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This paper proposes an estimation strategy that exploits recent non-parametric panel data methods that allow for a multifactor error structure and extends a recently proposed datadriven model-selection procedure, which has its roots in cross validation and aims to test whether two competing approximate models are equivalent in terms of their expected true error. We extend this procedure to a large panel data framework by using moving block bootstrap resampling techniques in order to preserve cross-sectional dependence in the bootstrapped samples. Such an estimation strategy is illustrated by revisiting an analysis of international technology diffusion. Model selection procedures clearly conclude in the superiority of a fully non-parametric (non-additive) specification over parametric and even semi-parametric (additive) specifications. This work also refines previous results by showing threshold effects, non-linearities, and interactions that are obscured in parametric specifications and which have relevant implications for policy.

Introduction

With the development of endogenous growth theory since the nineties, there has been an increasing interest in estimating the effect of research and development (R&D) on growth and productivity [START_REF] Jones | R&D-based models of economic growth[END_REF]. At present, however, as also stressed by [START_REF] Keller | International technology diffusion[END_REF], while only a few rich countries account for most of the world's creation of new technology, for most countries foreign technology accounts for a large portion of domestic productivity. Studying international technology diffusion, which can be defined as the process by which innovation spreads within and across economies [START_REF] Stoneman | Technological diffusion: the viewpoint of economic theory[END_REF][START_REF] Karshenas | Technological diffusion[END_REF], and estimating its impact on domestic productivity are consequently of crucial relevance.

A pioneering empirical work by [START_REF] Coe | International R&D spillovers[END_REF], revisited by [START_REF] Coe | International R&D spillovers and institutions[END_REF]henceforth CH and CHH, respectively-builds on innovation-driven endogenous growth models [START_REF] Helpman | Endogenous macroeconomic growth theory[END_REF] and relates total factor productivity (TFP) not solely to domestic R&D but also to foreign R&D and, assuming that technology spills over across countries through the channel of trade flows, constructs foreign R&D capital stock as the import-share-weighted average of the domestic R&D capital stocks of the trading partners. Subsequent studies consider other factors as channels of international spillover, such as foreign direct investment, bilateral technological proximity, patent citations between countries, language skills, or geographic proximity [START_REF] Keller | Geographic localization of international technology diffusion[END_REF][START_REF] Potterie | Does foreign direct investment transfer technology across borders?[END_REF][START_REF] Lee | The effectiveness of international knowledge spillover channels[END_REF].

As for econometric estimation and testing, the most relevant issues raised by the literature are those of heterogeneous slope parameters and the non-stationarity of variables [START_REF] Coe | International R&D spillovers and institutions[END_REF], and more recently, the existence of cross-country dependence arising from the interactions among economic units or from the presence of latent common factors [START_REF] Ertur | Weak and strong cross-sectional dependence: A panel data analysis of international technology diffusion[END_REF].

To the best of our knowledge, however, the existing literature has adopted parametric specifications and does not provide any attempt to check the ability of the CH/HH specification to correctly approximate the underlying data generating process (DGP) or test whether other specifications may be more suitable, whereas the likely complex relation between research activity and economic performance is often recognized in the closely related literature on the economics of innovation [START_REF] Griliches | Patent Statistics as Economic Indicators: A Survey[END_REF][START_REF] Hall | Measuring the returns to R&D[END_REF][START_REF] Charlot | Econometric modelling of the regional knowledge production function in Europe[END_REF].

This paper aims to contribute to the existing literature by proposing an estimation strategy based on forecasting-driven model selection that exploits recent non-parametric panel data methods and extends existing data-driven model-selection procedures to the case of cross-sectionally dependent panels.

First, we adopt a non-parametric approach to avoid the possible functional form bias that may arise when estimating the standard parametric model. Our econometric approach builds on the non-parametric model by [START_REF] Su | Sieve estimation of panel data models with cross section dependence[END_REF] [START_REF] Pesaran | Estimation and inference in large heterogeneous panels with a multifactor error structure[END_REF]. Following [START_REF] Su | Sieve estimation of panel data models with cross section dependence[END_REF], the non-parametric component is estimated using splines. Specifically, we adopt penalized regression splines as they combine the features of regression splines and smoothing splines and have proven to be empirically useful in many respects [START_REF] Ruppert | Semiparametric Regression[END_REF], with their asymptotic properties having been studied in depth in recent years (see, for example, [START_REF] Li | On the asymptotics of penalized splines[END_REF].

Second, because of the high degree of uncertainty surrounding the data generating process (DGP) [START_REF] Ma | Spline regression in the presence of categorical predictors[END_REF][START_REF] Racine | Data-driven model evaluation: a test for revealed performance[END_REF][START_REF] De Almeida | Mgarch models: Trade-off between feasibility and flexibility[END_REF], we perform model selection by comparing the forecasting performance of some alternative models. Specifically, we compare the forecasting performance of a fully non-parametric specification of the relationship between TFP and domestic R&D, foreign R&D, and human capital with those of two competing specifications: a usual log-log parametric one and a non-parametric additive one.

To do so, we build on a method recently proposed by [START_REF] Racine | Data-driven model evaluation: a test for revealed performance[END_REF] that is based on a pseudo-Monte Carlo experiment and has its roots in cross-validation. When performing model selection, it is typically assumed that there exists a finite-dimensional "true model". In contrast, in [START_REF] Racine | Data-driven model evaluation: a test for revealed performance[END_REF] fitted econometric models are viewed as approximations, as suggested by [START_REF] Hansen | Challenges for econometric model selection[END_REF]. The goal is then to test whether, when fitted to the same data, one approximate model performs better than another in predicting new data drawn from the same data-generating process. In such a framework, it is common to adopt a sample-splitting mechanism whereby one splits the full sample into two sub-samples, where one sub-sample is used for estimation and the other for out-of-sample evaluation. To avoid that the results reflect a particular division of the data into two sub-samples, the main idea of [START_REF] Racine | Data-driven model evaluation: a test for revealed performance[END_REF] is to repeat this process a large number of times using bootstrapping techniques, because this can provide significant power improvements over existing single-split techniques. Drawing from a recent literature focusing on cross-sectional dependence in panels and on factor models [START_REF] Gonçalves | The moving blocks bootstrap for panel linear regression models with individual fixed effects[END_REF][START_REF] Palm | Cross-sectional dependence robust block bootstrap panel unit root tests[END_REF][START_REF] Smeekes | Robust block bootstrap panel predictability tests[END_REF], we extend the data-driven model-choice method proposed by [START_REF] Racine | Data-driven model evaluation: a test for revealed performance[END_REF] by considering a moving block bootstrap resampling scheme and assessing performance using the accuracy of forecasts at various time horizons.

The econometric analysis is conducted using new annual country-level data for 24 OECD countries from 1971 to 2014, which extends the time coverage of the data used by CHH and [START_REF] Ertur | Weak and strong cross-sectional dependence: A panel data analysis of international technology diffusion[END_REF]. Results clearly point to the superiority of a fully non-parametric specification of the relationship between TFP and domestic R&D capital, foreign R&D, and human capital, over parametric and even semi-parametric specifications. The non-parametric specification allows for a richer view of the resulting spillover effects, showing non-linear effects and thresholds not previously detected in the literature and ultimately suggesting the presence of (non-linear) interactive spillover effects (non-linearly) increases with the amount of foreign R&D. These effects are illustrated by a detailed comparison of the results obtained with those presented in the literature or obtained by the estimation of usual parametric models.

The paper is organized as follows. Section 2 provides a short literature review focusing on the various channels of technology diffusion and the main econometric issues, highlighting existing research gaps. Section 3 focuses on the econometric methodology, and more specifically on the issues of model specification and estimation. The forecasting-driven model-selection procedure is presented in Section 4. Section 5 describes the data. The out-of-sample comparison of the alternative specifications, as well as the estimation results, are presented in Section 6. Finally, Section 7 concludes, and additional information is provided in the appendices.

A critical review of empirical findings and econometric issues

Beyond its plausibility with respect to endogenous growth theory (see, for example, Keller, 2004, p. 762), the influence of the CH/CHH model was due to its versatility in allowing for both the consideration of alternative channels of international technology diffusion and the utilization of modern, large panel data econometric methods. In this section, we first briefly review these two areas of the literature and finally highlight the research gaps that this paper tries to address.

The uncertain effect of international technological spillovers

As noted by Potterie and Lichtenberg (2001, p. 490), "International technological spillovers have no widely accepted measures". According to [START_REF] Keller | International technology diffusion[END_REF], the main channels of international technology diffusion are trade, foreign direct investment (FDI), and language skills. For instance, CHH and Lichtenberg and van Pottelsberghe de la Potterie (1998) use alternative definitions of weights based on imports. [START_REF] Potterie | Does foreign direct investment transfer technology across borders?[END_REF] focus on FDI, and [START_REF] Musolesi | Basic stocks of knowledge and productivity: Further evidence from the hierarchical bayes estimator[END_REF] adopts a weighting scheme that takes language skills into account. [START_REF] Keller | Geographic localization of international technology diffusion[END_REF] and [START_REF] Ertur | Weak and strong cross-sectional dependence: A panel data analysis of international technology diffusion[END_REF] use geographic proximity, while [START_REF] Spolaore | The diffusion of development[END_REF] suggest genetic distance as a barrier to the diffusion of development.

Most previous studies focus on rent spillovers, which are spillovers that originate solely from economic transactions such as trade and FD, while analyses of technology diffusion originating from knowledge spillovers that are not necessarily embodied in specific economic transactions are rarer (see, for example, [START_REF] Griliches | Issues in assessing the contribution of research and development to productivity growth[END_REF] for a discussion of rent and knowledge spillovers).

As for rent spillovers, the body of literature focusing on trade reports results that are characterized by a high degree of instability of the estimated output elasticity with respect to foreign R&D (see Table A1 of Appendix A), as the estimated elasticity ranges from being non-significant in some cases [START_REF] Kao | International R&D spillovers: An application of estimation and inference in panel cointegration[END_REF][START_REF] Lee | The effectiveness of international knowledge spillover channels[END_REF] to high in magnitude, with some estimates of about 0.2-0.3 [START_REF] Engelbrecht | International R&D spillovers, human capital and productivity in oecd economies: An empirical investigation[END_REF][START_REF] Barrio-Castro | New evidence on international R&D spillovers, human capital and productivity in the OECD[END_REF][START_REF] Coe | International R&D spillovers and institutions[END_REF]. As [START_REF] Fracasso | An empirical note on international R&D spillovers[END_REF] note, analyses of spillovers generated by FDI also present conflicting results. For instance, [START_REF] Potterie | Does foreign direct investment transfer technology across borders?[END_REF] report that outward FDI flows are conducive to international knowledge spillovers while inward FDI flows do not have a significant effect. This result has been questioned by subsequent papers that obtained the opposite finding [START_REF] Lee | The effectiveness of international knowledge spillover channels[END_REF][START_REF] Bitzer | Does foreign direct investment transfer technology across borders? New evidence[END_REF].

As for knowledge spillovers that are not necessarily embodied in specific economic transactions, [START_REF] Lee | The effectiveness of international knowledge spillover channels[END_REF] finds that disembodied channels such as bilateral technological proximity and patent citations between countries have a significant and quite substantial effect in the range of 0.15-0.18. This result is broadly the same as that obtained by [START_REF] Musolesi | Basic stocks of knowledge and productivity: Further evidence from the hierarchical bayes estimator[END_REF], who focuses on knowledge spillovers incorporated into language skills.

The empirical literature has often allowed the impact of foreign R&D to differ between G7 and other countries. According to the pioneering CH/CHH studies, the effect of trade-related foreign R&D on TFP is much higher for non-G7 than for G7 countries. The same result can be found in [START_REF] Bitzer | Does foreign direct investment transfer technology across borders? New evidence[END_REF], who find that non-G7 countries benefit more from inward FDI than G7 countries. In contrast, [START_REF] Potterie | Does foreign direct investment transfer technology across borders?[END_REF] find the opposite result for outward FDI. [START_REF] Ertur | Weak and strong cross-sectional dependence: A panel data analysis of international technology diffusion[END_REF] find that richer countries benefit more from geographic spillovers, which are not necessarily embodied in specific economic transactions, than poorer countries, while smaller countries benefit more from rent spillovers originating from trade.

Overall, the literature does not seem to provide robust evidence regarding the magnitude of spillovers on TFP. Moreover, a high variability in the estimates seems to be present i) irrespective of whether spillovers are supposed to originate solely from economic transactions such as trade and FDI or they are knowledge spillovers not necessarily embodied in specific economic transactions, and ii) also when researchers have allowed the effect of foreign R&D to vary between G7 and non-G7 countries. This ultimately suggests that a functional misspecification bias could be present in standard parametric CH/CHH specifications.

Econometric issues

As far as econometric estimation and testing are concerned, the most relevant issues raised by the existing literature are i) heterogeneous slope parameters; ii) integration-cointegration; and iii) cross-sectional dependence.

Heterogeneous slope parameters. The homogeneity of the slope parameters implicit in the use of a pooled version of the CH/CHH specification (see Eq.(1) below) has been questioned from both an econometric and an economic perspective. Econometrically speaking, when the DGP is characterized by heterogeneous slopes, fixed effects estimators yield consistent estimates of the mean coefficients only when the number of cross-sectional units approaches infinity. From an economic standpoint, and closely related to the present topic, a theoretical justification for heterogeneous slope parameters across countries can be found in the "new growth" literature, which argues that technology differs across countries [START_REF] Brock | What have we learned from a decade of empirical research on growth? Growth empirics and reality[END_REF][START_REF] Durlauf | The local Solow growth model[END_REF]. Concerning international technology diffusion in particular, some studies have challenged the assumption of a common technology by arguing that technologies are specific to particular combinations of inputs [START_REF] Basu | Appropriate technology and growth[END_REF]. While some previous econometric studies have introduced a certain degree of heterogeneity by allowing the impact of the explanatory variables to differ between G7 countries and others (see, for example, Potterie and Lichtenberg, 2001, p. 762), other studies have instead adopted methods allowing for heterogeneous slopes, such as the mean group estimator [START_REF] Pesaran | Estimating long-run relationships from dynamic heterogeneous panels[END_REF]. Although approaches allowing for slope-specific parameters are conceptually appealing, they may face the problem of parameter estimate instability, caused by the estimation of several parameters with relatively short time series [START_REF] Baltagi | Comparison of forecast performance for homogeneous, heterogeneous and shrinkage estimators: Some empirical evidence from us electricity and natural-gas consumption[END_REF][START_REF] Baltagi | Tobin q: Forecast performance for hierarchical bayes, shrinkage, heterogeneous and homogeneous panel data estimators[END_REF]. In particular, the mean group estimator has asymptotic justification only for T → ∞ and generally suffers from the problem of parameter estimate instability, which can in turn produce non-significant estimates. Moreover, pooled and fully heterogeneous estimators have relative advantages and disadvantages, as "the truth probably lies somewhere in between. The parameters are not exactly the same, but there is some similarity between them" (Maddala et al., 1997, p. 91). For this reason, some previous studies have applied the shrinkage estimators described in [START_REF] Maddala | Estimation of short-run and long-run elasticities of energy demand from panel data using shrinkage estimators[END_REF] and the hierarchical Bayes approach [START_REF] Hsiao | Bayes estimation of short-run coefficients in dynamic panel data models[END_REF]. The former can be viewed as a compromise between the unrealistic homogeneity assumption and unstable heterogeneous estimates, while the latter makes use of Markov chain Monte Carlo methods via Gibbs sampling. According to [START_REF] Hsiao | Bayes estimation of short-run coefficients in dynamic panel data models[END_REF], this estimator is asymptotically equivalent to the mean group estimator but performs better for small samples.

Integration-cointegration. The large time dimension of macro panel data makes extremely relevant the adoption of time-series procedures applied to panel data to deal with non-stationarity, spurious regression, and cointegration. In this respect, some of the previous works find evidence of non-stationary variables by applying first-generation tests [START_REF] Coe | International R&D spillovers and institutions[END_REF], and after having checked for the existence of a valid cointegration relation, they applied estimation methods for cointegrated regression models in panel data, such as the dynamic OLS estimator proposed by [START_REF] Kao | On the estimation and inference of a cointegrated regression in panel data[END_REF]. Recently, [START_REF] Ertur | Weak and strong cross-sectional dependence: A panel data analysis of international technology diffusion[END_REF] provided a more nuanced and thorough picture by adopting second-generation tests decomposing the panel into deterministic, common, and idiosyncratic components [START_REF] Bai | A panic attack on unit roots and cointegration[END_REF], suggesting that while the unobserved idiosyncratic component of the variables under study is stationary, the unobserved common-factors component is non-stationary.

Cross-sectional dependence. In the last decade, with the increasing process of globalization and the growing importance of economic and social interconnections across economic agents, the issue of cross-sectional dependence (CSD) in panel data models has become of crucial relevance from both a theoretical and an empirical point of view. CSD has been typically introduced as a result of a finite number of unobservable (and/or observed) common factors or by the consideration of spatial models. [START_REF] Ertur | Weak and strong cross-sectional dependence: A panel data analysis of international technology diffusion[END_REF] focus on the detection of CSD and then on the estimation under CSD. They first find evidence of strong cross-sectional dependence in the data and then estimate the model by using the common correlated effects (CCE) approach as it remains valid in a variety of situations that are likely to occur, such as the presence of both forms of dependence [START_REF] Pesaran | Large panels with common factors and spatial correlation[END_REF] or the existence of non-stationary factors [START_REF] Kapetanios | Panels with non-stationary multifactor error structures[END_REF], and it also allows for the estimation of both pooled and heterogeneous specifications.

Research gaps

In summary, the existing literature has adopted alternative measures of international technological spillover and has focused on various methodological issues, such as allowing for heterogeneous slopes, addressing non-stationary variables, and handling cross-sectional dependence. Although the likely complex relation between research activity and economic performance-pointed out in the related literature on the economics of innovation-and the high degree of instability of the estimated output elasticity with respect to foreign R&D suggest that the traditional CH/CHH parametric specification may suffer from a functional misspecification bias, previous works did not check the ability of this specification to correctly approximate the underlying DGP or test whether more flexible specifications may be more suitable. This is the main purpose of the present work.

3 Model specifications and their estimation 3.1 The classical parametric specification Specification The standard parametric specification à la CH/CHH can be expressed as

log f it = α i + θ log S d it + γ log S f it + δ log H it + e it , (1) 
where f it is the TFP of country i = 1, ..., N at time t = 1, ..., T ; α i are individual fixed effects; S d it and S f it are domestic and foreign R&D capital stocks, respectively; H it is a measure of human capital; and e it is the error term. Foreign capital stock S f it is defined as the weighted arithmetic mean of S d jt for j = i, that is,

S f it = j =i ω ij S d jt , (2) 
where ω ij represents the weighting scheme.

The model in Eq. ( 1) can be written as a special case of the heterogeneous panel data model,

y it = α i d t + β i x it + e it , (3) 
with

y it = log f it . α i is a constant term as d t = d t = 1, x it = [log S d it , log S f it , log H it ] and β i = β = [θ, γ, δ] .
In the general specification (3), it is usually assumed that β i = β + µ i , where the deviations, µ i , are independently and identically distributed with mean 0. Moreover, these deviations are distributed independently of e jt , d t , and x jt for all i, j, and t. In this general specification, d t denotes a l × 1 vector of observed common effects (including deterministic terms such as intercepts and seasonal dummies), and α i is the associated vector of parameters.

CCE estimators Panel data literature dealing with models like (3) with both N and T being large has shown that ignoring cross-sectional dependence can seriously impair the properties of usual panel data estimators [START_REF] Andrews | Cross-section regression with common shocks[END_REF][START_REF] Phillips | Bias in dynamic panel estimation with fixed effects, incidental trends and cross section dependence[END_REF][START_REF] Sarafidis | Cross-sectional dependence in panel data analysis[END_REF]. Cross-sectional dependence can be due to unobserved common factors such as economy-wide shocks (for instance, an oil price increase) that affect all countries, albeit with different intensity. The errors e it are then assumed to have the following common factor structure:

e it = γ i f t + ε it , (4) 
in which f t is an m × 1 vector of unobserved common factors with associated country-specific factor loadings γ i . The number of factors, m, is assumed to be fixed relative to the number of countries N and, in particular, m << N . These factors f t are supposed to have a widespread effect, as they heterogeneously affect every country in the sample. ε it is an idiosyncratic error term. [START_REF] Pesaran | Estimation and inference in large heterogeneous panels with a multifactor error structure[END_REF] considers the case of i.i.d errors, while [START_REF] Pesaran | Large panels with common factors and spatial correlation[END_REF] focus on the more general case of a multifactor error structure and spatial error correlation. Combining (3) and (4), we obtain the following:

y it = α i d t + β i x it + γ i f t + ε it .
(5)

This model cannot be estimated using traditional panel data estimators due to the unobservability of common factors f t . [START_REF] Pesaran | Estimation and inference in large heterogeneous panels with a multifactor error structure[END_REF] suggests the common correlated effects (CCE) estimation procedure to deal with this issue. CCE consists of approximating the linear combination of the unobserved factors by cross-sectional averages of the dependent and explanatory variables and then running standard panel regressions augmented with these cross-sectional averages.

The CCE estimator can be motivated as follows. The idiosyncratic errors ε it in Eq. ( 4) are assumed to be independently distributed over (d t , x it ) , whereas the unobserved factors f t can be correlated with the observed variables (d t , x it ). This correlation is allowed by modeling the explanatory variables as linear functions of the observed common factors d t and the unobserved common factors f t :

x it = A i d t + Γ i f t + v it , (6) 
where A i and Γ i are l × 3 and m × 3 factor-loading matrices and

v it = (v i1t , v i2t , v i3t
) . v it is assumed to be distributed independently of ε it and is allowed to be serially correlated as well as weakly cross-sectionally correlated. Combining Eqs. ( 5) and ( 6), we get the following system of equations:

z it = y it x it = B i d t + C i f t + ξ it , (7) 
where

B i = (α i A i ) 1 0 β i I 3 , C i = (γ i Γ i ) 1 0 β i I 3 , and 
ξ it = ε it + β i v it v it .
Using sample cross-sectional averages, Eq. ( 7) can be written as

z t = B d t + C f t + ξ t , (8) 
where

z t = 1 N N i=1 z it , B = 1 N N i=1 B i , C = 1 N N i=1 C i , and ξ t = 1 N N i=1 ξ it .
Following [START_REF] Pesaran | Estimation and inference in large heterogeneous panels with a multifactor error structure[END_REF], we can pre-multiply both sides of Eq. ( 8) by C and solve for f t . We get

f t = C C -1 C z t -B d t -ξ t . (9) 
It is possible to show that ξ t converges to 0 in quadratic mean as N → ∞ [START_REF] Pesaran | Large panels with common factors and spatial correlation[END_REF]. Accordingly, it can be shown that

f t -C C -1 C z t -B d t q.m. -→ 0, as N → 0, (10) 
or put differently, the unobservable common factors, f t , can be well approximated by a linear combination of observed common factors, d t , the cross-sectional averages of the dependent variable, y t , and those of the country-specific regressors, x t . Two alternative estimators have been proposed in the literature: the CCE mean group (CCEMG) estimator and the CCE pooled (CCEP) estimator.

It has been shown that CCE estimators yield consistent estimates in a large variety of situations [START_REF] Chudik | Weak and strong cross-section dependence and estimation of large panels[END_REF][START_REF] Kapetanios | Panels with non-stationary multifactor error structures[END_REF][START_REF] Pesaran | Large panels with common factors and spatial correlation[END_REF]. Moreover, small-sample properties of CCE estimators have also been investigated in various papers (see, among others, [START_REF] Chudik | Weak and strong cross-section dependence and estimation of large panels[END_REF][START_REF] Kapetanios | Panels with non-stationary multifactor error structures[END_REF][START_REF] Westerlund | Cross-sectional averages versus principal components[END_REF]. More specifically, these papers compare the small-sample properties of CCE estimators to their competitors, i.e., estimators based on principal components (PCs) [START_REF] Bai | Panel data models with interactive fixed effects[END_REF], and show that although the PC estimates of factors are more efficient than the cross-sectional averages, the CEE estimators of slope coefficients generally perform the best. To conclude, a significant advantage of CCE estimators is that they do not require a priori knowledge about the number of unobserved common factors.

Alternative non-parametric specifications

Specifications Recently, [START_REF] Su | Sieve estimation of panel data models with cross section dependence[END_REF] considered a panel data model that extends the multifactor linear specification proposed by [START_REF] Pesaran | Estimation and inference in large heterogeneous panels with a multifactor error structure[END_REF]. Specifically, [START_REF] Su | Sieve estimation of panel data models with cross section dependence[END_REF] considered the following panel data model that allows for a non-parametric relation between the dependent variable and the regressors, while the common factors enter the model in a parametric way:

y it = α i d t + g i (x it ) + γ i f t + ε it , (11) 
where g i (.) are unknown smooth continuous functions (heterogeneous case). In the homogeneous case, g i (.) = g(.) for all i = 1, 2, . . . , N . For identification purposes, the following condition is necessary:

E(g i (x it )) = 0.
In the empirical framework, we consider two alternative specifications where x it enter the model non-parametrically. Because of the relatively short time dimension, we restrict our analysis to the homogeneous case where g i (.) = g(.) (see Su and Jin, 2012, p. 41) and propose two alternative specifications. The first specification assumes an additive structure of g(.), as follows:

log f it = α i + φ(log S d it ) + ξ(log S f it ) + ψ(log H it ) + γ i f t + ε it , (12) 
where φ(.), ξ(.), and ψ(.) are unknown univariate smooth continuous functions of interest.

The second specification instead assumes a non-additive structure of g(.), i.e., log

f it = α i + g(log S d it , log S f it , log H it ) + γ i f t + ε it . ( 13 
)
Relaxing additivity may involve the curse of dimensionality but, at the same time, may allow detecting relevant interaction effects, which are not allowed in the additive specification.

Sieve approximation [START_REF] Su | Sieve estimation of panel data models with cross section dependence[END_REF] extend the CCE approach to the estimation of a heterogeneous panel data model ( 11). First, following [START_REF] Pesaran | Estimation and inference in large heterogeneous panels with a multifactor error structure[END_REF] they proxy the unobservable common factors f t in (11) by the cross-sectional averages z t = N -1 N j=1 z jt , where z it = [y it , x it ] . Second, they approximate the non-parametric part of the model, g i (.), using sieve approximation.

Sieve approximation proceeds as follows. First, we must choose an infinite sequence of known basis functions, which we denote by {π l (x), l = 1, 2, . . .} and that can approximate any squareintegrable function of x very well. Different choices are possible, including spline approximation (see below). Second, the order of approximation must be defined. Let K denote this order, which is a function of T when estimating the heterogeneous model with g i (.), or of N and T when estimating the homogeneous model with g (.). This integer number will tend to infinity as N → ∞ (heterogeneous case) or (N, T ) → ∞ (homogeneous case). Third, under fairly weak conditions we can approximate the unknown function very well by a linear combination of the K first elements of the chosen basis, or π K (x) = (π 1 (x), π 2 (x), . . . , π K (x)) , i.e.,

g i (.) ≈ δ g i π K (x) (heterogeneous case) or g (.) ≈ δ g π K (x) (homogeneous case). ( 14 
)
Finally, to estimate δ g i , we run the following regression:

y it = α i d t + δ g i π K (x) + ψ i z t + u it , (15) 
To estimate δ g , the regression is

y it = α i d t + δ g π K (x) + ψ i z t + u it . (16) 
Su and Jin (2012) show that the extended CCE estimators of both the heterogeneous and homogeneous regression functions are consistent as N and T tend to infinity and establish the asymptotic normality of these estimators. [START_REF] Su | Sieve estimation of panel data models with cross section dependence[END_REF] estimate the non-parametric component of the model using Sieves-specifically, splines-as they typically provide better approximations (see, for example, [START_REF] Hansen | Nonparametric sieve regression: Least squares, averaging least squares, and cross-validation[END_REF]. Following [START_REF] Su | Sieve estimation of panel data models with cross section dependence[END_REF], we adopt a regression splines (RS) framework. We also employ penalized regression splines (PRS) as they combine the features of both regression splines, which use fewer knots than data points but do not penalize roughness, and smoothing splines, which control the smoothness of the fit through a penalty term but use all data points as knots. PRS have proven to be useful empirically in many respects (see, for example, [START_REF] Ruppert | Semiparametric Regression[END_REF], and in recent years their asymptotic properties have been studied and then connected to those of regression splines, to those of smoothing splines, and to the Nadaraya-Watson kernel estimators [START_REF] Li | On the asymptotics of penalized splines[END_REF][START_REF] Claeskens | Asymptotic properties of penalized spline estimators[END_REF].

Thin plate regression splines

In this work, for both RS and PRS we use thin plate regression splines (TPRS), which were introduced by [START_REF] Wood | Thin plate regression splines[END_REF]. TPRS are a low-rank eigen approximation to thin plate splines. Thin plate splines are somehow ideal smoothers (see [START_REF] Wood | Generalized additive models: an introduction with R[END_REF] but are not computationally attractive because they require the estimation of as many parameters as the number of data points. TPRS avoid the problem of knot placement that usually complicates modeling with RS or PRS, and more generally, they have some optimality properties as they provide optimal low-rank approximations to thin plate splines, while also being computationally efficient (see [START_REF] Wood | Thin plate regression splines[END_REF]. Since our explanatory variables have different units, in the case of the non-additive specification (13) we avoid isotropy by considering a tensor product basis, which is constructed by assigning TPRS as the basis for the marginal smooth function of each covariate, and then creating their Kronecker product. The tensor product smooths are invariant to the linear rescaling of covariates, and for this reason they are appropriate when the arguments of a smooth function have different units [START_REF] Wood | Low-rank scale-invariant tensor product smooths for generalized additive mixed models[END_REF]. Finally, note that in the PRS framework the smoothing parameter is selected by the restricted maximum likelihood (REML) estimation, which is less likely to develop multiple minima or to undersmooth at finite sample sizes, compared to other approaches (see, for example, [START_REF] Reiss | Smoothing parameter selection for a class of semiparametric linear models[END_REF]. Since TPRS have been developed and mostly adopted in statistical science, a more detailed description of them is provided in Appendix C.

Forecasting-driven model-selection procedure

To compare the alternative specifications, we perform a pseudo-Monte Carlo experiment. In the case of independent and identically distributed data, [START_REF] Racine | Data-driven model evaluation: a test for revealed performance[END_REF] propose a method linked to cross-validation (CV), in the original formulation of which a regression model fitted on a randomly selected first half of the data was used to predict the second half. The division into equal halves is not necessary. For instance, a common variant is the leave-one-out CV, which fits the model to the data excluding one observation each time and then predicts the remaining point. The average of the prediction errors is the CV measure of the true error. In the approach by [START_REF] Racine | Data-driven model evaluation: a test for revealed performance[END_REF], the observations are randomly shuffled at a given percentage level into training points and into evaluation points. Each model is then fitted according to the training sample, and the average out-of-sample squared prediction error (ASPE) is computed using the evaluation sample. The above steps are repeated a large number of times S, so that a S ×1 vector of prediction errors is created for each model.1 As highlighted in [START_REF] Racine | Data-driven model evaluation: a test for revealed performance[END_REF], the method can provide significant power improvements over existing single-split techniques.

In the context of time series, the performance of a model is usually assessed on its ability to forecast new observations over a given time horizon, and resampling methods are then used to evaluate forecasting performance. [START_REF] Racine | Data-driven model evaluation: a test for revealed performance[END_REF] extend their method to time-series data using recent advances in time-series resampling methodology based on block bootstrapping, which was introduced by [START_REF] Carlstein | The use of subseries values for estimating the variance of a general statistic from a stationary sequence[END_REF] and developed by [START_REF] Künsch | The jacknife and the bootsrap for general stationary observations[END_REF]. 2 The main idea underlying block resampling is that individual blocks of observations that are separated far enough in time will be approximately uncorrelated and can be treated as exchangeable. Suppose that the time series has length T = b × l. We can generate b non-overlapping blocks, each of length l. Moreover, if the blocks are sufficiently long each block preserves in the resampled series the dependence present in the original data sequence. The resampling or bootstrap scheme used here, named non-overlapping block bootstrap, is to resample with replacement from the set of b blocks. Moving block bootstrap (MBB) generalizes this scheme by allowing the blocks to overlap [START_REF] Künsch | The jacknife and the bootsrap for general stationary observations[END_REF]. Resampling now involves more blocks: a total of T -l + 1 overlapping blocks.

Although [START_REF] Racine | Data-driven model evaluation: a test for revealed performance[END_REF] do not provide any extension of their method to panel data, for which the random resampling originally proposed for cross-sections has been employed by [START_REF] Ma | Spline regression in the presence of categorical predictors[END_REF] and [START_REF] Delgado | A generalized empirical model of corruption, foreign direct investment, and growth[END_REF], they provide enough insights as to the generalization of their method to this type of data. Indeed, block bootstrapping approaches, and more specifically MBB, have been recently generalized to panel data, especially when cross-sectional dependence is present, eventually arising from a multifactor error structure. For instance, [START_REF] Gonçalves | The moving blocks bootstrap for panel linear regression models with individual fixed effects[END_REF] proposed panel MBB, i.e., standard MBB applied to the vector containing all of the individual observations at each point in time (see Appendix D for a complete description). She proved that panel MBB is robust to both serial and cross-sectional dependence of unknown form when applied to the fixed effects estimator. The same year, [START_REF] Palm | Cross-sectional dependence robust block bootstrap panel unit root tests[END_REF] presented panel unit root tests that can deal not only with common factors but also with a wide range of other plausible dynamic dependencies. They use MBB to achieve this goal. Recently, [START_REF] Smeekes | Robust block bootstrap panel predictability tests[END_REF] extended the work of [START_REF] Palm | Cross-sectional dependence robust block bootstrap panel unit root tests[END_REF] to panel predictability tests, also making use of block bootstrapping.

Drawing from the abovementioned literature, we extend the data-driven model-choice method proposed by [START_REF] Racine | Data-driven model evaluation: a test for revealed performance[END_REF]. As measures of model forecasting performance, we focus our attention on both the average square prediction error (ASPE), which was adopted by [START_REF] Racine | Data-driven model evaluation: a test for revealed performance[END_REF], and the mean absolute percentage error (MAPE), which is often recommended for forecasting exercises (see, for example, Bowerman et al., 2005, p. 18, and[START_REF] Hyndman | Another look at measures of forecast accuracy[END_REF][START_REF] Hyndman | Another look at measures of forecast accuracy[END_REF] and has the interesting property of being scale-independent. These two measures are defined as

ASP E = 1 N N i=1 F f =1 (y if -y if ) 2 , ( 17 
)
M AP E = 1 N N i=1 F f =1 100 × |y if -y if | y it , ( 18 
)
where F is the forecast horizon. Our forecasting-data-driven model-selection procedure then works as follows:

1. Apply MBB to resample from original panel data z it = (y it , x it ) , i = 1, . . . , n, and t = 1, . . . , T , and call these z * it = (y * it , x * it ) , i = 1, . . . , n, and t = 1, . . . , T .

2. Let the first T 1 years for the n countries form a training sample, i.e., z * it , i = 1, . . . , n, and t = 1, . . . , T 1 , and let the remaining observations, or z * it , i = 1, . . . , n, and t = T 1 + 1, . . . , T , form an evaluation sample.

Consider two competing models A and B. Fit each model to the n × T 1 training observations.

Let g A T 1 (.) and g B T 1 (.) denote the estimated models.

4. Generate predictions for evaluation observations, or g A T 1 (x * it ) and g B T 1 (x * it ), i = 1, . . . , n, and t = T 1 + 1, . . . , T . The generation of predictions requires knowledge of factor values, i.e., f t , t = T 1 +1, . . . , T . These values are easily obtained using their approximation by cross-sectional averages (see Eq.( 10)).

5. Compute the ASPE and MAPE of each model, i.e.,

ASP E

L = 1 n × T 1 n i=1 T t=T 1 +1 (y * it -g L T 1 (x * it )) 2 , L = A, B, and 
M AP E L = 1 n × T 1 n i=1 T t=T 1 +1 100 × |y * it -g L T 1 (x * it )| y * it , L = A, B.
6. Repeat this a large number of times, say S times, yielding (ASP E A s , ASP E B s ), s = 1, . . . , S, and (M AP E A s , M AP E B s ), s = 1, . . . , S.

7. Compare the predictive performance of the two models using their respective ASPE or MAPE empirical distribution functions. For instance, comparison can be achieved using paired-t or dominance tests.

Appendix D explains how MBB can be applied to panel data, while Appendix E provides further insights about the validity of the proposed forecasting-driven model-selection procedure by reporting a small simulation study.

Data

We build a new annual country-level balanced panel dataset covering 24 OECD countries from 1971 to 2014. This dataset is an updated version of the data used by CHH and [START_REF] Ertur | Weak and strong cross-sectional dependence: A panel data analysis of international technology diffusion[END_REF], which covers the 1971-2004 period. Consequently, our updated dataset covers a more recent period, which is particularly interesting due to the increasing process of globalization and the likely increase in the interconnections across economies over time. As for the dependent variable (f it ), we use TFP at constant prices from Penn World Table version 9.0 [START_REF] Feenstra | The next generation of the Penn World Table[END_REF]. As for the explanatory variables, to build the domestic R&D stock (S d it ) we consider business expenditure on research and development (BERD) flow values, collected from the OECD-STATS database, using total data as source of funds. Missing values are filled, and then the BERD stock is calculated using the perpetual inventory method, assuming the depreciation rate to be 0.05. In taking these steps, we follow CH and CHH. For the human capital variable (H d it ), we build a stock measure using the same method as [START_REF] Ertur | Weak and strong cross-sectional dependence: A panel data analysis of international technology diffusion[END_REF], which is grounded on earlier works on the return to schooling, and then assume a log-(piecewise)linear relationship between H and the average number of years of schooling, which were obtained from [START_REF] Barro | A new data set of educational attainment in the world, 1950-2010[END_REF]. Note that for the last three years of our sample, which are not covered by [START_REF] Barro | A new data set of educational attainment in the world, 1950-2010[END_REF], we fill the missing values by linear extrapolation.

Finally, as far as foreign R&D is concerned, we focus on geographic proximity as a channel for technology diffusion. This choice was made not only because it is theoretically consistent [START_REF] Eaton | Technology, geography, and trade[END_REF][START_REF] Keller | Geographic localization of international technology diffusion[END_REF] but mainly because traditional channels of international technology diffusion, such as trade, FDI, or patent activity, might create reverse causality problems when included in econometric specifications as they may depend on the country's technological level and, in turn, may be endogenous with respect to TFP [START_REF] Hong | Foreign direct investment and total factor productivity in China: A spatial dynamic panel analysis[END_REF]. In contrast, geographic distance is generally considered as exogenous (Keller, 2004, p. 772) and may also proxy some endogenous measures of socioeconomic, institutional, cultural, or linguistic similarity that might enhance the diffusion of technology. Following [START_REF] Keller | Geographic localization of international technology diffusion[END_REF] and [START_REF] Ertur | Weak and strong cross-sectional dependence: A panel data analysis of international technology diffusion[END_REF], we propose a specification of foreign R&D that incorporates the notion that the impact of foreign R&D is a decreasing function of geographic distance from foreign economies. Therefore, the foreign R&D capital stock for each country i is obtained by weighting the domestic R&D capital stocks of every other country j = i in the sample using an exponential distance decay function, ω ij = exp(-d ij ), with d ij being the spherical distance between the capitals of countries. Therefore,

S f it = j =i exp(-d ij )S d jt . ( 19 
)
It is also interesting to note that a possible alternative approach that has never been investigated within this literature involves calculating a multidimensional distance by adopting the Mahalanobis method, as proposed by [START_REF] Berry | An institutional approach to cross-national distance[END_REF]. This method allows summarizing many dimensions and is preferable to other approaches when the alternative measures of cross-national distance are highly correlated, as is often the case. This may provide further interesting insights. However, in this methodological paper, which aims to compare alternative specifications, geographic distance is preferred in light of exogeneity reasons.

Some descriptive statistics are provided in Table 1. One piece of relevant information provided by this table is that both domestic and foreign R&D present between variation that is almost twice the within variation, whereas for both TFP and human capital between and within variation are of the same order of magnitude.

===== Insert Table 1 =====

In addition, Figure 1 depicts univariate and bivariate plots for a few representative countries: USA, Germany, South Korea, Italy, Spain, and Sweden. The USA and Germany are the global and European leaders, respectively, with respect to technology. South Korea has become one of the most innovative countries in the world over the years, with a massive increase in R&D stock. Italy and Spain are two Southern European countries suffering from under-investment in R&D, and Sweden is a representative Nordic country. Figure 1 shows relevant non-linear and heterogeneous dynamics across countries, which may be considered as a first descriptive indication that flexible non-parametric models could be suitable in such a framework. ===== Insert Figure 1 ===== Appendix B provides some additional insights about the time series properties of the main variables under investigation through application of the PANICCA test by [START_REF] Reese | Panicca: Panic on cross-section averages[END_REF], which is a PANIC approach [START_REF] Bai | A panic attack on unit roots and cointegration[END_REF] based on cross-sectional averages augmentation rather than on principal component estimation. Application of the test confirms the results of [START_REF] Ertur | Weak and strong cross-sectional dependence: A panel data analysis of international technology diffusion[END_REF] with an extended dataset and indicates that the variables are non-stationary and that such non-stationarity arises as a result of the combination of a stationary idiosyncratic component with non-stationary common factors.

Results

Model selection

Three empirical specifications are considered:

3 log f it = α i + θ log S d it + γ log S f it + δ log H it + γ i f t + ε it , ( 20 
) log f it = α i + φ(log S d it ) + ξ(log S f it ) + ψ(log H it ) + γ i f t + ε it , and (21) 
log f it = α i + g(log S d it , log S f it , log H it ) + γ i f t + ε it . ( 22 
)
Additive and non-additive specifications ( 21) and ( 22) are estimated using either regression splines or penalized regression splines.

Traditional in-sample model-selection procedures The traditional approach to select between competing specifications is based on criteria measuring their goodness of fit to observed data, or in other words, their in-sample prediction performances. In this respect, the selection method can be defined in terms of an appropriate information criterion. Information criteria are based on the idea of balancing fit with complexity [START_REF] Konishi | Information criteria and statistical modeling[END_REF]. When focusing on smooth regression models, as in the present case, a possibility is adopting an information criterion based on the conditional likelihood of the model coefficients. Within the exponential family framework, [START_REF] Hastie | Generalized additive models[END_REF] proposed the widely used conditional AIC (Akaike information criterion). Subsequent studies showed that this approach tends to select too much complex models. Recently, [START_REF] Wood | Smoothing parameter and model selection for general smooth models[END_REF] proposed an AIC that overcomes such a problem and, more generally, that avoids neglecting the smoothing parameter uncertainty in the conditional AIC, as well as being easy to compute. Wood (2020) provided further details and, in particular, gave useful insights for obtaining a BIC (Bayesian information criterion).

While both the AIC and BIC can be used to select among nested or non-nested models, they have different properties. The AIC, which was derived as an asymptotic approximate estimate of the Kullback-Leibler information discrepancy, is not strongly consistent but is efficient, while the opposite is true for the BIC [START_REF] Claeskens | Model selection and model averaging[END_REF].

===== Insert Table 2 =====

The results in Table 2, which are based on the AIC and BIC proposed by [START_REF] Wood | Smoothing parameter and model selection for general smooth models[END_REF] and [START_REF] Wood | Inference and computation with generalized additive models and their extensions[END_REF], provide a very robust picture as both the BIC and AIC rank the models in the same way. Indeed, according to both criteria i) the non-additive penalized model performs above all others, ii) the parametric model-at the other extreme-underperforms with respect to all other models, and iii) penalized models are preferred over non-penalized ones.

Forecasting-driven selection method According to the statistical literature dealing with apparent versus true error (see, for example, [START_REF] Efron | The Jackknife, the Bootstrap, and Other Resampling Plans[END_REF], the true error is associated with out-ofsample measures of fit, in contrast to the apparent error, which is associated with within-sample measures. Typically, the latter is smaller than the former and frequently overly optimistic since a model is mostly selected to best fit the data.

Consequently, we adopt the forecasting data-driven model selection approach previously described, which allows obtaining the entire distribution of the true error for alternative models and thus permits determining which model is closer to the true unknown DGP. As far as the blocks are concerned, we fix the length of the blocks to eleven years. This allows a simple split of our sample of 44 years and also provides blocks that should be long enough to preserve the dependence structure of the original data. Overall, we draw with replacement from 44 -11 + 1 = 34 blocks. The number of draws S is fixed to 1000. We consider different out-of-sample performance horizons, and similar to [START_REF] Baltagi | Tobin q: Forecast performance for hierarchical bayes, shrinkage, heterogeneous and homogeneous panel data estimators[END_REF] we consider both a one-year and a three-year horizon.

A first relevant result is that the non-additive penalized model has the smallest median for both the ASPE and MAPE. More specifically, for the 1-year horizon the median ASPEs (MAPEs) of the parametric, the additive unpenalized, the additive penalized, and the non-additive unpenalized models are 0.552, 0.634, 0.636, and 0.617 (0.830, 0.913, 0.888, and 0.791), respectively. For the 3-year horizon, these ratios do not change significantly and take the following values: 0.521, 0.656, 0.656, and 0.631 (0.870, 0.978, 0.930, and 0.844). It can be expected that the out-of-sample performance will deteriorate when the horizon increases. Interestingly, it can be noted that when moving from a 1-to a 3-year horizon the median of the ASPEs and MAPEs is almost unaffected, showing a low increase, while the variability increases substantially as the standard deviation almost doubles in all models.

A second interesting result is that when looking at the median, the parametric model is almost always outperformed by the alternative non-parametric specifications, the only exception being the non-additive unpenalized model, which provides the worst results in terms of MAPE. Third, while when we impose an additive structure the penalized regression modeling and its unpenalized counterpart present very similar median ASPEs and MAPEs, when estimating the non-additive specification, which typically suffers more from the curse of dimensionality, an extremely pronounced gain in terms of predictive ability from using PRS over RS is observed.

In order to test whether the above differences across alternative specifications-in terms of their median-are statistically significant, we also performed a paired Wilcoxon test, which is a non-parametric alternative to the paired t-test when comparing paired data. The results of these tests are presented in Table 3. In all cases, when contrasting the non-additive penalized model with the others the null hypothesis that the difference in the medians of the ASPEs/MAPEs is zero is strongly rejected, thus indicating that this difference is statistically significant. The same happens when contrasting the additive models-both penalized and unpenalized-with the standard parametric specification.

===== Insert Table 3 =====

Next, Figure 2 shows the empirical cumulative distribution functions of the ASPEs (MAPEs) for each model. Clearly, the ASPE (MAPE) of the non-additive penalized model is stochastically dominated by the ASPE of any of the other models. This indicates that the non-additive penalized model outperforms all others in terms of predictive ability. Even if visual differences seem to appear between the distributions for the different competing models in the figures presented above, it is interesting to confirm their existence with a statistical test. The most popular approach for distribution homogeneity testing is based on the Kolmogorov-Smirnov (KS) statistic, which is obtained as the largest discrepancy between the empirical distribution functions by these models (see, for example, [START_REF] Lehmann | Testing statistical hypotheses[END_REF]. Below, we use KS test to choose the best model in terms of predictive performance.

===== Insert Figure 2 =====

The first set of results presented in Table 4 are those of the KS tests of equality of the ASPE distributions for the estimated models. These tests clearly conclude with a rejection of the null hypothesis of the equality of distributions for each pair of models, whatever the forecasting time horizon, with the notable exception of generalized additive unpenalized and penalized specifications. The second part of Table 4 reports the results of the KS test of dominance for each forecasting time horizon. We focus on the distribution of the penalized tensor model because this distribution sets itself apart from those of the other models estimated in the figures presented above. We first test whether the distribution of the penalized tensor model dominates the distribution of each of the competing models. Results clearly show that this hypothesis is rejected, whatever the considered competing model and time horizon. We then test the reverse hypothesis, i.e., that the distribution of the penalized tensor model is dominated by the distribution of each of the competing models. Test values do not allow a rejection of this hypothesis. The penalized tensor model therefore appears to be the model that generates the forecasts closest to the observed values, whatever the considered forecasting time horizon, when the quality of the forecasts is measured by the ASPE criterion.

===== Insert Tables 4 and5 ===== A similar analysis can also be performed using MAPE criterion. The corresponding results are reported in Table 5. The first set of results given in this table shows that there are only significant differences between the distribution of the penalized tensor model and those of its competitors, whatever the forecasting time horizon. Moreover, dominance tests here also clearly conclude that the MAPE distribution of the non-additive penalized model is stochastically dominated by the MAPE distribution of any of the remaining models. The penalized tensor model therefore appears to be the model that generates the forecasts closest to the observed values, whatever the considered forecasting time horizon, when the quality of the forecasts is measured by the MAPE criterion.

To sum up, these results clearly indicate that i) the parametric specification underperforms with respect to the non-parametric penalized models, and ii) there is very robust evidence that the penalized non-additive model outperforms all the others. This is a similar result to [START_REF] Ma | Spline regression in the presence of categorical predictors[END_REF], who use a similar macro panel dataset. As far as non-parametric specifications are concerned, PRS perform better than unpenalized RS. The improvement achieved when using PRS is much more pronounced when focusing on the non-additive specification, where RS suffer more from the curse of dimensionality while PRS appear to be extremely efficient. While there are a number of studies comparing alternative spline methods by using Monte Carlo simulations (see, for example, [START_REF] Wood | Thin plate regression splines[END_REF][START_REF] Wood | Low-rank scale-invariant tensor product smooths for generalized additive mixed models[END_REF][START_REF] Nie | The crs package: Nonparametric regression splines for continuous and categorical predictors[END_REF], to the best of our knowledge this is the first paper contrasting PRS and RS in terms of their predictive ability, and the results may provide some guidance for future work. The non-additive specification is indeed the best one when using PRS, while with unpenalized RS the best model is the one with additive smooth terms. These results thus suggest adopting a non-parametric, non-additive specification and indicate that PRS are more efficient than their unpenalized counterparts, especially for non-additive specifications when the curse of dimensionality is a concern.

Estimation results

We now present the estimation results of the non-additive penalized specification, which according to our findings clearly provides the best predictive performance and thus is the most suitable to approximate the underlying DGP.

As a preliminary step, in order to provide a straightforward comparison with previous works such as [START_REF] Ertur | Weak and strong cross-sectional dependence: A panel data analysis of international technology diffusion[END_REF], CHH, and others, we also estimate the model exploiting our extended dataset and adopting some parametric estimators that have already been employed in the literature. The results in Table 6 are structured as follows. Column (i) and (ii) report the results obtained by using the pooled CCE by [START_REF] Pesaran | Estimation and inference in large heterogeneous panels with a multifactor error structure[END_REF], which was employed by [START_REF] Ertur | Weak and strong cross-sectional dependence: A panel data analysis of international technology diffusion[END_REF]. In column (i), we consider the standard parametric specification, which was previously discussed; in column (ii), we allow the impact of the explanatory variables to differ between the G7 countries and the others, as is sometimes done in the literature. In columns (iii) to (vi), following CHH, [START_REF] Kao | International R&D spillovers: An application of estimation and inference in panel cointegration[END_REF][START_REF] Lee | The effectiveness of international knowledge spillover channels[END_REF], we instead focus on panel cointegration estimators. We consider both the pooled fully modified OLS (FMOLS) by [START_REF] Phillips | Linear regression limit theory for nonstationary panel data[END_REF] and the pooled dynamic OLS (DOLS) by [START_REF] Kao | On the estimation and inference of a cointegrated regression in panel data[END_REF], with and without a linear time trend in the deterministic component.

===== Insert Table 6 =====

The results are as follows. When employing the pooled CCE in (i), all of the estimated parameters are close to zero and are not significant at standard significance levels. A similar result was found by [START_REF] Eberhardt | Do spillovers matter when estimating private returns to R&D?[END_REF] when estimating the effect of R&D within a Griliches-type knowledge capital production function and can be partially explained as a result of an "omitted time-related factor bias" that may arise in common panel data models that do not account for common factors. Allowing the impact of the explanatory variables to differ between the G7 countries and the others (model (ii)) provides additional insights and, in particular, may suggest that model (i) suffers from misspecification bias, as it is now found that the coefficient associated with domestic R&D for G7 countries is positive (0.04) and significant at the 10% level. A positive (0.07) and significant effect of foreign R&D for non-G7 countries is also found. Finally, an implausible negative effect of human capital for non-G7 countries is also obtained, with an estimated elasticity equal to -0.31. These results partially contradict the findings of [START_REF] Ertur | Weak and strong cross-sectional dependence: A panel data analysis of international technology diffusion[END_REF], who exploited a shorter dataset and found totally different results for foreign R&D and human capital. Human capital was found to have a positive and significant effect only for G7 countries, while the opposite happened for foreign R&D. Overall, such parameter estimate instability may suggest that the traditional CH/CHH parametric model likely suffers from a "functional misspecification bias". The results obtained adopting panel cointegrated estimators provide similar evidence. Indeed, while the model without a trend provides results that are consistent with CHH and [START_REF] Kao | International R&D spillovers: An application of estimation and inference in panel cointegration[END_REF], who adopted the same panel cointegration estimators, the inclusion of a linear trend in the cointegration relation makes all of the estimated parameters close to 0 and statistically non-significant. Including a linear trend seems to be consistent with the time series properties of the data and also makes the estimated specification closer to the factor model. The results do not change significantly when moving from pooled to mean-group estimators. 4 In order to discuss the results for the preferred non-additive model, we first provide a visual inspection of the estimated smooth function and then focus our attention on the estimated elasticities. Also note that the estimated (multivariate) smooth function appears to be highly significant when adopting the Wald-type test suggested by [START_REF] Wood | On p-values for smooth components of an extended generalized additive model[END_REF]. 5 As for the visual inspection of the estimated multivariate function, we depict the joint effects of two variables at a time, fixing the level of the third one to the first, fifth (the median), and ninth deciles. At first glance, looking at Figures 3,4, and 5 it easy to see that complex interactive effects are a relevant feature of the data that is obscured in parametric specifications.

===== Insert Figures 3, 4 and 5 =====

When focusing on the joint effect of the R&D variables on TFP (see Figure 3), it can be noted that such an interactive effect increases with the level of human capital. As depicted in panel (a), for low levels of human capital and for most of the domain of the R&D variables, the estimated function is flat. Only for high values of foreign R&D does domestic R&D have a positive effect 4 FMOLS and DOLS estimates were obtained by exploiting Eviews 11. The coefficient covariances were computed using the default settings, and the long-run covariances used a Bartlett kernel and a Newey-West fixed bandwidth. As for the DOLS, leads and lags were selected using the BIC. Finally, note that it was computationally unfeasible to estimate the model with G7 interactions.

5 Test results are available upon request from the authors.

on TFP. Panels (b) and (c) show the estimated bivariate function when human capital is fixed to the median and to the ninth decile, respectively. The results in both panels suggest a positive and non-linear effect of domestic/foreign R&D on TFP, which seems to increase as human capital moves from the median the ninth decile.

A similar pattern appears for the domestic R&D-human capital bivariate function (see Figure 4), as it clearly increases by increasing the level of foreign R&D. Indeed, when foreign R&D is fixed to the first decile (panel (a)) the estimated function is very flat; it then becomes an increasing function when foreign R&D is fixed to the median or to the ninth decile. However, while panel (b) (foreign R&D fixed at the median) indicates a rather additive effect, panel (c) (foreign R&D fixed at the ninth decile) suggests a more complex non-linear non-additive interactive effect.

Finally, as far as the joint human capital-foreign R&D effect is concerned, a different pattern is observed as the estimated relation (see Figure 5) is always very flat for any level of domestic R&D. Relevant exceptions occur for high levels of foreign R&D, where in some specific regions human capital has a pronounced positive effect on TFP.

We provide a thorough analysis of the estimated elasticities and compare them with both previous results and our parametric estimates in Table 6. As far as domestic R&D is concerned, the literature provides an estimated elasticity that is typically bounded in the range of 0.05-0.2 and also suggests that the effect of domestic R&D on TFP is much higher for G7 than for non-G7 countries [START_REF] Kao | International R&D spillovers: An application of estimation and inference in panel cointegration[END_REF][START_REF] Coe | International R&D spillovers and institutions[END_REF][START_REF] Ertur | Weak and strong cross-sectional dependence: A panel data analysis of international technology diffusion[END_REF]. While the parametric CCE in Table 6 confirms this finding and our non-parametric results are somehow consistent with it, they are also much richer, as shown in Table 7 and in Figure 6 where we report the estimated elasticity of one domestic R&D as a function of the potential values of this factor, the other two being fixed to some quantile values. 6 . Indeed, the output elasticity of domestic R&D capital stock from the preferred non-additive model ranges between about 0 and 0.21. There are some combinations of factors for which the estimated elasticity is very close to zero and is not significant. This happens for low values of human capital associated with high values of domestic R&D. This pattern can be viewed as consistent with the existence of a minimum level of absorptive capacity, arising from the human capital endowment, that allows a country to benefit from technology. Similarly, the estimated output elasticity of domestic R&D is close to zero and non-significant for high levels of foreign R&D associated with low levels of domestic R&D. In contrast, high values of domestic and foreign R&D in combination with average levels of human capital are associated with an estimated elasticity of about 0.2. We label this situation in which the estimated output elasticity of domestic R&D (non-linearly) increases with the amount of foreign R&D as (non-linear) interactive spillover effects, in opposition to standard spillover effects, which generally refer to the direct ceteris paribus effect of foreign R&D on TFP. We also note that for median/high values of human capital, threshold effects appear as a relevant feature of the data since the estimated elasticity is positive (in the range of 0.05-0.10) and significant for low values of domestic R&D; it then decreases to around zero and finally increases again for high values of domestic R&D.

===== Insert Table 7 =====

As for the output elasticity of foreign R&D, and as was stressed in Section 2, a high degree of variability is observed when looking at the existing literature. Looking also at the results in Table 6, such variability could be explained as a consequence of functional misspecification bias, and our results from the preferred non-parametric model are consistent with this view. Three main findings arise from Figure 7. First, there are many combinations of inputs for which the estimated elasticity is about 0 and is not statistically significant. This happens, for instance, for median levels of both domestic R&D and human capital (irrespective of the level of foreign R&D). Second, for high levels of both domestic R&D and human capital, the estimated elasticity is always positive and significant, ranging from about 0.1 to 0.2, depending on the level of foreign R&D. Third, there are some combinations of domestic R&D-human capital for which a certain amount of foreign R&D is necessary to observe a significantly positive elasticity. On the one hand, these results are consistent with the existence of a certain level of absorptive capacity arising from domestic technology that is necessary for a country to benefit from foreign technology (see, for example, [START_REF] Xu | Multinational enterprises, technology diffusion, and host country productivity growth[END_REF] and with theories suggesting that technology that is invented in frontier countries is less appropriate for poorer countries (see, for example, [START_REF] Basu | Appropriate technology and growth[END_REF]. On the other hand, however, they suggest that this arises with complex non-linearities that clearly make the parametric model misspecified and may explain both the high variability in estimates from previous parametric specifications and our own parametric estimates in Table 6. ===== Insert Figures 6,7, and 8 ===== Finally, as for the output elasticity of human capital, typical approaches not accounting for common latent factors generally conclude in a high and significant estimated elasticity, which is often in the range of 0.5-0.7 (see, for example, CHH). However, [START_REF] Ertur | Weak and strong cross-sectional dependence: A panel data analysis of international technology diffusion[END_REF] cast considerable doubt on the idea that the stock of human capital-constructed using the average years of schooling-significantly affects TFP. Their result complements some previous studies on growth that emphasize the key role of the quality of education (see, for example, [START_REF] Hanushek | Schooling, labor-force quality, and the growth of nations[END_REF] and finally suggests that the quantity of education no longer has a significant effect when omitted time-related variable bias is addressed. While our parametric results in Table 6 confirm this finding, the non-parametric non-additive model provides further insights, as depicted in Figure 8. Indeed, for low-to-median levels of both R&D variables the estimated elasticity is generally non-significantly different from zero, thus confirming the parametric results. However, for high values of domestic and/or foreign R&D, some locally significant positive effect is documented. In particular, when both R&D variables are high the estimated elasticity presents an interesting non-linear pattern: for low-to-median values of human capital, the estimated function is flat and non-significantly different from zero, but it then increases and becomes positive, high in magnitude, and significant for the last two deciles of human capital. This pattern seems to be empirically consistent with the Korean technological development that has occurred over the last decades.

Overall, this evidence appears to be consistent with the existence of threshold effects, non-linear interactive spillover effects, and complex absorptive capacity effects, and is consistent with the idea of localized technical change, as suggested in the seminal paper by [START_REF] Atkinson | A new view of technological change[END_REF].

Concluding remarks

This paper proposes an estimation strategy that exploits recent non-parametric panel data methods and extends a recently proposed data-driven model-selection procedure to the case of crosssectionally dependent panels. This estimation strategy builds on [START_REF] Su | Sieve estimation of panel data models with cross section dependence[END_REF], who generalize the common correlated effects estimation procedure proposed by [START_REF] Pesaran | Estimation and inference in large heterogeneous panels with a multifactor error structure[END_REF] in a parametric framework to a more general non-parametric one. Indeed, the choice of a fully non-parametric specification of the function of interest is very appealing as it avoids the specification bias involved in the estimation of more restrictive and possibly misspecified specifications. However, this choice has a cost in terms of the number of observations necessary for sufficient precision of the estimated function-the so-called curse of dimensionality issue. It is therefore relevant to compare different specifications and choose the one with the best performance in any empirical application.

Our estimation strategy is inspired by the data-driven model-selection procedure proposed by [START_REF] Racine | Data-driven model evaluation: a test for revealed performance[END_REF] for cross-sectional data and time-series. In line with [START_REF] Efron | The Jackknife, the Bootstrap, and Other Resampling Plans[END_REF], competing specifications are evaluated in terms of their performance predicting new observations. We extend this procedure to a large panel data framework by using moving block bootstrap resampling techniques in order to preserve cross-sectional dependence in the bootstrapped samples used when assessing specification performance and by measuring forecasting performance as a tool for selecting among the competing specifications.

This estimation strategy is illustrated by revisiting an analysis of international technology diffusion and exploiting new annual country-level data for 24 OECD countries from 1971 to 2014, which extends the time-coverage of the data used by [START_REF] Coe | International R&D spillovers and institutions[END_REF] and [START_REF] Ertur | Weak and strong cross-sectional dependence: A panel data analysis of international technology diffusion[END_REF]. Model selection procedures clearly conclude in the superiority of a fully non-parametric (non-additive) specification of the relationship between TFP and domestic R&D capital, foreign R&D, and human capital, over parametric and even semi-parametric (additive) specifications. Moreover, the non-parametric specification allows for a richer view of the resulting spillover effects, showing non-linear effects and thresholds not previously detected in the literature and ultimately suggesting the presence of (non-linear) interactive spillover effects (non-linearly) increases with the amount of foreign R&D. In addition, we also document that penalized regression splines perform significantly better than their unpenalized counterparts, especially in the case of a non-additive model, when the curse of dimensionality is a concern. To the best of our knowledge, this is the first paper contrasting penalized and unpenalized regression splines in terms of their predictive ability.

To conclude, it is worth mentioning that further extensions of the present study should account for heterogeneous relations across countries. Given the relatively short time dimension of our sample, such an extension is outside the realm of the non-parametric estimators presented in this paper, where heterogeneity is addressed by adopting a mean group approach, and could be accomplished, for instance, by resorting to Bayesian modeling [START_REF] Kiefer | The smooth colonel and the reverend find common ground[END_REF][START_REF] Parmeter | Nonparametric estimation and inference for panel data models[END_REF] to address the additional curse of dimensionality problem raised by heterogeneity. 

C Thin plate regression splines

Consider the generic problem of finding the smooth function g of y = g(x)+ from n observations, where x is a vector of d variables. Thin plate splines (TPS) can be employed to estimate g by finding the function ĝ that minimizes the quantity ||y -χ|| + λJ md (χ),

where y and χ are n-dimentional vectors of the y i and χ(x i ), i = 1, 2, ..., n, respectively. || • || is the Euclidean norm.

J md (χ) is a penalty functional that is related to the order m of differentiation in J md and to the dimension d, as described below.

J md (χ) = R d ν1+•••+ν d =m m! ν 1 ! . . . ν d ! ∂ m χ ∂x ν1 1 . . . ∂x ν d d 2 dx 1 . . . dx d .
It is proven that the function that minimizes the expression above is of the form

ĝ(x) = n i=1 δ i η md (||x -x i ||) + M j=1 α j π j (x), (24) 
under the constraint that T δ = 0, T ij = π j (x i ). δ and α are vectors of unknown parameters and π j , j = 1, 2, ..., M , are M = m+d-1 d are linearly independent polynomials of degree less than m that span the R d space. η md is a specific function associated with m and d (see [START_REF] Wood | Thin plate regression splines[END_REF]. Then, (23) translates to minimizing with respect to δ and α

||y -Eδ -T α|| 2 + λδ Eδ, subject to T δ = 0, (25) 
where E is the matrix with elements

E ij = η md (||x i -x j ||), i, j = 1, 2, ..., n.
In contrast to typical RS and PRS, the estimation of g using TPS does not require the choice of knots or the selection of basis functions. Moreover, TPS do not impose any restriction in the number of predictor variables and allow some flexibility to the selection of m. Nevertheless, TPS are not computationally attractive because, as implied by ( 24) and ( 25), except for the case when d = 1, they require the estimation of as many parameters as the number of data points n.

To overcome this computational difficulty, [START_REF] Wood | Thin plate regression splines[END_REF][START_REF] Wood | Generalized additive models: an introduction with R[END_REF] starts from the smoothing problem (25) and truncates the space of the components with parameters δ, which are the ones associated with the wiggliness of the spline. Following [START_REF] Wood | Generalized additive models: an introduction with R[END_REF], let E = UDU be the eigen-decomposition of E, where D is a diagonal matrix of 

eigenvalues of E such that |D i,i | ≥ |D i-1,i-1 |
-U k D k δ k -T α|| 2 + λδ k D k δ k , subject to T U k δ k = 0. (26) 
Having fitted (26), the spline is evaluated from (24) after estimating δ from δ k .

It is worth to note that while TPS are optimal with respect to minimizing (23), the low rank smoothers resulting from the truncation described above do not inherit such an optimality property. Moreover, this low rank approximation would be ideal only if, for any given δ, it would result in minimum change in the goodness of fit and, simultaneously, in the penalty term. Nevertheless, no single basis can achieve the above for all δ. This fact raises the need to define a way by which ( 25) is approximated by (26). [START_REF] Wood | Thin plate regression splines[END_REF][START_REF] Wood | Generalized additive models: an introduction with R[END_REF] proposes an approach that is associated to minimizing the largest possible change of the goodness of fit, that is êk = max δ=0 . In these quantities, Êk Further, Wood (2003) shows that the choice of U k as the truncated basis for δ minimizes simultaneously both êk and ẽk . This approximation that also considers the minimization criteria of êk and ẽk results in the definition of the TPRS.

= EU k U k and Ẽk = U k U k EU k U k .

D Moving block bootstrap applied to panel data

Moving block bootstrap (MBB) applied to panel data runs as follows:

1. Consider you have one response y it and a p × 1 vector of explanatory variables, or x it , with i = 1, . . . , n, and t = 1, . . . , T .

2. Let z it = (y it , x it ) , vector whose dimension is (p + 1) × 1.

3. Let Z t,n = (z 1t , z 2t , . . . , z nt ) whose dimension is n(p + 1) × 1. In fact, we stack all observations for the n individuals at period t.

4. Let l the chosen length of a block. A block will thus be defined as the matrix B t,l = {Z t,n , Z t+1,n , . . . , Z t+l-1,n }.

T -l + 1 overlapping blocks are generated.

5. MBB resamples k = T /l blocks with replacement from the set of T -l + 1 overlapping blocks.

E MBB forecasting-driven model selection procedure with generated data

This appendix aims to provide further insights about the validity of the proposed MBB-forecasting-driven model selection procedure by applying such a procedure to generated data. We generate three alternative DGPs: linear, additive and non-additive, respectively, all being characterized by both cross-sectional dependence arising from (stationary and nonstationary) common factors and serial error dependence:

y it = α i + 0.3x 1it + 0.7x 2it + γ 1i f 1t + γ 2i f 2t + ε it , y it = α i + 0.01x 2 1it -0.00007x 3 1it + 0.8 sin(x 1it ) + 0.1x 2it + 0.1x 2 2it -0.005x 3 2it + cos(x 2it ) + γ 1i f 1t + γ 2i f 2t + ε it , and 
y it = α i + x 1.3 1it * x 0.7 2it + 0.5 sin(x 1it ) + 1.5 cos(x 2it ) + γ 1i f 1t + γ 2i f 2t + ε it .
The error term ε it has been genearated as a first-order autoregressive process:

ε it = 0.8ε it-1 + v it , with v it ∼ N (0, 0.7).

The explanatory variables are generated as linear functions of the individual effects and of common factors:

x 1it = c 1i + a 11i f 1t + a 12i f 2t + e 1it and x 2it = c 2i + a 21i f 1t + a 22i f 2t + e 2it ,
where the error terms are supposed to be white noise processes, i.e. e 1it ∼ N (0, 0.4) and e 2it ∼ N (0, 0.6).

The first common factor f 1t is stationary and is generated as:

f 1t = t + v 1t with v 1t ∼ N (0, 0.3),
while the second one, f 2t , is supposed to be nonstationary: 

α i = c 1i + c 2i + c 3i
We fix T = 44 and N = 24 to get the same sample dimension as in the empirical analysis. As in the main analysis, we fix the length of the blocks to eleven years and we draw with replacement from 44 -11 + 1 = 34 blocks.

The number of draws S is fixed to 1000. Figure A1 shows the ECDFs of the MAPEs (1-year forecast horizon) for each DGP, where, for estimation purposes, we employed the parametric CCE, the semiparametric (additive) CCE approach and the fully non-parametric (non-additive) CCE approach. To significantly reduce the computation time, we only consider PRS.

The results are clear-cut and provide evidence regarding how well the model choice procedure performs when selecting the right DGP underlying observed data in presence of non-linearities. Indeed, when the underlying DGP is fully non-parametric (resp. semiparametric) the MAPE of the non-additive (resp. additive) penalized estimator is stochastically dominated by the MAPEs of others models, with the parametric estimator that clearly provides the worst forecasting performances. Moreover, results indicates that the gain in terms of forecasting of employing tensor splines with respect to univariate (additive) splines, when the underlying functional relation is non-additive, is much bigger than the gain that is obtained by using univariate splines rather than tensor splines, when the underlying DGP is additive.

When the underlying DGP is characterized by a linear functional relationship, all three estimators generate very similar forecasting performances. The parametric specification being a special case of the additive semiparametric and fully non-parametric ones, this result is not surprising. Indeed, if the underlying DGP is linear and parametric, the estimator of the function s(x 1 , x 2 ) in the non-linear and non additive specification can be expected to be an additive function with linear components at x 1 and x 2 . Therefore, the choice of one of the two non-linear specifications must be completed by a detailed analysis of the additivity and linearity of the resulting estimated functions. Poor performances of the parametric specification when the underlying DGP is either non-linear and additive or non-linear and non-additive could be similarly motivated by the fact that nor the additive semiparametric or the fully nonparametric specifications are special cases of the linear parametric one. Nevertheless, this last issue would deserve a more in-depth analysis.
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  and U the corresponding eigenvectors. Denote by U k the matrix of the first k columns of U and by D k the upper left k × k submatrix of D. Restrict δ to the column space of U k , so that δ = U k δ k , where δ k is a k-dimensional vector with k > M . Then, within the space spanned by U k , problem (25) is replaced by minimizing ||y

f

  2t = log(t) + v 2t with v 2t = v 2t-1 + u t , and u t ∼ N (0, 0.1)The individual effects and the factor loadings are drawn from Gaussian distributions as follows:γ 1i ∼ N (0.8, 1), γ 2i ∼ N (0.4, 0.4),a 11i ∼ N (0.6, 0.8), a 12i ∼ N (0.9, 0.5),a 21i ∼ N (1, 0.8),a 22i ∼ N (0.6, 0.6), c 1i ∼ N (80, 1), c 2i ∼ N (10, 0.5), c 3i ∼ N (0, 0.3), and

Figure 1 :

 1 Figure 1: Univariate (a) and bivariate (b) plots.
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 2 Figure 2: Empirical cumulative distribution functions (ECDFs) of the ASPE and MAPE for different factor models: the linear, the additive, and the non-additive models for the OECD data.
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 34 Figure 3: TFP as a function of domestic and foreign R&D

Table 1 :

 1 Descriptive statistics

	Variable		Mean	SD	Min.	Max.
	log T F P	Overall	-0.090 0.146 -0.645 0.256
		Between		0.097 -0.308 0.113
		Within		0.110 -0.427 0.218
	log domestic R&D Overall 10.190 2.223 -1.545 14.925
		Between		2.099 3.793	3.793
		Within		0.846 4.851	12.771
	log f oreign R&D Overall 11.210 1.109 6.634	14.793
		Between		0.962 8.300	14.137
		Within		0.585 7.420	13.738
	log human capital	Overall	1.038	0.141 0.532	1.295
		Between		0.108 0.798	1.236
		Within		0.093 0.741	1.300

Table 3 :

 3 Paired Wilcoxon tests of factor models

	Non-additive	penalized	
	Non-additive	unpenalized	
	Additive	penalized	ASPE
	Additive	unpenalized	
	Horizon	
			Parametric

Table 4 :

 4 Kolmogorov-Smirnov test results: ASP E

		--Forecasting horizon = 1 year --	
		Two-sided tests		
		Additive	Additive	Non-additive	Non-additive
		unpenalized	penalized	unpenalized	penalized
	Parametric	0.002	< 0.001	0.006	< 0.001
	Additive unpenalized	-	0.999	0.061	< 0.001
	Additive penalized	-	-	0.020	< 0.001
	Non-additive unpenalized	-	-	-	< 0.001
		One-sided tests		
	H A : The distribution of ASP Es for the non-additive penalized model is lower than that for:
		Parametric	Additive	Additive	Non-additive
			unpenalized	penalized	unpenalized
	Non-additive penalized	< 0.001	< 0.001	< 0.001	< 0.001
	H A : The distribution of ASP Es for the non-additive penalized model is greater than that for:
		Parametric	Additive	Additive	Non-additive
			unpenalized	penalized	unpenalized
	Non-additive penalized	≈ 1	0.999	0.996	≈ 1
		--Forecasting horizon = 3 years --	
		Two-sided tests		
		Additive	Additive	Non-additive	Non-additive
		unpenalized	penalized	unpenalized	penalized
	Parametric	< 0.001	< 0.001	0.003	< 0.001
	Additive unpenalized	-	0.954	0.055	< 0.001
	Additive penalized	-	-	0.020	< 0.001
	Non-additive unpenalized	-	-	-	< 0.001
		One-sided tests		
	H A : The distribution of ASP Es for the non-additive penalized model is lower than that for:
		Parametric	Additive	Additive	Non-additive
			unpenalized	penalized	unpenalized
	Non-additive penalized	< 0.001	< 0.001	< 0.001	< 0.001
	H A : The distribution of ASP Es for the non-additive penalized model is greater than that for:
		Parametric	Additive	Additive	Non-additive
			unpenalized	penalized	unpenalized
	Non-additive penalized	≈ 1	≈ 1	≈ 1	≈ 1

Table 5 :

 5 Kolmogorov-Smirnov test results: M AP E

		--Forecasting horizon = 1 year --	
		Two-sided tests		
		Additive	Additive	Non-additive	Non-additive
		unpenalized	penalized	unpenalized	penalized
	Parametric	0.573	0.370	0.859	0.008
	Additive unpenalized	-	0.954	0.610	0.078
	Additive penalized	-	-	0.200	0.069
	Non-additive unpenalized	-	-	-	0.069
		One-sided tests		
	H A : The distribution of M AP Es for the non-additive penalized model is lower than that for:
		Parametric	Additive	Additive	Non-additive
			unpenalized	penalized	unpenalized
	Non-additive penalized	0.004	0.039	0.034	0.034
	H A : The distribution of M AP Es for the non-additive Penalized model is greater than that for:
		Parametric	Additive	Additive	Non-additive
			unpenalized	penalized	unpenalized
	Non-additive penalized	0.952	0.845	0.866	0.940
		--Forecasting horizon = 3 years --	
		Two-sided tests		
		Additive	Additive	Non-additive	Non-additive
		unpenalized	penalized	unpenalized	penalized
	Parametric	0.573	0.288	0.648	0.005
	Additive unpenalized	-	0.999	0.401	0.029
	Additive penalized	-	-	0.219	0.020
	Non-additive unpenalized	-	-	-	0.015
		One-sided tests		
	H A : The distribution of M AP Es for the non-additive penalized model is lower than that for:
		Parametric	Additive	Additive	Non-additive
			unpenalized	penalized	unpenalized
	Non-additive penalized	0.023	0.015	0.009	0.007
	H A : The distribution of M AP Es for the non-additive penalized model is greater than that for:
		Parametric	Additive	Additive	Non-additive
			unpenalized	penalized	unpenalized
	Non-additive penalized	0.975	0.845	0.845	0.952

Table 6 :

 6 Parametric estimation results

		CCE	CCE G7	FMOLS	DOLS	FMOLS T	DOLS T
		(i)	(ii)	(iii)	(iv)	(v)	(vi)
	log S d	-0.0004		0.071*** 0.062***	0.005	0.006
		(0.0056)		(0.0086)	(0.0097)	(0.0102)	(0.0111)
	log S f	0.009		0.013	0.005	-0.030	-0.033
		(0.0122)		(0.0115)	(0.0149)	(0.0186)	(0.0195)
	log H	-0.095		0.357*** 0.361***	0.225	0.178
		(0.0779)		(0.0680)	(0.0719)	(0.1366)	(0.1431)
	1 G7 log S d	0.041*			
			(0.0248)			
	1 N OG7 log S d	0.008			
			(0.0060)			
	1 G7 log S f	0.039			
			(0.0281)			
	1 N OG7 log S f	0.065***			
			(0.0184)			
	1 G7 log H	0.26			
			(0.2357)			
	1 N OG7 log H	-0.306**			
			(0.121)			
	Notes:					
	CCE: pooled CCE ; CCE G7: pooled CCE with G7 interactions;	
	1 G7 =	1 if country ∈ G7 group 0 if country / ∈ G7 group	, and1 N OG7 = 1 -1 G7	
	FMOLS: fully modified OLS; FMOLS T: fully modified OLS with linear trend;
	DOLS: dynamic OLS; leads and lags selection based on BIC;	
	DOLS T: dynamic OLS with linear trend;			
	***, **, *: significant at the 1%, 5%, and 10% level, respectively; standard errors in brackets.

TABLE A1

 A1 Some previous studies on R&D international spillovers

			Technology					
	Author	Sample	transfer	Method	COINT HET CSD NL	Foreign R&D
	Coe and Helpman (1995)	22 countries, 1971-90	trade	LSDV				.06-.092
		22 countries, 1971-90	trade	DOLS				.165-.186
	Coe et al. (2009)	24 countries, 1971-2004	trade	LSDV	x			.185-.206
		24 countries, 1971-2004	trade	DOLS				.206-.213
		22 countries, 1971-90	trade	BC-OLS				.09-.125
	Kao et al. (1999)	22 countries, 1971-90	trade	FM-OLS	x			.075-.103
		22 countries, 1971-90	trade	DOLS				.044NS-.056NS
	Lichtenberg and							
		22 countries, 1971-90	trade	LSDV				.058-.276
	Van Pottelsberghe (1997)							
		23 countries, 1971-90	trade	LSDV				.154
	Lichtenberg and	23 countries, 1971-90	FDI	LSDV				-.06NS-.072
	Van Pottelsberghe (2001)	23 countries, 1971-90	trade	FD				.067
		23 countries, 1971-90	FDI	FD				.006NS-.039
		13 countries, 1981-98	trade	HB				.09
	Musolesi (2007)	13 countries, 1981-98	FDI	HB		x		-0.01NS-.004NS
		13 countries, 1981-98	language	HB				.23
		16 countries, 1981-2000	trade	DOLS				-.02NS-.17
	Lee (2006)	16 countries, 1981-2000	FDI	DOLS	x			-.017NS-.034
		16 countries, 1981-2000	patents	DOLS				.157-.183
		14 countries, 1970-95	geography	NLS				.843
	Keller (2002)						x	
		14 countries, 1970-95	language	NLS				.565
	Engelbrecht (2002)	21 countries, 1971-85	trade	LSDV				.220-.305
		17 countries, 1973-2000	trade	FGLS				.009-.02
	Bitzer and Kerekes (2008)							
		17 countries, 1973-2000	FDI	FGLS				-.016-.012
		21 countries, 1971-85	trade	LSDV				.094-.225
	Barrio-Castro et al. (2002)	21 countries, 1966-95	trade	LSDV				0.016-0.106
		21 countries, 1966-95	trade	DOLS				.092-.141
		24 countries, 1971-2004	trade	DOLS				.107-.126
	Fracasso and Vittucci (2013)					x	x	
		24 countries, 1971-2004	geography	NLS				0.016-0.106
		24 countries, 1971-2004	geography	CCEP				0.094NS-0.329
	Ertur and Musolesi (2017)	24 countries, 1971-2004	geography	CCEMG	x	x	x	0.240NS-0.510NS
		24 countries, 1971-2004	geography	SEM				0.011-NS-0.22
	Notes:							
	COINT: Integration-Coitegration analysis; HET: Heterogeneous slopes; CSD: Cross-Sectional Dependence; NL: Non-linear models.	

LSDV: Least Squares Dummy Variable ; DOLS: Dynamic Ordinary Least Squares; BC-OLS: Bias Corrected OLS; FM-OLS: Fully Modified OLS; FD: First Difference; HB: Hierarchical Bayes; NLS: Non Linear Least Squares; FGLS: Feasible Generalized Least Squares; CCEP:Pommon Correlated Effects Pooled; CCEMG: Pommon Correlated Effects Mean Group; SEM: Spatial Error Model; NS: not significant.
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			: R&D elasticities	
	Value of domestic R&D fixed at the 10% quantile
			Values of Foreign R&D fixed at
			Q10	Median	Q90
	Values	Q10	0.0342** 0.04601***	0.0616
	of		(0.0160)	0.0092)	(0.0276)
	Human Median 0.0393*** 0.0320***	-0.0193
	Capital		(0.0137)	(0.0086)	(0.0170)
	fixed	Q90	0.0876*** 0.0921***	0.0241
	at :		(0.0229)	(0.0215)	(0.0230)
	Value of domestic R&D fixed at the median
			Values of Foreign R&D:
			Q10	Median	Q90
	Values	Q10	0.0083	0.0630*** 0.2001***
	of		(0.0276)	(0.0185)	(0.0634)
	Human Median	0.0154	-0.0188	-0.0251*
	Capital		( 0.0210)	(0.0130)	(0.0129)
	fixed	Q90	-0.0076	0.0354** 0.0697***
	at:		( 0.0249)	(0.0194)	(0.0201)
	Value of domestic R&D fixed at the 90% quantile
			Values of Foreign R&D:
			Q10	Median	Q90
	Values	Q10	-0.0176	-0.0564	-0.0114
	of		(0.0479)	(0.0499)	(0.1017)
	Human Median 0.1619*** 0.1977 *** 0.2128***
	Capital		(0.0351)	(0.0316)	(0.0469)
	fixed	Q90	0.1459***	0.0572*	0.0125
	at:				

See also[START_REF] Baltagi | Homogeneous, heterogeneous or shrinkage estimators? Some empirical evidence from french regional gasoline consumption[END_REF], who contrast the out-of-sample forecast performance of alternative parametric panel data estimators.

Applications of the various types of block bootstrap methods for time series and other models of dependent data (including spatial data) are extensively presented in[START_REF] Lahiri | Resampling methods for dependent data[END_REF].

The parametric specification is estimated using a CCEP estimator already coded in R within the package plm, while the non-parametric specifications are estimated by exploiting the R package mgcv. The model selection procedure has been coded by the authors using the R programming language.

Standard errors are reported in Table

7, in addition to estimated values of elasticities. Their computation takes advantage of the underlying parametric representation of sieve approximations (see Eq. (14)) and is based on the covariance matrix of estimated parameters δ g and derivatives of the elements belonging to the chosen basis π K (x) = (π 1 (x), π 2 (x), . . . , π K (x)) . The 90% confidence intervals in Figure6are computed in the same way (SeeWood, 2017, p. 341, for more details) 

Appendices A Summary of previous works

The Table A1 below summarizes some previous works and highlights some relevant methodological aspects.

B Panel unit roots tests

Some of the previous works find evidence of nonstationary variables by applying first-generation tests [START_REF] Coe | International R&D spillovers and institutions[END_REF]. Recently, [START_REF] Ertur | Weak and strong cross-sectional dependence: A panel data analysis of international technology diffusion[END_REF], by adopting the PANIC approach [START_REF] Bai | A panic attack on unit roots and cointegration[END_REF], which decomposes the panel into deterministic, common and idiosyncratic components, not only confirmed that the series are nonstationary but also suggested that that such a nonstationarity arises as a result of a stationary idiosyncratic component combined with nonstationary common factors. Despite providing a thorough investigation of the time series properties of the variables is somehow outside the scope of the paper, it is of some interest to check whether this result holds with this extended dataset, also in light of the results provided by [START_REF] Kapetanios | Panels with non-stationary multifactor error structures[END_REF] showing that the CCE approch remains valid when the nonstationarity arises because of nonstationary factors.

We adopt the PANICCA test by [START_REF] Reese | Panicca: Panic on cross-section averages[END_REF], which is a PANIC approach based on crosssectional averages augmentation rather than on principal component estimation. PANICCA maintains the generality of PANIC as it allows testing for unit roots in both the common and idiosyncratic components of the data, but it has better small samples properties and avoids the determination of the total number of factors, which is usually done by adopting information criteria [START_REF] Bai | Determining the number of factors in approximate factor models[END_REF]. Nevertheless, practical implementation of such criteria is difficult as they may tend to overestimate the number of factors and the results are known to be sensitive to the maximum number of factors which should be arbitrarily fixed [START_REF] Ertur | Weak and strong cross-sectional dependence: A panel data analysis of international technology diffusion[END_REF].

The results in Table B1 are clear-cut. The statistics proposed by [START_REF] Bai | Panel unit root tests with cross-section dependence: A further investigation[END_REF], denoted P a and P b and P M SB provide evidence for rejection of the null hypothesis of nonstationarity of the idiosyncratic components for all variables. The rejection of the nonstationarity of the idiosyncratic component does not imply that the series are stationary, as some of the common factors may be nonstationary. To determine how many of these factors are nonstationary, we follow [START_REF] Reese | Panicca: Panic on cross-section averages[END_REF] and we consider the M Q f and M Q c statistics. The limiting distributions of these statistics are nonstandard, and critical values are reported in [START_REF] Bai | Determining the number of factors in approximate factor models[END_REF] for up to six factors. The results provide a very clear picture. For all variables, regardless of the test used, the number of nonstationary common factors is almost always equal to the total number of common factors, which given the crosssectional averages augmentation is equal to four. The application of the PANICCA approach thus suggests that the variables are nonstationary and that this property is the result of multiple nonstationary common factors combined with stationary idiosyncratic components.

TABLE B1

PANICCA test

Idiosyncratic component Nonstationary factors The estimated number of independent stochastic trends is reported ( 5% level).