtures with primary 954 

sludge, agro-industrial waste or biowaste, (B) manure, fibers and municipal solid waste, 955 

(C) pig slurry mixtures with fiber or food wastes, and (D) sludge 956 
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971 

 972 

Figure 4. Validation of model PLS: comparison between experimental data from 973 

biodegradable organic carbon tests on soil with PLS model for C biodegradability in 974 

soil (a) and combined models (b); and comparison between combined models and PLS 975 

model for C biodegradability in soil (c) 976 
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