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Abstract

This paper proposes an estimation strategy that exploits recent non-parametric panel data 
methods that allow for a multifactor error structure and extends a recently proposed data-

driven model-selection procedure, which has its roots in cross validation and aims to test 
whether two competing approximate models are equivalent in terms of their expected true 
error. We extend this procedure to a large panel data framework by using moving block 
bootstrap resampling techniques in order to preserve cross-sectional dependence in the boot-

strapped samples. Such an estimation strategy is illustrated by revisiting an analysis of inter-

national technology diffusion. Model selection procedures clearly conclude in the superiority of 
a fully non-parametric (non-additive) specification over parametric and even semi-parametric 
(additive) specifications. This work also refines previous results by showing threshold effects, 
non-linearities, and interactions that are obscured in parametric specifications and which have 
relevant implications for policy.
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1 Introduction

With the development of endogenous growth theory since the nineties, there has been an increasing

interest in estimating the effect of research and development (R&D) on growth and productivity

(Jones, 1995). At present, however, as also stressed by Keller (2004), while only a few rich countries

account for most of the world’s creation of new technology, for most countries foreign technology

accounts for a large portion of domestic productivity. Studying international technology diffusion,

which can be defined as the process by which innovation spreads within and across economies (Stone-

man, 1985; Karshenas and Stoneman, 1995), and estimating its impact on domestic productivity

are consequently of crucial relevance.

A pioneering empirical work by Coe and Helpman (1995), revisited by Coe et al. (2009)—

henceforth CH and CHH, respectively—builds on innovation-driven endogenous growth models

(Helpman, 1992) and relates total factor productivity (TFP) not solely to domestic R&D but also to

foreign R&D and, assuming that technology spills over across countries through the channel of trade

flows, constructs foreign R&D capital stock as the import-share-weighted average of the domestic

R&D capital stocks of the trading partners. Subsequent studies consider other factors as channels of

international spillover, such as foreign direct investment, bilateral technological proximity, patent

citations between countries, language skills, or geographic proximity (Keller, 2002; Potterie and

Lichtenberg, 2001; Lee, 2006).

As for econometric estimation and testing, the most relevant issues raised by the literature are

those of heterogeneous slope parameters and the non-stationarity of variables (Coe et al., 2009),

and more recently, the existence of cross-country dependence arising from the interactions among

economic units or from the presence of latent common factors (Ertur and Musolesi, 2017).

To the best of our knowledge, however, the existing literature has adopted parametric specifica-

tions and does not provide any attempt to check the ability of the CH/HH specification to correctly

approximate the underlying data generating process (DGP) or test whether other specifications

may be more suitable, whereas the likely complex relation between research activity and economic

performance is often recognized in the closely related literature on the economics of innovation

(Griliches, 1998; Hall et al., 2010; Charlot et al., 2014).

This paper aims to contribute to the existing literature by proposing an estimation strategy based

on forecasting-driven model selection that exploits recent non-parametric panel data methods and

extends existing data-driven model-selection procedures to the case of cross-sectionally dependent

panels.

First, we adopt a non-parametric approach to avoid the possible functional form bias that may

arise when estimating the standard parametric model. Our econometric approach builds on the

non-parametric model by Su and Jin (2012) Pesaran (2006). Following Su and Jin (2012), the

non-parametric component is estimated using splines. Specifically, we adopt penalized regression

splines as they combine the features of regression splines and smoothing splines and have proven

to be empirically useful in many respects (Ruppert et al., 2003), with their asymptotic properties

having been studied in depth in recent years (see, for example, Li and Ruppert, 2008).

Second, because of the high degree of uncertainty surrounding the data generating process (DGP)
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(Ma et al., 2015; Racine and Parmeter, 2014; de Almeida et al., 2018), we perform model selection

by comparing the forecasting performance of some alternative models. Specifically, we compare the

forecasting performance of a fully non-parametric specification of the relationship between TFP

and domestic R&D, foreign R&D, and human capital with those of two competing specifications:

a usual log-log parametric one and a non-parametric additive one.

To do so, we build on a method recently proposed by Racine and Parmeter (2014) that is based

on a pseudo-Monte Carlo experiment and has its roots in cross-validation. When performing model

selection, it is typically assumed that there exists a finite-dimensional “true model”. In contrast, in

Racine and Parmeter (2014) fitted econometric models are viewed as approximations, as suggested

by Hansen (2005). The goal is then to test whether, when fitted to the same data, one approximate

model performs better than another in predicting new data drawn from the same data-generating

process. In such a framework, it is common to adopt a sample-splitting mechanism whereby one

splits the full sample into two sub-samples, where one sub-sample is used for estimation and the

other for out-of-sample evaluation. To avoid that the results reflect a particular division of the

data into two sub-samples, the main idea of Racine and Parmeter (2014) is to repeat this pro-

cess a large number of times using bootstrapping techniques, because this can provide significant

power improvements over existing single-split techniques. Drawing from a recent literature focus-

ing on cross-sectional dependence in panels and on factor models (Gonçalves, 2011; Palm et al.,

2011; Smeekes and Westerlund, 2019), we extend the data-driven model-choice method proposed

by Racine and Parmeter (2014) by considering a moving block bootstrap resampling scheme and

assessing performance using the accuracy of forecasts at various time horizons.

The econometric analysis is conducted using new annual country-level data for 24 OECD coun-

tries from 1971 to 2014, which extends the time coverage of the data used by CHH and Ertur and

Musolesi (2017). Results clearly point to the superiority of a fully non-parametric specification of

the relationship between TFP and domestic R&D capital, foreign R&D, and human capital, over

parametric and even semi-parametric specifications. The non-parametric specification allows for a

richer view of the resulting spillover effects, showing non-linear effects and thresholds not previously

detected in the literature and ultimately suggesting the presence of (non-linear) interactive spillover

effects (non-linearly) increases with the amount of foreign R&D. These effects are illustrated by a

detailed comparison of the results obtained with those presented in the literature or obtained by

the estimation of usual parametric models.

The paper is organized as follows. Section 2 provides a short literature review focusing on

the various channels of technology diffusion and the main econometric issues, highlighting existing

research gaps. Section 3 focuses on the econometric methodology, and more specifically on the

issues of model specification and estimation. The forecasting-driven model-selection procedure

is presented in Section 4. Section 5 describes the data. The out-of-sample comparison of the

alternative specifications, as well as the estimation results, are presented in Section 6. Finally,

Section 7 concludes, and additional information is provided in the appendices.
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2 A critical review of empirical findings and econometric

issues

Beyond its plausibility with respect to endogenous growth theory (see, for example, Keller, 2004,

p. 762), the influence of the CH/CHH model was due to its versatility in allowing for both the

consideration of alternative channels of international technology diffusion and the utilization of

modern, large panel data econometric methods. In this section, we first briefly review these two

areas of the literature and finally highlight the research gaps that this paper tries to address.

2.1 The uncertain effect of international technological spillovers

As noted by Potterie and Lichtenberg (2001, p. 490), “International technological spillovers have

no widely accepted measures”. According to Keller (2004), the main channels of international

technology diffusion are trade, foreign direct investment (FDI), and language skills. For instance,

CHH and Lichtenberg and van Pottelsberghe de la Potterie (1998) use alternative definitions of

weights based on imports. Potterie and Lichtenberg (2001) focus on FDI, and Musolesi (2007)

adopts a weighting scheme that takes language skills into account. Keller (2002) and Ertur and

Musolesi (2017) use geographic proximity, while Spolaore and Wacziarg (2009) suggest genetic

distance as a barrier to the diffusion of development.

Most previous studies focus on rent spillovers, which are spillovers that originate solely from

economic transactions such as trade and FD, while analyses of technology diffusion originating

from knowledge spillovers that are not necessarily embodied in specific economic transactions are

rarer (see, for example, Griliches (1979) for a discussion of rent and knowledge spillovers).

As for rent spillovers, the body of literature focusing on trade reports results that are character-

ized by a high degree of instability of the estimated output elasticity with respect to foreign R&D

(see Table A1 of Appendix A), as the estimated elasticity ranges from being non-significant in some

cases (Kao et al., 1999; Lee, 2006) to high in magnitude, with some estimates of about 0.2–0.3

(Engelbrecht, 1997; Barrio-Castro et al., 2002; Coe et al., 2009). As Fracasso and Marzetti (2013)

note, analyses of spillovers generated by FDI also present conflicting results. For instance, Potterie

and Lichtenberg (2001) report that outward FDI flows are conducive to international knowledge

spillovers while inward FDI flows do not have a significant effect. This result has been questioned

by subsequent papers that obtained the opposite finding (Lee, 2006; Bitzer and Kerekes, 2008).

As for knowledge spillovers that are not necessarily embodied in specific economic transactions,

Lee (2006) finds that disembodied channels such as bilateral technological proximity and patent

citations between countries have a significant and quite substantial effect in the range of 0.15–0.18.

This result is broadly the same as that obtained by Musolesi (2007), who focuses on knowledge

spillovers incorporated into language skills.

The empirical literature has often allowed the impact of foreign R&D to differ between G7 and

other countries. According to the pioneering CH/CHH studies, the effect of trade-related foreign

R&D on TFP is much higher for non-G7 than for G7 countries. The same result can be found in

Bitzer and Kerekes (2008), who find that non-G7 countries benefit more from inward FDI than G7
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countries. In contrast, Potterie and Lichtenberg (2001) find the opposite result for outward FDI.

Ertur and Musolesi (2017) find that richer countries benefit more from geographic spillovers, which

are not necessarily embodied in specific economic transactions, than poorer countries, while smaller

countries benefit more from rent spillovers originating from trade.

Overall, the literature does not seem to provide robust evidence regarding the magnitude of

spillovers on TFP. Moreover, a high variability in the estimates seems to be present i) irrespective

of whether spillovers are supposed to originate solely from economic transactions such as trade and

FDI or they are knowledge spillovers not necessarily embodied in specific economic transactions,

and ii) also when researchers have allowed the effect of foreign R&D to vary between G7 and non-

G7 countries. This ultimately suggests that a functional misspecification bias could be present in

standard parametric CH/CHH specifications.

2.2 Econometric issues

As far as econometric estimation and testing are concerned, the most relevant issues raised by

the existing literature are i) heterogeneous slope parameters; ii) integration-cointegration; and iii)

cross-sectional dependence.

Heterogeneous slope parameters. The homogeneity of the slope parameters implicit in the

use of a pooled version of the CH/CHH specification (see Eq.(1) below) has been questioned from

both an econometric and an economic perspective. Econometrically speaking, when the DGP is

characterized by heterogeneous slopes, fixed effects estimators yield consistent estimates of the mean

coefficients only when the number of cross-sectional units approaches infinity. From an economic

standpoint, and closely related to the present topic, a theoretical justification for heterogeneous

slope parameters across countries can be found in the “new growth” literature, which argues that

technology differs across countries (Brock and Durlauf, 2001; Durlauf et al., 2001). Concerning

international technology diffusion in particular, some studies have challenged the assumption of a

common technology by arguing that technologies are specific to particular combinations of inputs

(Basu and Weil, 1998). While some previous econometric studies have introduced a certain degree

of heterogeneity by allowing the impact of the explanatory variables to differ between G7 countries

and others (see, for example, Potterie and Lichtenberg, 2001, p. 762), other studies have instead

adopted methods allowing for heterogeneous slopes, such as the mean group estimator (Pesaran

and Smith, 1995). Although approaches allowing for slope-specific parameters are conceptually

appealing, they may face the problem of parameter estimate instability, caused by the estimation

of several parameters with relatively short time series (Baltagi et al., 2002, 2004). In particular,

the mean group estimator has asymptotic justification only for T → ∞ and generally suffers from

the problem of parameter estimate instability, which can in turn produce non-significant estimates.

Moreover, pooled and fully heterogeneous estimators have relative advantages and disadvantages,

as “the truth probably lies somewhere in between. The parameters are not exactly the same, but

there is some similarity between them” (Maddala et al., 1997, p. 91). For this reason, some previous

studies have applied the shrinkage estimators described in Maddala et al. (1997) and the hierarchical
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Bayes approach (Hsiao et al., 1998). The former can be viewed as a compromise between the

unrealistic homogeneity assumption and unstable heterogeneous estimates, while the latter makes

use of Markov chain Monte Carlo methods via Gibbs sampling. According to Hsiao et al. (1998),

this estimator is asymptotically equivalent to the mean group estimator but performs better for

small samples.

Integration–cointegration. The large time dimension of macro panel data makes extremely

relevant the adoption of time-series procedures applied to panel data to deal with non-stationarity,

spurious regression, and cointegration. In this respect, some of the previous works find evidence

of non-stationary variables by applying first-generation tests (Coe et al., 2009), and after having

checked for the existence of a valid cointegration relation, they applied estimation methods for

cointegrated regression models in panel data, such as the dynamic OLS estimator proposed by Kao

and Chiang (2001). Recently, Ertur and Musolesi (2017) provided a more nuanced and thorough

picture by adopting second-generation tests decomposing the panel into deterministic, common, and

idiosyncratic components (Bai and Ng, 2004), suggesting that while the unobserved idiosyncratic

component of the variables under study is stationary, the unobserved common-factors component

is non-stationary.

Cross-sectional dependence. In the last decade, with the increasing process of globalization

and the growing importance of economic and social interconnections across economic agents, the

issue of cross-sectional dependence (CSD) in panel data models has become of crucial relevance from

both a theoretical and an empirical point of view. CSD has been typically introduced as a result of a

finite number of unobservable (and/or observed) common factors or by the consideration of spatial

models. Ertur and Musolesi (2017) focus on the detection of CSD and then on the estimation under

CSD. They first find evidence of strong cross-sectional dependence in the data and then estimate

the model by using the common correlated effects (CCE) approach as it remains valid in a variety

of situations that are likely to occur, such as the presence of both forms of dependence (Pesaran

and Tosetti, 2011) or the existence of non-stationary factors (Kapetanios et al., 2011), and it also

allows for the estimation of both pooled and heterogeneous specifications.

2.3 Research gaps

In summary, the existing literature has adopted alternative measures of international technological

spillover and has focused on various methodological issues, such as allowing for heterogeneous

slopes, addressing non-stationary variables, and handling cross-sectional dependence. Although

the likely complex relation between research activity and economic performance—pointed out in

the related literature on the economics of innovation—and the high degree of instability of the

estimated output elasticity with respect to foreign R&D suggest that the traditional CH/CHH

parametric specification may suffer from a functional misspecification bias, previous works did not

check the ability of this specification to correctly approximate the underlying DGP or test whether

more flexible specifications may be more suitable. This is the main purpose of the present work.
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3 Model specifications and their estimation

3.1 The classical parametric specification

Specification The standard parametric specification à la CH/CHH can be expressed as

log fit = αi + θ logSd
it + γ logSf

it + δ logHit + eit, (1)

where fit is the TFP of country i = 1, ..., N at time t = 1, ..., T ; αi are individual fixed effects;

Sd
it and Sf

it are domestic and foreign R&D capital stocks, respectively; Hit is a measure of human

capital; and eit is the error term. Foreign capital stock Sf
it is defined as the weighted arithmetic

mean of Sd
jt for j 6= i, that is,

Sf
it =

∑
j 6=i

ωijS
d
jt, (2)

where ωij represents the weighting scheme.

The model in Eq. (1) can be written as a special case of the heterogeneous panel data model,

yit = α′idt + β
′

ixit + eit, (3)

with yit = log fit. αi is a constant term as dt = dt = 1, xit = [logSd
it, logSf

it, logHit]
′ and βi = β =

[θ, γ, δ]′.

In the general specification (3), it is usually assumed that βi = β + µi, where the deviations,

µi, are independently and identically distributed with mean 0. Moreover, these deviations are

distributed independently of ejt, dt, and xjt for all i, j, and t. In this general specification, dt

denotes a l× 1 vector of observed common effects (including deterministic terms such as intercepts

and seasonal dummies), and αi is the associated vector of parameters.

CCE estimators Panel data literature dealing with models like (3) with both N and T being

large has shown that ignoring cross-sectional dependence can seriously impair the properties of

usual panel data estimators (Andrews, 2005; Phillips and Sul, 2007; Sarafidis and Wansbeek, 2012).

Cross-sectional dependence can be due to unobserved common factors such as economy-wide shocks

(for instance, an oil price increase) that affect all countries, albeit with different intensity. The errors

eit are then assumed to have the following common factor structure:

eit = γ
′

ift + εit, (4)

in which ft is an m× 1 vector of unobserved common factors with associated country-specific factor

loadings γi. The number of factors, m, is assumed to be fixed relative to the number of countries

N and, in particular, m << N . These factors ft are supposed to have a widespread effect, as they

heterogeneously affect every country in the sample. εit is an idiosyncratic error term. Pesaran

(2006) considers the case of i.i.d errors, while Pesaran and Tosetti (2011) focus on the more general

case of a multifactor error structure and spatial error correlation. Combining (3) and (4), we obtain

the following:

yit = α
′

idt + β
′

ixit + γ
′

ift + εit. (5)
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This model cannot be estimated using traditional panel data estimators due to the unobservability

of common factors ft. Pesaran (2006) suggests the common correlated effects (CCE) estimation

procedure to deal with this issue. CCE consists of approximating the linear combination of the

unobserved factors by cross-sectional averages of the dependent and explanatory variables and then

running standard panel regressions augmented with these cross-sectional averages.

The CCE estimator can be motivated as follows. The idiosyncratic errors εit in Eq. (4) are

assumed to be independently distributed over (dt,xit) , whereas the unobserved factors ft can be

correlated with the observed variables (dt,xit). This correlation is allowed by modeling the explana-

tory variables as linear functions of the observed common factors dt and the unobserved common

factors ft:

xit = A′idt + Γ′ift + vit, (6)

where Ai and Γi are l × 3 and m × 3 factor-loading matrices and vit = (vi1t, vi2t, vi3t)
′. vit is

assumed to be distributed independently of εit and is allowed to be serially correlated as well as

weakly cross-sectionally correlated.

Combining Eqs. (5) and (6), we get the following system of equations:

zit =

(
yit
xit

)
= B′idt + C′ift + ξit, (7)

where

Bi = (αi Ai)

(
1 0

βi I3

)
,Ci = (γi Γi)

(
1 0

βi I3

)
, and ξit =

(
εit + β

′
ivit

vit

)
.

Using sample cross-sectional averages, Eq. (7) can be written as

zt = B
′
dt + C

′
ft + ξt, (8)

where

zt =
1

N

N∑
i=1

zit, B =
1

N

N∑
i=1

Bi, C =
1

N

N∑
i=1

Ci, and ξt =
1

N

N∑
i=1

ξit.

Following Pesaran (2006), we can pre-multiply both sides of Eq. (8) by C and solve for ft. We get

ft =
(
C C

′
)−1

C
′
(
zt −B

′
dt − ξt

)
. (9)

It is possible to show that ξt converges to 0 in quadratic mean as N →∞ (Pesaran and Tosetti,

2011). Accordingly, it can be shown that

ft −
(
C C

′
)−1

C
′
(
zt −B

′
dt

) q.m.−→ 0, as N → 0, (10)

or put differently, the unobservable common factors, ft, can be well approximated by a linear

combination of observed common factors, dt, the cross-sectional averages of the dependent variable,

yt, and those of the country-specific regressors, xt. Two alternative estimators have been proposed in
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the literature: the CCE mean group (CCEMG) estimator and the CCE pooled (CCEP) estimator.

It has been shown that CCE estimators yield consistent estimates in a large variety of situations

(Chudik et al., 2011; Kapetanios et al., 2011; Pesaran and Tosetti, 2011). Moreover, small-sample

properties of CCE estimators have also been investigated in various papers (see, among others,

Chudik et al., 2011; Kapetanios et al., 2011; Westerlund and Urbain, 2015). More specifically, these

papers compare the small-sample properties of CCE estimators to their competitors, i.e., estimators

based on principal components (PCs) (Bai, 2009), and show that although the PC estimates of

factors are more efficient than the cross-sectional averages, the CEE estimators of slope coefficients

generally perform the best. To conclude, a significant advantage of CCE estimators is that they do

not require a priori knowledge about the number of unobserved common factors.

3.2 Alternative non-parametric specifications

Specifications Recently, Su and Jin (2012) considered a panel data model that extends the mul-

tifactor linear specification proposed by Pesaran (2006). Specifically, Su and Jin (2012) considered

the following panel data model that allows for a non-parametric relation between the dependent

variable and the regressors, while the common factors enter the model in a parametric way:

yit = α
′

idt + gi (xit) + γ
′

ift + εit, (11)

where gi(.) are unknown smooth continuous functions (heterogeneous case). In the homogeneous

case, gi(.) = g(.) for all i = 1, 2, . . . , N . For identification purposes, the following condition is

necessary:

E(gi (xit)) = 0.

In the empirical framework, we consider two alternative specifications where xit enter the model

non-parametrically. Because of the relatively short time dimension, we restrict our analysis to the

homogeneous case where gi(.) = g(.) (see Su and Jin, 2012, p. 41) and propose two alternative

specifications. The first specification assumes an additive structure of g(.), as follows:

log fit = αi + φ(logSd
it) + ξ(logSf

it) + ψ(logHit) + γ
′

ift + εit, (12)

where φ(.), ξ(.), and ψ(.) are unknown univariate smooth continuous functions of interest.

The second specification instead assumes a non-additive structure of g(.), i.e.,

log fit = αi + g(logSd
it, logSf

it, logHit) + γ
′

ift + εit. (13)

Relaxing additivity may involve the curse of dimensionality but, at the same time, may allow

detecting relevant interaction effects, which are not allowed in the additive specification.

Sieve approximation Su and Jin (2012) extend the CCE approach to the estimation of a het-

erogeneous panel data model (11). First, following Pesaran (2006) they proxy the unobservable

common factors ft in (11) by the cross-sectional averages zt = N−1
∑N

j=1 zjt, where zit = [yit,x
′
it]

′
.

Second, they approximate the non-parametric part of the model, gi (.), using sieve approximation.

9



Sieve approximation proceeds as follows. First, we must choose an infinite sequence of known

basis functions, which we denote by {πl(x), l = 1, 2, . . .} and that can approximate any square-

integrable function of x very well. Different choices are possible, including spline approximation

(see below). Second, the order of approximation must be defined. Let K denote this order, which

is a function of T when estimating the heterogeneous model with gi (.), or of N and T when

estimating the homogeneous model with g (.). This integer number will tend to infinity as N →∞
(heterogeneous case) or (N, T ) → ∞ (homogeneous case). Third, under fairly weak conditions we

can approximate the unknown function very well by a linear combination of the K first elements of

the chosen basis, or πK(x) = (π1(x), π2(x), . . . , πK(x))
′
, i.e.,

gi (.) ≈ δgi
′πK(x) (heterogeneous case) or g (.) ≈ δg

′πK(x) (homogeneous case). (14)

Finally, to estimate δgi , we run the following regression:

yit = α
′

idt + δgi
′πK(x) + ψ

′

izt + uit, (15)

To estimate δg, the regression is

yit = α
′

idt + δg
′πK(x) + ψ

′

izt + uit. (16)

Su and Jin (2012) show that the extended CCE estimators of both the heterogeneous and

homogeneous regression functions are consistent as N and T tend to infinity and establish the

asymptotic normality of these estimators.

Thin plate regression splines Su and Jin (2012) estimate the non-parametric component of

the model using Sieves—specifically, splines—as they typically provide better approximations (see,

for example, Hansen, 2014). Following Su and Jin (2012), we adopt a regression splines (RS)

framework. We also employ penalized regression splines (PRS) as they combine the features of

both regression splines, which use fewer knots than data points but do not penalize roughness, and

smoothing splines, which control the smoothness of the fit through a penalty term but use all data

points as knots. PRS have proven to be useful empirically in many respects (see, for example,

Ruppert et al., 2003), and in recent years their asymptotic properties have been studied and then

connected to those of regression splines, to those of smoothing splines, and to the Nadaraya–Watson

kernel estimators (Li and Ruppert, 2008; Claeskens et al., 2009).

In this work, for both RS and PRS we use thin plate regression splines (TPRS), which were

introduced by Wood (2003). TPRS are a low-rank eigen approximation to thin plate splines. Thin

plate splines are somehow ideal smoothers (see Wood, 2017) but are not computationally attractive

because they require the estimation of as many parameters as the number of data points. TPRS

avoid the problem of knot placement that usually complicates modeling with RS or PRS, and more

generally, they have some optimality properties as they provide optimal low-rank approximations to

thin plate splines, while also being computationally efficient (see Wood, 2003). Since our explanatory

variables have different units, in the case of the non-additive specification (13) we avoid isotropy

by considering a tensor product basis, which is constructed by assigning TPRS as the basis for the
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marginal smooth function of each covariate, and then creating their Kronecker product. The tensor

product smooths are invariant to the linear rescaling of covariates, and for this reason they are

appropriate when the arguments of a smooth function have different units (Wood, 2006). Finally,

note that in the PRS framework the smoothing parameter is selected by the restricted maximum

likelihood (REML) estimation, which is less likely to develop multiple minima or to undersmooth

at finite sample sizes, compared to other approaches (see, for example, Reiss and Todd Ogden,

2009). Since TPRS have been developed and mostly adopted in statistical science, a more detailed

description of them is provided in Appendix C.

4 Forecasting-driven model-selection procedure

To compare the alternative specifications, we perform a pseudo-Monte Carlo experiment. In the

case of independent and identically distributed data, Racine and Parmeter (2014) propose a method

linked to cross-validation (CV), in the original formulation of which a regression model fitted on a

randomly selected first half of the data was used to predict the second half. The division into equal

halves is not necessary. For instance, a common variant is the leave-one-out CV, which fits the

model to the data excluding one observation each time and then predicts the remaining point. The

average of the prediction errors is the CV measure of the true error. In the approach by Racine and

Parmeter (2014), the observations are randomly shuffled at a given percentage level into training

points and into evaluation points. Each model is then fitted according to the training sample,

and the average out-of-sample squared prediction error (ASPE) is computed using the evaluation

sample. The above steps are repeated a large number of times S, so that a S×1 vector of prediction

errors is created for each model.1 As highlighted in Racine and Parmeter (2014), the method can

provide significant power improvements over existing single-split techniques.

In the context of time series, the performance of a model is usually assessed on its ability to

forecast new observations over a given time horizon, and resampling methods are then used to eval-

uate forecasting performance. Racine and Parmeter (2014) extend their method to time-series data

using recent advances in time-series resampling methodology based on block bootstrapping, which

was introduced by Carlstein (1986) and developed by Künsch (1989).2 The main idea underlying

block resampling is that individual blocks of observations that are separated far enough in time will

be approximately uncorrelated and can be treated as exchangeable. Suppose that the time series

has length T = b× l. We can generate b non-overlapping blocks, each of length l. Moreover, if the

blocks are sufficiently long each block preserves in the resampled series the dependence present in

the original data sequence. The resampling or bootstrap scheme used here, named non-overlapping

block bootstrap, is to resample with replacement from the set of b blocks. Moving block bootstrap

(MBB) generalizes this scheme by allowing the blocks to overlap (Künsch, 1989). Resampling now

involves more blocks: a total of T − l + 1 overlapping blocks.

1See also Baltagi et al. (2003), who contrast the out-of-sample forecast performance of alternative parametric

panel data estimators.
2Applications of the various types of block bootstrap methods for time series and other models of dependent data

(including spatial data) are extensively presented in Lahiri (2003).

11



Although Racine and Parmeter (2014) do not provide any extension of their method to panel

data, for which the random resampling originally proposed for cross-sections has been employed by

Ma et al. (2015) and Delgado et al. (2014), they provide enough insights as to the generalization of

their method to this type of data. Indeed, block bootstrapping approaches, and more specifically

MBB, have been recently generalized to panel data, especially when cross-sectional dependence

is present, eventually arising from a multifactor error structure. For instance, Gonçalves (2011)

proposed panel MBB, i.e., standard MBB applied to the vector containing all of the individual

observations at each point in time (see Appendix D for a complete description). She proved that

panel MBB is robust to both serial and cross-sectional dependence of unknown form when applied

to the fixed effects estimator. The same year, Palm et al. (2011) presented panel unit root tests

that can deal not only with common factors but also with a wide range of other plausible dynamic

dependencies. They use MBB to achieve this goal. Recently, Smeekes and Westerlund (2019)

extended the work of Palm et al. (2011) to panel predictability tests, also making use of block

bootstrapping.

Drawing from the abovementioned literature, we extend the data-driven model-choice method

proposed by Racine and Parmeter (2014). As measures of model forecasting performance, we focus

our attention on both the average square prediction error (ASPE), which was adopted by Racine and

Parmeter (2014), and the mean absolute percentage error (MAPE), which is often recommended for

forecasting exercises (see, for example, Bowerman et al., 2005, p. 18, and Hyndman and Koehler,

2006) and has the interesting property of being scale-independent. These two measures are defined

as

ASPE =
1

N

N∑
i=1

F∑
f=1

(yif − ŷif )2 , (17)

MAPE =
1

N

N∑
i=1

F∑
f=1

100× |yif − ŷif |
yit

, (18)

where F is the forecast horizon. Our forecasting-data-driven model-selection procedure then works

as follows:

1. Apply MBB to resample from original panel data zit = (yit,x
′
it)
′, i = 1, . . . , n, and t = 1, . . . , T ,

and call these z∗it = (y∗it,x
∗′
it )
′, i = 1, . . . , n, and t = 1, . . . , T .

2. Let the first T1 years for the n countries form a training sample, i.e., z∗it, i = 1, . . . , n, and

t = 1, . . . , T1, and let the remaining observations, or z∗it, i = 1, . . . , n, and t = T1 + 1, . . . , T ,

form an evaluation sample.

3. Consider two competing models A and B. Fit each model to the n×T1 training observations.

Let ĝAT1
(.) and ĝBT1

(.) denote the estimated models.

4. Generate predictions for evaluation observations, or ĝAT1
(x∗it) and ĝBT1

(x∗it), i = 1, . . . , n, and

t = T1 + 1, . . . , T . The generation of predictions requires knowledge of factor values, i.e., ft,

t = T1+1, . . . , T . These values are easily obtained using their approximation by cross-sectional

averages (see Eq.(10)).
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5. Compute the ASPE and MAPE of each model, i.e.,

ASPEL =
1

n× T1

n∑
i=1

T∑
t=T1+1

(y∗it − ĝLT1
(x∗it))

2, L = A,B, and

MAPEL =
1

n× T1

n∑
i=1

T∑
t=T1+1

100× |y∗it − ĝLT1
(x∗it)|

y∗it
, L = A,B.

6. Repeat this a large number of times, say S times, yielding (ASPEA
s , ASPE

B
s ), s = 1, . . . , S,

and (MAPEA
s ,MAPEB

s ), s = 1, . . . , S.

7. Compare the predictive performance of the two models using their respective ASPE or MAPE

empirical distribution functions. For instance, comparison can be achieved using paired-t or

dominance tests.

Appendix D explains how MBB can be applied to panel data, while Appendix E provides further

insights about the validity of the proposed forecasting-driven model-selection procedure by reporting

a small simulation study.

5 Data

We build a new annual country-level balanced panel dataset covering 24 OECD countries from

1971 to 2014. This dataset is an updated version of the data used by CHH and Ertur and Musolesi

(2017), which covers the 1971–2004 period. Consequently, our updated dataset covers a more recent

period, which is particularly interesting due to the increasing process of globalization and the likely

increase in the interconnections across economies over time. As for the dependent variable (fit), we

use TFP at constant prices from Penn World Table version 9.0 (Feenstra et al., 2015). As for the

explanatory variables, to build the domestic R&D stock (Sd
it) we consider business expenditure on

research and development (BERD) flow values, collected from the OECD-STATS database, using

total data as source of funds. Missing values are filled, and then the BERD stock is calculated using

the perpetual inventory method, assuming the depreciation rate to be 0.05. In taking these steps,

we follow CH and CHH. For the human capital variable (Hd
it), we build a stock measure using the

same method as Ertur and Musolesi (2017), which is grounded on earlier works on the return to

schooling, and then assume a log-(piecewise)linear relationship between H and the average number

of years of schooling, which were obtained from Barro and Lee (2013). Note that for the last three

years of our sample, which are not covered by Barro and Lee (2013), we fill the missing values by

linear extrapolation.

Finally, as far as foreign R&D is concerned, we focus on geographic proximity as a channel for

technology diffusion. This choice was made not only because it is theoretically consistent (Eaton and

Kortum, 2002; Keller, 2002) but mainly because traditional channels of international technology

diffusion, such as trade, FDI, or patent activity, might create reverse causality problems when

included in econometric specifications as they may depend on the country’s technological level and,
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in turn, may be endogenous with respect to TFP (Hong and Sun, 2011). In contrast, geographic

distance is generally considered as exogenous (Keller, 2004, p. 772) and may also proxy some

endogenous measures of socioeconomic, institutional, cultural, or linguistic similarity that might

enhance the diffusion of technology. Following Keller (2002) and Ertur and Musolesi (2017), we

propose a specification of foreign R&D that incorporates the notion that the impact of foreign R&D

is a decreasing function of geographic distance from foreign economies. Therefore, the foreign R&D

capital stock for each country i is obtained by weighting the domestic R&D capital stocks of every

other country j 6= i in the sample using an exponential distance decay function, ωij = exp(−dij),
with dij being the spherical distance between the capitals of countries. Therefore,

Sf
it =

∑
j 6=i

exp(−dij)Sd
jt. (19)

It is also interesting to note that a possible alternative approach that has never been investigated

within this literature involves calculating a multidimensional distance by adopting the Mahalanobis

method, as proposed by Berry et al. (2010). This method allows summarizing many dimensions

and is preferable to other approaches when the alternative measures of cross-national distance are

highly correlated, as is often the case. This may provide further interesting insights. However, in

this methodological paper, which aims to compare alternative specifications, geographic distance is

preferred in light of exogeneity reasons.

Some descriptive statistics are provided in Table 1. One piece of relevant information provided

by this table is that both domestic and foreign R&D present between variation that is almost twice

the within variation, whereas for both TFP and human capital between and within variation are of

the same order of magnitude.

===== Insert Table 1 =====

In addition, Figure 1 depicts univariate and bivariate plots for a few representative countries:

USA, Germany, South Korea, Italy, Spain, and Sweden. The USA and Germany are the global

and European leaders, respectively, with respect to technology. South Korea has become one of

the most innovative countries in the world over the years, with a massive increase in R&D stock.

Italy and Spain are two Southern European countries suffering from under-investment in R&D, and

Sweden is a representative Nordic country. Figure 1 shows relevant non-linear and heterogeneous

dynamics across countries, which may be considered as a first descriptive indication that flexible

non-parametric models could be suitable in such a framework.

===== Insert Figure 1 =====

Appendix B provides some additional insights about the time series properties of the main

variables under investigation through application of the PANICCA test by Reese and Westerlund

(2016), which is a PANIC approach (Bai and Ng, 2004) based on cross-sectional averages aug-

mentation rather than on principal component estimation. Application of the test confirms the
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results of Ertur and Musolesi (2017) with an extended dataset and indicates that the variables are

non-stationary and that such non-stationarity arises as a result of the combination of a stationary

idiosyncratic component with non-stationary common factors.

6 Results

6.1 Model selection

Three empirical specifications are considered:3

log fit = αi + θ logSd
it + γ logSf

it + δ logHit + γ
′

ift + εit, (20)

log fit = αi + φ(logSd
it) + ξ(logSf

it) + ψ(logHit) + γ
′

ift + εit, and (21)

log fit = αi + g(logSd
it, logSf

it, logHit) + γ
′

ift + εit. (22)

Additive and non-additive specifications (21) and (22) are estimated using either regression splines

or penalized regression splines.

Traditional in-sample model-selection procedures The traditional approach to select be-

tween competing specifications is based on criteria measuring their goodness of fit to observed data,

or in other words, their in-sample prediction performances. In this respect, the selection method

can be defined in terms of an appropriate information criterion. Information criteria are based on

the idea of balancing fit with complexity (Konishi and Kitagawa, 2008).

When focusing on smooth regression models, as in the present case, a possibility is adopting

an information criterion based on the conditional likelihood of the model coefficients. Within the

exponential family framework, Hastie and Tibshirani (1990) proposed the widely used conditional

AIC (Akaike information criterion). Subsequent studies showed that this approach tends to select

too much complex models. Recently, Wood et al. (2016) proposed an AIC that overcomes such a

problem and, more generally, that avoids neglecting the smoothing parameter uncertainty in the

conditional AIC, as well as being easy to compute. Wood (2020) provided further details and, in

particular, gave useful insights for obtaining a BIC (Bayesian information criterion).

While both the AIC and BIC can be used to select among nested or non-nested models, they

have different properties. The AIC, which was derived as an asymptotic approximate estimate of

the Kullback–Leibler information discrepancy, is not strongly consistent but is efficient, while the

opposite is true for the BIC (Claeskens et al., 2008).

===== Insert Table 2 =====

3The parametric specification is estimated using a CCEP estimator already coded in R within the package plm,

while the non-parametric specifications are estimated by exploiting the R package mgcv. The model selection

procedure has been coded by the authors using the R programming language.
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The results in Table 2, which are based on the AIC and BIC proposed by Wood et al. (2016)

and Wood (2020), provide a very robust picture as both the BIC and AIC rank the models in the

same way. Indeed, according to both criteria i) the non-additive penalized model performs above

all others, ii) the parametric model—at the other extreme—underperforms with respect to all other

models, and iii) penalized models are preferred over non-penalized ones.

Forecasting-driven selection method According to the statistical literature dealing with ap-

parent versus true error (see, for example, Efron, 1982), the true error is associated with out-of-

sample measures of fit, in contrast to the apparent error, which is associated with within-sample

measures. Typically, the latter is smaller than the former and frequently overly optimistic since a

model is mostly selected to best fit the data.

Consequently, we adopt the forecasting data-driven model selection approach previously de-

scribed, which allows obtaining the entire distribution of the true error for alternative models and

thus permits determining which model is closer to the true unknown DGP. As far as the blocks are

concerned, we fix the length of the blocks to eleven years. This allows a simple split of our sample of

44 years and also provides blocks that should be long enough to preserve the dependence structure

of the original data. Overall, we draw with replacement from 44− 11 + 1 = 34 blocks. The number

of draws S is fixed to 1000. We consider different out-of-sample performance horizons, and similar

to Baltagi et al. (2004) we consider both a one-year and a three-year horizon.

A first relevant result is that the non-additive penalized model has the smallest median for both

the ASPE and MAPE. More specifically, for the 1-year horizon the median ASPEs (MAPEs) of

the parametric, the additive unpenalized, the additive penalized, and the non-additive unpenalized

models are 0.552, 0.634, 0.636, and 0.617 (0.830, 0.913, 0.888, and 0.791), respectively. For the

3-year horizon, these ratios do not change significantly and take the following values: 0.521, 0.656,

0.656, and 0.631 (0.870, 0.978, 0.930, and 0.844). It can be expected that the out-of-sample perfor-

mance will deteriorate when the horizon increases. Interestingly, it can be noted that when moving

from a 1- to a 3-year horizon the median of the ASPEs and MAPEs is almost unaffected, showing a

low increase, while the variability increases substantially as the standard deviation almost doubles

in all models.

A second interesting result is that when looking at the median, the parametric model is almost

always outperformed by the alternative non-parametric specifications, the only exception being

the non-additive unpenalized model, which provides the worst results in terms of MAPE. Third,

while when we impose an additive structure the penalized regression modeling and its unpenalized

counterpart present very similar median ASPEs and MAPEs, when estimating the non-additive

specification, which typically suffers more from the curse of dimensionality, an extremely pronounced

gain in terms of predictive ability from using PRS over RS is observed.

In order to test whether the above differences across alternative specifications—in terms of

their median—are statistically significant, we also performed a paired Wilcoxon test, which is a

non-parametric alternative to the paired t-test when comparing paired data. The results of these

tests are presented in Table 3. In all cases, when contrasting the non-additive penalized model

with the others the null hypothesis that the difference in the medians of the ASPEs/MAPEs is
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zero is strongly rejected, thus indicating that this difference is statistically significant. The same

happens when contrasting the additive models—both penalized and unpenalized—with the standard

parametric specification.

===== Insert Table 3 =====

Next, Figure 2 shows the empirical cumulative distribution functions of the ASPEs (MAPEs)

for each model. Clearly, the ASPE (MAPE) of the non-additive penalized model is stochastically

dominated by the ASPE of any of the other models. This indicates that the non-additive penalized

model outperforms all others in terms of predictive ability. Even if visual differences seem to

appear between the distributions for the different competing models in the figures presented above,

it is interesting to confirm their existence with a statistical test. The most popular approach

for distribution homogeneity testing is based on the Kolmogorov–Smirnov (KS) statistic, which is

obtained as the largest discrepancy between the empirical distribution functions by these models

(see, for example, Lehmann and Romano, 2006). Below, we use KS test to choose the best model

in terms of predictive performance.

===== Insert Figure 2 =====

The first set of results presented in Table 4 are those of the KS tests of equality of the ASPE

distributions for the estimated models. These tests clearly conclude with a rejection of the null

hypothesis of the equality of distributions for each pair of models, whatever the forecasting time

horizon, with the notable exception of generalized additive unpenalized and penalized specifications.

The second part of Table 4 reports the results of the KS test of dominance for each forecasting time

horizon. We focus on the distribution of the penalized tensor model because this distribution sets

itself apart from those of the other models estimated in the figures presented above. We first test

whether the distribution of the penalized tensor model dominates the distribution of each of the

competing models. Results clearly show that this hypothesis is rejected, whatever the considered

competing model and time horizon. We then test the reverse hypothesis, i.e., that the distribution

of the penalized tensor model is dominated by the distribution of each of the competing models.

Test values do not allow a rejection of this hypothesis. The penalized tensor model therefore appears

to be the model that generates the forecasts closest to the observed values, whatever the considered

forecasting time horizon, when the quality of the forecasts is measured by the ASPE criterion.

===== Insert Tables 4 and 5 =====

A similar analysis can also be performed using MAPE criterion. The corresponding results are

reported in Table 5. The first set of results given in this table shows that there are only significant

differences between the distribution of the penalized tensor model and those of its competitors,

whatever the forecasting time horizon. Moreover, dominance tests here also clearly conclude that
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the MAPE distribution of the non-additive penalized model is stochastically dominated by the

MAPE distribution of any of the remaining models. The penalized tensor model therefore appears

to be the model that generates the forecasts closest to the observed values, whatever the considered

forecasting time horizon, when the quality of the forecasts is measured by the MAPE criterion.

To sum up, these results clearly indicate that i) the parametric specification underperforms

with respect to the non-parametric penalized models, and ii) there is very robust evidence that the

penalized non-additive model outperforms all the others. This is a similar result to Ma et al. (2015),

who use a similar macro panel dataset. As far as non-parametric specifications are concerned, PRS

perform better than unpenalized RS. The improvement achieved when using PRS is much more

pronounced when focusing on the non-additive specification, where RS suffer more from the curse

of dimensionality while PRS appear to be extremely efficient. While there are a number of studies

comparing alternative spline methods by using Monte Carlo simulations (see, for example, Wood,

2003, 2006; Nie and Racine, 2012), to the best of our knowledge this is the first paper contrasting

PRS and RS in terms of their predictive ability, and the results may provide some guidance for

future work. The non-additive specification is indeed the best one when using PRS, while with

unpenalized RS the best model is the one with additive smooth terms. These results thus suggest

adopting a non-parametric, non-additive specification and indicate that PRS are more efficient

than their unpenalized counterparts, especially for non-additive specifications when the curse of

dimensionality is a concern.

6.2 Estimation results

We now present the estimation results of the non-additive penalized specification, which according

to our findings clearly provides the best predictive performance and thus is the most suitable to

approximate the underlying DGP.

As a preliminary step, in order to provide a straightforward comparison with previous works such

as Ertur and Musolesi (2017), CHH, and others, we also estimate the model exploiting our extended

dataset and adopting some parametric estimators that have already been employed in the literature.

The results in Table 6 are structured as follows. Column (i) and (ii) report the results obtained

by using the pooled CCE by Pesaran (2006), which was employed by Ertur and Musolesi (2017).

In column (i), we consider the standard parametric specification, which was previously discussed;

in column (ii), we allow the impact of the explanatory variables to differ between the G7 countries

and the others, as is sometimes done in the literature. In columns (iii) to (vi), following CHH, Kao

et al. (1999), and Lee (2006), we instead focus on panel cointegration estimators. We consider both

the pooled fully modified OLS (FMOLS) by Phillips and Moon (1999) and the pooled dynamic

OLS (DOLS) by Kao and Chiang (2001), with and without a linear time trend in the deterministic

component.

===== Insert Table 6 =====

The results are as follows. When employing the pooled CCE in (i), all of the estimated pa-

rameters are close to zero and are not significant at standard significance levels. A similar result
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was found by Eberhardt et al. (2013) when estimating the effect of R&D within a Griliches-type

knowledge capital production function and can be partially explained as a result of an “omitted

time-related factor bias” that may arise in common panel data models that do not account for com-

mon factors. Allowing the impact of the explanatory variables to differ between the G7 countries

and the others (model (ii)) provides additional insights and, in particular, may suggest that model

(i) suffers from misspecification bias, as it is now found that the coefficient associated with domestic

R&D for G7 countries is positive (0.04) and significant at the 10% level. A positive (0.07) and sig-

nificant effect of foreign R&D for non-G7 countries is also found. Finally, an implausible negative

effect of human capital for non-G7 countries is also obtained, with an estimated elasticity equal to

−0.31. These results partially contradict the findings of Ertur and Musolesi (2017), who exploited a

shorter dataset (1971–2004) and found totally different results for foreign R&D and human capital.

Human capital was found to have a positive and significant effect only for G7 countries, while the

opposite happened for foreign R&D. Overall, such parameter estimate instability may suggest that

the traditional CH/CHH parametric model likely suffers from a “functional misspecification bias”.

The results obtained adopting panel cointegrated estimators provide similar evidence. Indeed, while

the model without a trend provides results that are consistent with CHH and Kao et al. (1999), who

adopted the same panel cointegration estimators, the inclusion of a linear trend in the cointegration

relation makes all of the estimated parameters close to 0 and statistically non-significant. Including

a linear trend seems to be consistent with the time series properties of the data and also makes

the estimated specification closer to the factor model. The results do not change significantly when

moving from pooled to mean-group estimators.4

In order to discuss the results for the preferred non-additive model, we first provide a visual

inspection of the estimated smooth function and then focus our attention on the estimated elastic-

ities. Also note that the estimated (multivariate) smooth function appears to be highly significant

when adopting the Wald-type test suggested by Wood (2012).5

As for the visual inspection of the estimated multivariate function, we depict the joint effects of

two variables at a time, fixing the level of the third one to the first, fifth (the median), and ninth

deciles. At first glance, looking at Figures 3, 4, and 5 it easy to see that complex interactive effects

are a relevant feature of the data that is obscured in parametric specifications.

===== Insert Figures 3, 4 and 5 =====

When focusing on the joint effect of the R&D variables on TFP (see Figure 3), it can be noted

that such an interactive effect increases with the level of human capital. As depicted in panel (a),

for low levels of human capital and for most of the domain of the R&D variables, the estimated

function is flat. Only for high values of foreign R&D does domestic R&D have a positive effect

4FMOLS and DOLS estimates were obtained by exploiting Eviews 11. The coefficient covariances were computed

using the default settings, and the long-run covariances used a Bartlett kernel and a Newey–West fixed bandwidth.

As for the DOLS, leads and lags were selected using the BIC. Finally, note that it was computationally unfeasible

to estimate the model with G7 interactions.
5Test results are available upon request from the authors.

19



on TFP. Panels (b) and (c) show the estimated bivariate function when human capital is fixed to

the median and to the ninth decile, respectively. The results in both panels suggest a positive and

non-linear effect of domestic/foreign R&D on TFP, which seems to increase as human capital moves

from the median the ninth decile.

A similar pattern appears for the domestic R&D–human capital bivariate function (see Figure

4), as it clearly increases by increasing the level of foreign R&D. Indeed, when foreign R&D is fixed

to the first decile (panel (a)) the estimated function is very flat; it then becomes an increasing

function when foreign R&D is fixed to the median or to the ninth decile. However, while panel (b)

(foreign R&D fixed at the median) indicates a rather additive effect, panel (c) (foreign R&D fixed

at the ninth decile) suggests a more complex non-linear non-additive interactive effect.

Finally, as far as the joint human capital–foreign R&D effect is concerned, a different pattern is

observed as the estimated relation (see Figure 5) is always very flat for any level of domestic R&D.

Relevant exceptions occur for high levels of foreign R&D, where in some specific regions human

capital has a pronounced positive effect on TFP.

We provide a thorough analysis of the estimated elasticities and compare them with both pre-

vious results and our parametric estimates in Table 6. As far as domestic R&D is concerned, the

literature provides an estimated elasticity that is typically bounded in the range of 0.05–0.2 and also

suggests that the effect of domestic R&D on TFP is much higher for G7 than for non-G7 countries

(Kao et al., 1999; Coe et al., 2009; Ertur and Musolesi, 2017). While the parametric CCE in Table

6 confirms this finding and our non-parametric results are somehow consistent with it, they are

also much richer, as shown in Table 7 and in Figure 6 where we report the estimated elasticity of

one domestic R&D as a function of the potential values of this factor, the other two being fixed

to some quantile values.6. Indeed, the output elasticity of domestic R&D capital stock from the

preferred non-additive model ranges between about 0 and 0.21. There are some combinations of

factors for which the estimated elasticity is very close to zero and is not significant. This happens

for low values of human capital associated with high values of domestic R&D. This pattern can

be viewed as consistent with the existence of a minimum level of absorptive capacity, arising from

the human capital endowment, that allows a country to benefit from technology. Similarly, the

estimated output elasticity of domestic R&D is close to zero and non-significant for high levels of

foreign R&D associated with low levels of domestic R&D. In contrast, high values of domestic and

foreign R&D in combination with average levels of human capital are associated with an estimated

elasticity of about 0.2. We label this situation in which the estimated output elasticity of domestic

R&D (non-linearly) increases with the amount of foreign R&D as (non-linear) interactive spillover

effects, in opposition to standard spillover effects, which generally refer to the direct ceteris paribus

effect of foreign R&D on TFP. We also note that for median/high values of human capital, threshold

effects appear as a relevant feature of the data since the estimated elasticity is positive (in the range

6Standard errors are reported in Table 7, in addition to estimated values of elasticities. Their computation

takes advantage of the underlying parametric representation of sieve approximations (see Eq. (14)) and is based

on the covariance matrix of estimated parameters δ̂g and derivatives of the elements belonging to the chosen basis

πK(x) = (π1(x), π2(x), . . . , πK(x))
′
. The 90% confidence intervals in Figure 6 are computed in the same way (See

Wood, 2017, p. 341, for more details)
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of 0.05–0.10) and significant for low values of domestic R&D; it then decreases to around zero and

finally increases again for high values of domestic R&D.

===== Insert Table 7 =====

As for the output elasticity of foreign R&D, and as was stressed in Section 2, a high degree

of variability is observed when looking at the existing literature. Looking also at the results in

Table 6, such variability could be explained as a consequence of functional misspecification bias,

and our results from the preferred non-parametric model are consistent with this view. Three main

findings arise from Figure 7. First, there are many combinations of inputs for which the estimated

elasticity is about 0 and is not statistically significant. This happens, for instance, for median levels

of both domestic R&D and human capital (irrespective of the level of foreign R&D). Second, for

high levels of both domestic R&D and human capital, the estimated elasticity is always positive and

significant, ranging from about 0.1 to 0.2, depending on the level of foreign R&D. Third, there are

some combinations of domestic R&D–human capital for which a certain amount of foreign R&D is

necessary to observe a significantly positive elasticity. On the one hand, these results are consistent

with the existence of a certain level of absorptive capacity arising from domestic technology that

is necessary for a country to benefit from foreign technology (see, for example, Xu, 2000) and

with theories suggesting that technology that is invented in frontier countries is less appropriate for

poorer countries (see, for example, Basu and Weil, 1998). On the other hand, however, they suggest

that this arises with complex non-linearities that clearly make the parametric model misspecified

and may explain both the high variability in estimates from previous parametric specifications and

our own parametric estimates in Table 6.

===== Insert Figures 6, 7, and 8 =====

Finally, as for the output elasticity of human capital, typical approaches not accounting for

common latent factors generally conclude in a high and significant estimated elasticity, which is

often in the range of 0.5–0.7 (see, for example, CHH). However, Ertur and Musolesi (2017) cast

considerable doubt on the idea that the stock of human capital—constructed using the average

years of schooling—significantly affects TFP. Their result complements some previous studies on

growth that emphasize the key role of the quality of education (see, for example, Hanushek and

Kimko, 2000) and finally suggests that the quantity of education no longer has a significant effect

when omitted time-related variable bias is addressed. While our parametric results in Table 6

confirm this finding, the non-parametric non-additive model provides further insights, as depicted

in Figure 8. Indeed, for low-to-median levels of both R&D variables the estimated elasticity is

generally non-significantly different from zero, thus confirming the parametric results. However, for

high values of domestic and/or foreign R&D, some locally significant positive effect is documented.

In particular, when both R&D variables are high the estimated elasticity presents an interesting

non-linear pattern: for low-to-median values of human capital, the estimated function is flat and

non-significantly different from zero, but it then increases and becomes positive, high in magnitude,
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and significant for the last two deciles of human capital. This pattern seems to be empirically

consistent with the Korean technological development that has occurred over the last decades.

Overall, this evidence appears to be consistent with the existence of threshold effects, non-linear

interactive spillover effects, and complex absorptive capacity effects, and is consistent with the idea

of localized technical change, as suggested in the seminal paper by Atkinson and Stiglitz (1969).

7 Concluding remarks

This paper proposes an estimation strategy that exploits recent non-parametric panel data meth-

ods and extends a recently proposed data-driven model-selection procedure to the case of cross-

sectionally dependent panels. This estimation strategy builds on Su and Jin (2012), who generalize

the common correlated effects estimation procedure proposed by Pesaran (2006) in a parametric

framework to a more general non-parametric one. Indeed, the choice of a fully non-parametric

specification of the function of interest is very appealing as it avoids the specification bias involved

in the estimation of more restrictive and possibly misspecified specifications. However, this choice

has a cost in terms of the number of observations necessary for sufficient precision of the estimated

function—the so-called curse of dimensionality issue. It is therefore relevant to compare different

specifications and choose the one with the best performance in any empirical application.

Our estimation strategy is inspired by the data-driven model-selection procedure proposed by

Racine and Parmeter (2014) for cross-sectional data and time-series. In line with Efron (1982),

competing specifications are evaluated in terms of their performance predicting new observations.

We extend this procedure to a large panel data framework by using moving block bootstrap resam-

pling techniques in order to preserve cross-sectional dependence in the bootstrapped samples used

when assessing specification performance and by measuring forecasting performance as a tool for

selecting among the competing specifications.

This estimation strategy is illustrated by revisiting an analysis of international technology dif-

fusion and exploiting new annual country-level data for 24 OECD countries from 1971 to 2014,

which extends the time-coverage of the data used by Coe et al. (2009) and Ertur and Musolesi

(2017). Model selection procedures clearly conclude in the superiority of a fully non-parametric

(non-additive) specification of the relationship between TFP and domestic R&D capital, foreign

R&D, and human capital, over parametric and even semi-parametric (additive) specifications.

Moreover, the non-parametric specification allows for a richer view of the resulting spillover effects,

showing non-linear effects and thresholds not previously detected in the literature and ultimately

suggesting the presence of (non-linear) interactive spillover effects (non-linearly) increases with the

amount of foreign R&D. In addition, we also document that penalized regression splines perform

significantly better than their unpenalized counterparts, especially in the case of a non-additive

model, when the curse of dimensionality is a concern. To the best of our knowledge, this is the first

paper contrasting penalized and unpenalized regression splines in terms of their predictive ability.

To conclude, it is worth mentioning that further extensions of the present study should account

for heterogeneous relations across countries. Given the relatively short time dimension of our sample,
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such an extension is outside the realm of the non-parametric estimators presented in this paper,

where heterogeneity is addressed by adopting a mean group approach, and could be accomplished,

for instance, by resorting to Bayesian modeling (Kiefer and Racine, 2017; Parmeter and Racine,

2019) to address the additional curse of dimensionality problem raised by heterogeneity.
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Table 1: Descriptive statistics

Variable Mean SD Min. Max.

log TFP Overall −0.090 0.146 −0.645 0.256

Between 0.097 −0.308 0.113

Within 0.110 −0.427 0.218

log domestic R&D Overall 10.190 2.223 −1.545 14.925

Between 2.099 3.793 3.793

Within 0.846 4.851 12.771

log foreign R&D Overall 11.210 1.109 6.634 14.793

Between 0.962 8.300 14.137

Within 0.585 7.420 13.738

log human capital Overall 1.038 0.141 0.532 1.295

Between 0.108 0.798 1.236

Within 0.093 0.741 1.300
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Table 2: Traditional in-sample model selection

Model BIC Rank (BIC) AIC Rank(AIC)

Non-additive penalized −4267.796 1 −5202.976 1

Additive penalized −4044.856 2 −4764.583 2

Additive unpenalized −4028.581 3 −4762.993 3

Non-additive unpenalized −3941.881 4 −4671.33 4

Parametric −3851.537 5 −4466.855 5

Notes: BIC and AIC are based on Wood et al. (2016) and Wood (2020).
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Table 4: Kolmogorov–Smirnov test results: ASPE

—– Forecasting horizon = 1 year —–

Two-sided tests

Additive Additive Non-additive Non-additive

unpenalized penalized unpenalized penalized

Parametric 0.002 < 0.001 0.006 < 0.001

Additive unpenalized — 0.999 0.061 < 0.001

Additive penalized — — 0.020 < 0.001

Non-additive unpenalized — — — < 0.001

One-sided tests

HA: The distribution of ASPEs for the non-additive penalized model is lower than that for:

Parametric Additive Additive Non-additive

unpenalized penalized unpenalized

Non-additive penalized < 0.001 < 0.001 < 0.001 < 0.001

HA: The distribution of ASPEs for the non-additive penalized model is greater than that for:

Parametric Additive Additive Non-additive

unpenalized penalized unpenalized

Non-additive penalized ≈ 1 0.999 0.996 ≈ 1

—– Forecasting horizon = 3 years —–

Two-sided tests

Additive Additive Non-additive Non-additive

unpenalized penalized unpenalized penalized

Parametric < 0.001 < 0.001 0.003 < 0.001

Additive unpenalized — 0.954 0.055 < 0.001

Additive penalized — — 0.020 < 0.001

Non-additive unpenalized — — — < 0.001

One-sided tests

HA: The distribution of ASPEs for the non-additive penalized model is lower than that for:

Parametric Additive Additive Non-additive

unpenalized penalized unpenalized

Non-additive penalized < 0.001 < 0.001 < 0.001 < 0.001

HA: The distribution of ASPEs for the non-additive penalized model is greater than that for:

Parametric Additive Additive Non-additive

unpenalized penalized unpenalized

Non-additive penalized ≈ 1 ≈ 1 ≈ 1 ≈ 1
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Table 5: Kolmogorov–Smirnov test results: MAPE

—– Forecasting horizon = 1 year —–

Two-sided tests

Additive Additive Non-additive Non-additive

unpenalized penalized unpenalized penalized

Parametric 0.573 0.370 0.859 0.008

Additive unpenalized — 0.954 0.610 0.078

Additive penalized — — 0.200 0.069

Non-additive unpenalized — — — 0.069

One-sided tests

HA: The distribution of MAPEs for the non-additive penalized model is lower than that for:

Parametric Additive Additive Non-additive

unpenalized penalized unpenalized

Non-additive penalized 0.004 0.039 0.034 0.034

HA: The distribution of MAPEs for the non-additive Penalized model is greater than that for:

Parametric Additive Additive Non-additive

unpenalized penalized unpenalized

Non-additive penalized 0.952 0.845 0.866 0.940

—– Forecasting horizon = 3 years —–

Two-sided tests

Additive Additive Non-additive Non-additive

unpenalized penalized unpenalized penalized

Parametric 0.573 0.288 0.648 0.005

Additive unpenalized — 0.999 0.401 0.029

Additive penalized — — 0.219 0.020

Non-additive unpenalized — — — 0.015

One-sided tests

HA: The distribution of MAPEs for the non-additive penalized model is lower than that for:

Parametric Additive Additive Non-additive

unpenalized penalized unpenalized

Non-additive penalized 0.023 0.015 0.009 0.007

HA: The distribution of MAPEs for the non-additive penalized model is greater than that for:

Parametric Additive Additive Non-additive

unpenalized penalized unpenalized

Non-additive penalized 0.975 0.845 0.845 0.952
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Table 6: Parametric estimation results

CCE CCE G7 FMOLS DOLS FMOLS T DOLS T

(i) (ii) (iii) (iv) (v) (vi)

logSd
-0.0004 0.071*** 0.062*** 0.005 0.006

(0.0056) (0.0086) (0.0097) (0.0102) (0.0111)

logSf
0.009 0.013 0.005 -0.030 -0.033

(0.0122) (0.0115) (0.0149) (0.0186) (0.0195)

logH -0.095 0.357*** 0.361*** 0.225 0.178

(0.0779) (0.0680) (0.0719) (0.1366) (0.1431)

1G7 logSd
0.041*

(0.0248)

1NOG7 logSd
0.008

(0.0060)

1G7 logSf
0.039

(0.0281)

1NOG7 logSf
0.065***

(0.0184)

1G7 logH 0.26

(0.2357)

1NOG7 logH -0.306**

(0.121)

Notes:

CCE: pooled CCE ; CCE G7: pooled CCE with G7 interactions;

1G7=

{
1 if country ∈ G7 group

0 if country /∈ G7 group
, and1NOG7= 1− 1G7

FMOLS: fully modified OLS; FMOLS T: fully modified OLS with linear trend;

DOLS: dynamic OLS; leads and lags selection based on BIC;

DOLS T: dynamic OLS with linear trend;

***, **, *: significant at the 1%, 5%, and 10% level, respectively; standard errors in brackets.

34



Appendices

A Summary of previous works

The Table A1 below summarizes some previous works and highlights some relevant methodological aspects.
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TABLE A1

Some previous studies on R&D international spillovers

Author Sample

Technology

transfer Method COINT HET CSD NL Foreign R&D

Coe and Helpman (1995) 22 countries, 1971-90 trade LSDV .06-.092

Coe et al. (2009)

22 countries, 1971-90

24 countries, 1971-2004

24 countries, 1971-2004

trade

trade

trade

DOLS

LSDV

DOLS

x

.165-.186

.185-.206

.206-.213

Kao et al. (1999)

22 countries, 1971-90

22 countries, 1971-90

22 countries, 1971-90

trade

trade

trade

BC-OLS

FM-OLS

DOLS

x

.09-.125

.075-.103

.044NS-.056NS

Lichtenberg and

Van Pottelsberghe (1997)

22 countries, 1971-90 trade LSDV .058-.276

Lichtenberg and

Van Pottelsberghe (2001)

23 countries, 1971-90

23 countries, 1971-90

23 countries, 1971-90

23 countries, 1971-90

trade

FDI

trade

FDI

LSDV

LSDV

FD

FD

.154

-.06NS-.072

.067

.006NS-.039

Musolesi (2007)

13 countries, 1981-98

13 countries, 1981-98

13 countries, 1981-98

trade

FDI

language

HB

HB

HB

x

.09

-0.01NS-.004NS

.23

Lee (2006)

16 countries, 1981-2000

16 countries, 1981-2000

16 countries, 1981-2000

trade

FDI

patents

DOLS

DOLS

DOLS

x

-.02NS-.17

-.017NS-.034

.157-.183

Keller (2002)
14 countries, 1970-95

14 countries, 1970-95

geography

language

NLS

NLS

x
.843

.565

Engelbrecht (2002) 21 countries, 1971-85 trade LSDV .220-.305

Bitzer and Kerekes (2008)
17 countries, 1973-2000

17 countries, 1973-2000

trade

FDI

FGLS

FGLS

.009-.02

-.016-.012

Barrio-Castro et al. (2002)

21 countries, 1971-85

21 countries, 1966-95

21 countries, 1966-95

trade

trade

trade

LSDV

LSDV

DOLS

.094-.225

0.016-0.106

.092-.141

Fracasso and Vittucci (2013)
24 countries, 1971-2004

24 countries, 1971-2004

trade

geography

DOLS

NLS

x x
.107-.126

0.016-0.106

Ertur and Musolesi (2017)

24 countries, 1971-2004

24 countries, 1971-2004

24 countries, 1971-2004

geography

geography

geography

CCEP

CCEMG

SEM

x x x

0.094NS-0.329

0.240NS-0.510NS

0.011-NS-0.22

Notes:

COINT: Integration-Coitegration analysis; HET: Heterogeneous slopes; CSD: Cross-Sectional Dependence; NL: Non-linear models.

LSDV: Least Squares Dummy Variable ; DOLS: Dynamic Ordinary Least Squares; BC-OLS: Bias Corrected OLS; FM-OLS: Fully Modified OLS;

FD: First Difference; HB: Hierarchical Bayes; NLS: Non Linear Least Squares; FGLS: Feasible Generalized Least Squares;

CCEP:Pommon Correlated Effects Pooled; CCEMG: Pommon Correlated Effects Mean Group; SEM: Spatial Error Model; NS: not significant.
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B Panel unit roots tests

Some of the previous works find evidence of nonstationary variables by applying first-generation tests (Coe et al.,

2009). Recently, Ertur and Musolesi (2017), by adopting the PANIC approach (Bai and Ng, 2004), which decom-

poses the panel into deterministic, common and idiosyncratic components, not only confirmed that the series are

nonstationary but also suggested that that such a nonstationarity arises as a result of a stationary idiosyncratic

component combined with nonstationary common factors. Despite providing a thorough investigation of the time

series properties of the variables is somehow outside the scope of the paper, it is of some interest to check whether

this result holds with this extended dataset, also in light of the results provided by Kapetanios et al. (2011) showing

that the CCE approch remains valid when the nonstationarity arises because of nonstationary factors.

We adopt the PANICCA test by Reese and Westerlund (2016), which is a PANIC approach based on cross-

sectional averages augmentation rather than on principal component estimation. PANICCA maintains the generality

of PANIC as it allows testing for unit roots in both the common and idiosyncratic components of the data, but it

has better small samples properties and avoids the determination of the total number of factors, which is usually

done by adopting information criteria (Bai and Ng, 2002). Nevertheless, practical implementation of such criteria

is difficult as they may tend to overestimate the number of factors and the results are known to be sensitive to the

maximum number of factors which should be arbitrarily fixed (Ertur and Musolesi, 2017).

The results in Table B1 are clear-cut. The statistics proposed by Bai and Ng (2010), denoted Pa and Pb and

PMSB provide evidence for rejection of the null hypothesis of nonstationarity of the idiosyncratic components for

all variables. The rejection of the nonstationarity of the idiosyncratic component does not imply that the series

are stationary, as some of the common factors may be nonstationary. To determine how many of these factors are

nonstationary, we follow Reese and Westerlund (2016) and we consider the MQf and MQc statistics. The limiting

distributions of these statistics are nonstandard, and critical values are reported in Bai and Ng (2002) for up to

six factors. The results provide a very clear picture. For all variables, regardless of the test used, the number of

nonstationary common factors is almost always equal to the total number of common factors, which given the cross-

sectional averages augmentation is equal to four. The application of the PANICCA approach thus suggests that the

variables are nonstationary and that this property is the result of multiple nonstationary common factors combined

with stationary idiosyncratic components.

TABLE B1

PANICCA test

Idiosyncratic component Nonstationary factors

Pa Pb PMSB MQf MQc

p-value

log TFP 0 0 0.008 4 4

log domestic R&D 0 0.004 0.07 4 4

log foreign R&D 0 0 0.059 4 4

log human capital 0 0.003 0.086 4 4

The estimated number of independent stochastic trends is reported ( 5% level).
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C Thin plate regression splines

Consider the generic problem of finding the smooth function g of y = g(x)+ε from n observations, where x is a vector

of d variables. Thin plate splines (TPS) can be employed to estimate g by finding the function ĝ that minimizes the

quantity

||y − χ||+ λJmd(χ), (23)

where y and χ are n-dimentional vectors of the yi and χ(xi), i = 1, 2, ..., n, respectively. || · || is the Euclidean norm.

Jmd(χ) is a penalty functional that is related to the order m of differentiation in Jmd and to the dimension d, as

described below.

Jmd(χ) =

∫
Rd

∑
ν1+···+νd=m

m!

ν1! . . . νd!

(
∂mχ

∂xν11 . . . ∂xνdd

)2

dx1 . . . dxd.

It is proven that the function that minimizes the expression above is of the form

ĝ(x) =
n∑
i=1

δiηmd(||x− xi||) +
M∑
j=1

αjπj(x), (24)

under the constraint that T ′δ = 0, Tij = πj(xi). δ and α are vectors of unknown parameters and πj , j = 1, 2, ...,M ,

are M =
(m+d−1

d

)
are linearly independent polynomials of degree less than m that span the Rd space. ηmd is a

specific function associated with m and d (see Wood, 2003). Then, (23) translates to minimizing with respect to δ

and α

||y −Eδ − Tα||2 + λδ′Eδ, subject to T ′δ = 0, (25)

where E is the matrix with elements Eij = ηmd(||xi − xj ||), i, j = 1, 2, ..., n.

In contrast to typical RS and PRS, the estimation of g using TPS does not require the choice of knots or the

selection of basis functions. Moreover, TPS do not impose any restriction in the number of predictor variables and

allow some flexibility to the selection of m. Nevertheless, TPS are not computationally attractive because, as implied

by (24) and (25), except for the case when d = 1, they require the estimation of as many parameters as the number

of data points n.

To overcome this computational difficulty, Wood (2003, 2017) starts from the smoothing problem (25) and

truncates the space of the components with parameters δ, which are the ones associated with the wiggliness of the

spline. Following Wood (2017), let E = UDU′ be the eigen-decomposition of E, where D is a diagonal matrix of

eigenvalues of E such that |Di,i| ≥ |Di−1,i−1| and U the corresponding eigenvectors. Denote by Uk the matrix of

the first k columns of U and by Dk the upper left k × k submatrix of D. Restrict δ to the column space of Uk, so

that δ = Ukδk, where δk is a k-dimensional vector with k > M . Then, within the space spanned by Uk, problem

(25) is replaced by minimizing

||y −UkDkδk − Tα||2 + λδ′kDkδk, subject to T ′Ukδk = 0. (26)

Having fitted (26), the spline is evaluated from (24) after estimating δ from δk.

It is worth to note that while TPS are optimal with respect to minimizing (23), the low rank smoothers re-

sulting from the truncation described above do not inherit such an optimality property. Moreover, this low rank

approximation would be ideal only if, for any given δ, it would result in minimum change in the goodness of fit and,

simultaneously, in the penalty term. Nevertheless, no single basis can achieve the above for all δ. This fact raises

the need to define a way by which (25) is approximated by (26). Wood (2003, 2017) proposes an approach that is

associated to minimizing the largest possible change of the goodness of fit, that is êk = maxδ=0
||(E−Êk)δ||
||δ|| , as well

as minimizing the largest change in wiggliness, that is ẽk = maxδ=0
δ′(E−Ẽk)δ
||δ||2 . In these quantities, Êk = EUkU

′
k
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and Ẽk = U′kUkEUkU
′
k. Further, Wood (2003) shows that the choice of Uk as the truncated basis for δ minimizes

simultaneously both êk and ẽk. This approximation that also considers the minimization criteria of êk and ẽk results

in the definition of the TPRS.

D Moving block bootstrap applied to panel data

Moving block bootstrap (MBB) applied to panel data runs as follows:

1. Consider you have one response yit and a p× 1 vector of explanatory variables, or xit, with i = 1, . . . , n, and

t = 1, . . . , T .

2. Let zit = (yit,x
′
it)
′, vector whose dimension is (p+ 1)× 1.

3. Let Zt,n = (z′1t, z
′
2t, . . . , z

′
nt)
′ whose dimension is n(p + 1) × 1. In fact, we stack all observations for the n

individuals at period t.

4. Let l the chosen length of a block. A block will thus be defined as the matrix Bt,l = {Zt,n, Zt+1,n, . . . , Zt+l−1,n}.
T − l + 1 overlapping blocks are generated.

5. MBB resamples k = T/l blocks with replacement from the set of T − l + 1 overlapping blocks.

E MBB forecasting-driven model selection procedure with

generated data

This appendix aims to provide further insights about the validity of the proposed MBB-forecasting-driven model

selection procedure by applying such a procedure to generated data. We generate three alternative DGPs: linear,

additive and non-additive, respectively, all being characterized by both cross-sectional dependence arising from

(stationary and nonstationary) common factors and serial error dependence:

yit = αi + 0.3x1it + 0.7x2it + γ1if1t + γ2if2t + εit,

yit = αi + 0.01x21it − 0.00007x31it + 0.8 sin(x1it) + 0.1x2it + 0.1x22it − 0.005x32it + cos(x2it) + γ1if1t + γ2if2t + εit, and

yit = αi + x1.31it ∗ x0.72it + 0.5 sin(x1it) + 1.5 cos(x2it) + γ1if1t + γ2if2t + εit.

The error term εit has been genearated as a first-order autoregressive process:

εit = 0.8εit−1 + vit, with vit ∼ N(0, 0.7).

The explanatory variables are generated as linear functions of the individual effects and of common factors:

x1it = c1i + a11if1t + a12if2t + e1it and x2it = c2i + a21if1t + a22if2t + e2it,

where the error terms are supposed to be white noise processes, i.e. e1it ∼ N(0, 0.4) and e2it ∼ N(0, 0.6).

The first common factor f1t is stationary and is generated as:

f1t = t+ v1t with v1t ∼ N(0, 0.3),

39



while the second one, f2t, is supposed to be nonstationary:

f2t = log(t) + v2t with v2t = v2t−1 + ut, and ut ∼ N(0, 0.1)

The individual effects and the factor loadings are drawn from Gaussian distributions as follows:

γ1i ∼ N(0.8, 1),

γ2i ∼ N(0.4, 0.4),

a11i ∼ N(0.6, 0.8),

a12i ∼ N(0.9, 0.5),

a21i ∼ N(1, 0.8),

a22i ∼ N(0.6, 0.6),

c1i ∼ N(80, 1),

c2i ∼ N(10, 0.5),

c3i ∼ N(0, 0.3), and

αi = c1i + c2i + c3i

We fix T = 44 and N = 24 to get the same sample dimension as in the empirical analysis. As in the main

analysis, we fix the length of the blocks to eleven years and we draw with replacement from 44− 11 + 1 = 34 blocks.

The number of draws S is fixed to 1000. Figure A1 shows the ECDFs of the MAPEs (1-year forecast horizon) for

each DGP, where, for estimation purposes, we employed the parametric CCE, the semiparametric (additive) CCE

approach and the fully non-parametric (non-additive) CCE approach. To significantly reduce the computation time,

we only consider PRS.

The results are clear-cut and provide evidence regarding how well the model choice procedure performs when

selecting the right DGP underlying observed data in presence of non-linearities. Indeed, when the underlying DGP

is fully non-parametric (resp. semiparametric) the MAPE of the non-additive (resp. additive) penalized estimator is

stochastically dominated by the MAPEs of others models, with the parametric estimator that clearly provides the

worst forecasting performances. Moreover, results indicates that the gain in terms of forecasting of employing tensor

splines with respect to univariate (additive) splines, when the underlying functional relation is non-additive, is much

bigger than the gain that is obtained by using univariate splines rather than tensor splines, when the underlying

DGP is additive.

When the underlying DGP is characterized by a linear functional relationship, all three estimators generate very

similar forecasting performances. The parametric specification being a special case of the additive semiparametric and

fully non-parametric ones, this result is not surprising. Indeed, if the underlying DGP is linear and parametric, the

estimator of the function s(x1, x2) in the non-linear and non additive specification can be expected to be an additive

function with linear components at x1 and x2. Therefore, the choice of one of the two non-linear specifications

must be completed by a detailed analysis of the additivity and linearity of the resulting estimated functions. Poor

performances of the parametric specification when the underlying DGP is either non-linear and additive or non-linear

and non-additive could be similarly motivated by the fact that nor the additive semiparametric or the fully non-

parametric specifications are special cases of the linear parametric one. Nevertheless, this last issue would deserve a

more in-depth analysis.

===== Insert Figure A1 =====
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Table 7: R&D elasticities

Value of domestic R&D fixed at the 10% quantile

Values of Foreign R&D fixed at

Q10 Median Q90

Values Q10 0.0342** 0.04601*** 0.0616

of (0.0160) 0.0092) (0.0276)

Human Median 0.0393*** 0.0320*** -0.0193

Capital (0.0137) (0.0086) (0.0170)

fixed Q90 0.0876*** 0.0921*** 0.0241

at : (0.0229) (0.0215) (0.0230)

Value of domestic R&D fixed at the median

Values of Foreign R&D:

Q10 Median Q90

Values Q10 0.0083 0.0630*** 0.2001***

of (0.0276) (0.0185) (0.0634)

Human Median 0.0154 -0.0188 -0.0251*

Capital ( 0.0210) (0.0130) (0.0129)

fixed Q90 -0.0076 0.0354** 0.0697***

at: ( 0.0249) (0.0194) (0.0201)

Value of domestic R&D fixed at the 90% quantile

Values of Foreign R&D:

Q10 Median Q90

Values Q10 -0.0176 -0.0564 -0.0114

of (0.0479) (0.0499) (0.1017)

Human Median 0.1619*** 0.1977 *** 0.2128***

Capital (0.0351) (0.0316) (0.0469)

fixed Q90 0.1459*** 0.0572* 0.0125

at: (0.0377) (0.0302) (0.0281)

41



●
●

● ● ●
●

●
●

● ● ● ● ●
●

● ● ●
●

●

●

● ● ● ● ● ●
● ● ●

●
● ● ● ● ●

●
● ●

●
●

● ● ● ●

−0.6

−0.4

−0.2

0.0

1970 1980 1990 2000 2010
year

T
F

P
 (

lo
ga

rit
hm

)

● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

7.5

10.0

12.5

15.0

1970 1980 1990 2000 2010
year

D
om

es
tic

 R
&

D
 (

lo
ga

rit
hm

)

●
● ● ●

● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ●
● ● ● ● ●

● ● ● ●

10

11

12

13

14

1970 1980 1990 2000 2010
year

F
or

ei
gn

 R
&

D
 (

lo
ga

rit
hm

)

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

●

●

●
●

●
●

●
● ● ● ● ● ●

●
●

●
●

● ● ● ● ● ● ● ● ● ●

0.6

0.8

1.0

1.2

1970 1980 1990 2000 2010
year

H
um

an
 c

ap
ita

l (
lo

ga
rit

hm
)

COUNTRY
● Germany

Italy
Korea
Spain

Sweden
United States

(a)

●
●
●● ●

●
●

●
●● ●●●

●
●●

●
●

●

●

●●●●
●●

●● ●
●
●●●●●

●
● ●

●
●

●●●●

−0.6

−0.4

−0.2

0.0

7.5 10.0 12.5 15.0
Domestic R&D (logarithm)

T
F

P
 (

lo
ga

rit
hm

)

●
●
●●●

●
●
●

●● ●●●
●

● ●●
●

●

●

●●●
●●●

●● ●
●

●●●●●
●

●●

●
●

●●●●

−0.6

−0.4

−0.2

0.0

10 11 12 13 14
Foreign R&D (logarithm)

T
F

P
 (

lo
ga

rit
hm

)

●
●
●●●

●
●

●
●●●●●

●
● ● ●

●
●

●

● ● ● ● ● ●
● ● ●

●
● ● ● ● ●

●
●●

●
●
●●●●

−0.6

−0.4

−0.2

0.0

0.6 0.8 1.0 1.2
Human capital (logarithm)

T
F

P
 (

lo
ga

rit
hm

)

COUNTRY
● Germany

Italy
Korea
Spain

Sweden
United States

(b)

Figure 1: Univariate (a) and bivariate (b) plots.
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(a) (b)

(c) (d)

Figure 2: Empirical cumulative distribution functions (ECDFs) of the ASPE and MAPE for different

factor models: the linear, the additive, and the non-additive models for the OECD data.
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Figure 3: TFP as a function of domestic and foreign R&D
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Figure 4: TFP as a function of domestic R&D and human capital
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Figure 5: TFP as a function of foreign R&D and human capital
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Figure 6: Estimated R&D elasticities
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Figure 7: Estimated foreign R&D Elasticities
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Figure 8: Estimated human capital elasticities
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(a)

(b)

(c)

Figure A1: Empirical Cumulative Distribution Functions (ECDFs) of the MAPE for different DGPs: the

linear, the additive and the non-additive generated models.
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