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Abstract

Understanding stream runoff generation processes requires distributed stream runoff estimates ; however the acquisition of 

such estimates remains challenging in hydrology, especially in remote areas. In regions with a high spatial density of small 

reservoirs, those reservoirs could be employed to gauge stream runoff (Liebe et al., 2009). Using a water balance approach, 

the stream runoff flowing into a reservoir from a drainage catchment could be estimated. Accordingly,  this work aims to 

address the following two questions: i) what is the error in the estimated stream runoff and ii) what are the main estimation  

uncertainty factors? Based on a case study of the Kamech catchment, Tunisia, stream runoff was estimated at different 

temporal  resolutions  (1-32  days),  and  a  global  sensitivity  analysis  was performed  to  estimate  the  contributions  of  the 

reservoir water balance terms (evaporation, rainfall, percolation, reservoir water level and level-area-volume relations) to the 

estimated stream runoff uncertainty.

The results reveal that stream runoff can be reliably estimated based on small reservoirs using a mass balance approach. 

The error and global stream runoff estimation uncertainties decrease as the temporal resolution increases. The bathymetric 

relationships (level-area and level-volume relations) constitute a strong factor of uncertainty for all temporal resolutions, and 

even the dominant factor for temporal resolutions ranging from 4 to 23 days. The estimation uncertainty for the shortest 

temporal resolutions (1-8 days) mainly originates from reservoir level uncertainty. As the temporal resolution increases, the 

contribution of percolation uncertainty increases. The general (not site-specific) conclusions of this study are that stream 

runoff gauging based on small reservoirs requires the determination of the bathymetric relations and that small reservoirs 

could be used as reliable stream runoff gauges at short temporal resolutions if the reservoir level is measured with limited 

uncertainty  and  at  long  temporal  resolutions  as  long  as  the  percolation  rate  from the  reservoir  is  known  with  limited 

uncertainty.
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Highlights

• Small reservoirs could be used to gauge catchment stream runoff

• Stream runoff is estimated based on a small reservoir using the water balance approach

•  

• High stream runoff are better estimated than low ones

•

• The performance of estimation improves as the temporal resolution increases [1d-32d]

• Bathymetric relations, percolation and reservoir level estimation are the main sources of uncertainty
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Introduction

Stream  runoff  time  series  constitute  basic  and  critical  data  in  hydrology  that  are  needed  to  better  understand  the 

mechanisms underlying the variability and generation of stream runoff and are essential for quantifying the status of water 

resources  and  planning  and  implementing  management  operations.  Stream  runoff  data  are  important  for  hydrological 

modelling performed for both scientific and operational objectives. These time series are also necessary for understanding 

the biogeochemical  cycles and ecological functioning of streams. However, acquiring either local (at a point) or spatially 

distributed stream runoff time series data remains a real challenge in hydrology; this challenge is particularly acute in remote 

areas, such areas in arid and semi-arid environments.

Small reservoirs have been erected in arid and semi-arid locales for supplying water (often for agriculture) and preventing 

downstream flooding. Despite the lack of a formal definition,  a small  reservoir  is commonly characterised by a storage 

capacity smaller than 1 Mm3 (Habets et al., 2018). A small reservoir often consists of a small dam built across a valley to 

intercept and store stream runoff. For decades, small reservoirs have been increasingly constructed in many countries.  

Consequently, in some catchments,, such as those in Australia (Schreider et al., 2002 ; Nathan & Lowe, 2002) and in South 

Africa (Hughes & Mantel, 2010), the density can exceed 1 reservoir/km². The idea to use small reservoirs as stream gauges 

has already been examined (Albergel & Rejeb, 1997 ; Mekki et al., 2006 ; Liebe  et al., 2009). Liebe  et al. (2009) used a 

simple hydrological model coupled with the remote monitoring of a small reservoir to simulate daily stream runoff time series  

for a catchment in Ghana. Furthermore, using the water balance approach, the water levels in small reservoirs have been 

continuously monitored to estimate stream runoff, for instance, in Tunisia by Albergel and Rejeb (1997) and Mekki  et al.  

(2006). The technological development of automatic water level sensors and remote data transmission and the development 

of community-based approaches (Starkey et al., 2017), could enhance the availability of data for the evaluation of the water 

balance and thus improve the use of small reservoirs as stream runoff gauges.

The objective of this study is to examine the relevance of regarding small reservoirs as stream gauges based on the water 

balance approach. This study relies on the Kamech catchment, Tunisia, which is a research catchment draining into a small 
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reservoir.  We  followed  a  two-step  approach.  In  the  first  step,  the  stream  runoff  was  estimated  at  different  temporal  

resolutions based on the reservoir water balance; then, the estimated time series data were compared with stream runoff 

measurements obtained from a classic stream gauge station. To evaluate the adding value of the reservoir method, we also 

estimated, as a comparison, stream runoff based on a more straightforward method used in engineering hydrology which is 

the runoff  coefficient.  In the second step,  a global  sensitivity  analysis was performed to identify  and quantify  the main 

sources of uncertainty in the stream runoff estimated using the reservoir water balance approach. Based on these results, 

the feasibility of considering small reservoirs as stream gauges is discussed.

1. Study catchment and data

The Kamech catchment is a small catchment (2.63 km²) located in northern Tunisia. The Kamech catchment is one of the 

two catchments in France and Tunisia of the observatory OMERE (an acronym for Mediterranean Observatory of Rural 

Environment and Water or « Observatoire Méditerranéen de l’Environnement Rural et de l’Eau », in French) (Molénat et al., 

2018); the catchment also belongs to the French network of critical zone observatories called OZCAR (Gaillardet  et al., 

2018).  The  catchment  characteristics,  equipment  and  monitoring  are  extensively  described  in  Molénat  et  al.  (2018). 

Climatically,  the region is semi-arid to sub-humid,  and the 25-year mean annual  rainfall  and reference evaporation are 

645mm and 1366mm, respectively.

In 1992, a dam was built  across the wadi at  the catchment outlet  to prevent siltation in a large downstream dam. The  

reservoir has a capacity of 135,000 m³ (Figure 1). The reservoir intercepts runoff from the wadi and lateral surface runoff 

along its banks. The water within the reservoir may be withdrawn for irrigation in spring and summer, and water can also be 

released when the reservoir reaches its capacity to ensure the safety of the dam's infrastructure. In the present study, we 

chose the water year 2011-2012 during which releases and withdrawals were either null or negligible.
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Hereafter, we present the available data by estimating the relative or absolute errors in each measurement, as these errors 

are particularly important for the global sensitivity analysis performed in this work. Rainfall in the catchment is measured 

using a tipping bucket gauge located on the dam. In this work, the hourly mean rainfall rate is used. The relative error in a 

rainfall measurement acquired by a tipping bucket depends on many factors, such as the rainfall intensity and volumes of the 

compartments within the bucket; consequently,  the relative errors vary considerably in the literature (Habib  et al., 2001 ; 

Wang  et al., 2008). In this work, we assumed a relative error of 20% in the rainfall measurements corresponding to the  

highest values of an hourly time step reported in previous studies (Wang et al., 2008). Pan evaporation is measured daily 

using a pan located on a bank of the reservoir near the dam. The hourly evaporation rate was derived from daily records  

considering a sinusoidal hourly variation each day. Evaporation from the reservoir water free surface efs in the reservoir was 

derived from pan evaporation epan considering a pan coefficient, k, of 0.65 (Bouteffeha et al., 2015) according to efs=k.epan . In 

general, the  k  factor  can  vary  across  reservoirs  and  within  a  given  reservoir  over  time.  Regarding  lake  or  reservoir  

evaporation, k is generally found to be lower than 1.0 with wide variations ranging from 0.5 to 1.2 (e.g. Fu et al., 2004; 

Martinez Alvarez et al., 2007). In this work we considered both the error associated with pan evaporation measurements, 

epan, and the error associated with the determination of the pan coefficient, k. By applying a logarithmic transform of the latter 

relation and then deriving, we can deduce that de fs/efs=dk/k+depan/epan where defs, dk and depan are the derivatives of efs, k and 

epan, respectively, that are assimilated in the absolute error. Thus, the relative error in efs, defs/efs, is the sum of the relative 

errors in epan and k. Following Winter (1981), the relative errors in the pan evaporation and pan coefficient estimation were 

considered to be 20% and 10%, respectively, yielding to a relative error of 30% in the reservoir water evaporation estimation. 

The reservoir  water  level  is measured every 5 minutes by a continuous pressure probe compensating for  atmospheric 

pressure fluctuations. The absolute error in the water level measurement was estimated at 20 mm independent of the level.  

This error includes the error due to the sensor considered as independent of the level according to the manufacturer and the 

error resulting from wind-induced variations which was considered empirically at approximately 15 mm and independent of 

the level. The reservoir water volume can be derived from the relations between the water volume and level and between the 

water area and level, hereafter named the level-volume (L-V) and level-area (L-A) relations, respectively. These relations 

were determined based on a bathymetric survey performed in August 2008. The bathymetric survey produced bipoints of L i-
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Vi and Li-Ai  . The relations L-V and A-V were fitted on the bi-points as V=aLb and A=cLd. Error in the relations are derived 

from different sources as follows: data source error derived from the topographic survey of the reservoir bed elevation (error  

in measurement, sampling interval and DEM building) and error in the volume and area calculations. For each bi-point, i.e., 

Li-Vi, or Li-Ai , we considered that the volume Vi, or area Ai, was estimated with a relative error of 20%. 

The percolation from the reservoir was estimated according to Bouteffeha et al. (2015), who estimated the percolation rates 

at some reservoir water levels. A linear regression was performed, allowing us to estimate the percolation rate at each 

reservoir  water  level.  Thus,  the relation between the percolation  rate and water  level,  hereafter  named the percolation 

relation, was   based on different data than those used in the present study to estimate stream runoff. The error in the 

percolation estimation was fixed from the 99% confidence interval. In a linear regression, the confidence interval depends on 

the value of the regressor and is not theoretically constant; in our case, the errors in the percolation rates within the range of 

reservoir water levels varied between 2.18 and 2.19 mm/day. Consequently, the error in the percolation rate estimation was 

assumed to be constant at 2.185 mm/day.

In the Kamech catchment, the wadi runoff is monitored with a gauging station located upstream of the reservoir mouth (wadi 

station in Figure 1). The station is located sufficiently upstream of the reservoir mouth to avoid or minimize backwater effects 

(Figure 1). The station is equipped with a U-shaped concrete flume. The water level in the flume is measured once per 

minute by a pressure transducer sensor and recorded in a data logger. Then, a stage-discharge relationship is used to 

estimate stream runoff based on the water level.  A set of ten stage-discharge values was used to establish the stage-

discharge relationship. For every stage-discharge value, the discharge was estimated by the velocity-area method. Velocity 

in the wet section was measured with a velocimeter every 2 cm of depth and at lateral intervals proportional to water level.  

Hourly runoff averages were used in this work, and the total runoff entering the reservoir was calculated as the area-scaled 

specific runoff measured in the wadi.
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Figure 1 : Aerial view of the Kamech catchment showing the reservoir and locations of the weather station and wadi gauge  

station.
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2.     Estimated stream runoff and associated error and uncertainty  

2.1. Estimation of stream runoff

Figure 2 : Schematic view of a catchment draining into a small reservoir. Qcatch represents the catchment stream runoff  

flowing into the reservoir.

The small reservoir considered here captures the stream runoff draining from an upstream catchment (Figure 2). Hence, the 

temporal variations in the reservoir water volume depend on the upstream stream runoff and other inflows (rainfall directly  
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impacting the surface water) and outflows (evaporation from the surface water and seepage through the reservoir bed and 

dam). Here, water abstraction is assumed to be null or negligible. The variation in the reservoir water volume at a temporal  

resolution of Δt [T] can be expressed based on the water balance as follows:

ΔV
Δ t

=q⋅A c−E+R−S p                                                            Equation (1)

where ΔV is the variation in the reservoir water volume L3 over the given time step Δt, q is the catchment-specific runoff [L/T] 

flowing into the reservoir over the given time step, E is the evaporation flux [L3/T] from the reservoir surface water over the 

given time step, R is the mean rainfall flux [L3/T] at the reservoir surface water over the given time step, Sp is the mean 

percolation flux [L3/T] from the reservoir water surface as infiltration occurs through the reservoir bottom or wall dams, and Ac 

is the catchment area [L²] drained by the reservoir. From Equation (1), the specific stream runoff over a given time step Δti is 

estimated as:

qi
est
=
1
Ac

(
(V i

fin
−V i

ini
)

Δtt i
−Ri+Ei+Sp i) Equation (2)

where Vf
fin [L3] and Vi

ini [L3] are the final and initial water volumes in the reservoir, respectively, at the end and the beginning of 

the given time step and qest
i, Ei, Ri and Spi are the estimated specific stream runoff [L/T], rainfall flux [L3/T], evaporation flux 

[L3/T] and percolation flux [L3/T], respectively, over the given time step Δti. The percolation was calculated based on a linear 

regression of the reservoir water level and percolation rate. At each time step of a given temporal resolution, the evaporation,  

rainfall and percolation fluxes were estimated as the product of the water surface area of the reservoir and the cumulative 

evaporation, rainfall and percolation, respectively, over the time step. The surface area and volume of water in the reservoir 

were calculated based on the water level measurements and the L-A and L-V relations, respectively. The average surface 

area over a given time step was considered to be the mean of the initial and final surface areas of the time step. 
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The specific stream runoff in one hydrologic year ranging from 01 September 2010 to 31 August 2011 was calculated. The 

stream runoff times series were calculated for 32 temporal resolutions  Δt ranging from 1 day to 32 days with a one-day 

increment. The length of the stream runoff time series ranged from 365 steps at the 1-day resolution to 11 steps at the 32-

days resolution. 

The interest of using the small reservoir method to estimate stream runoff was analysed based both on performance criteria of estimation  

(see the following section) and on a comparison with a simple method. The runoff coefficient method was used as the simple method,  

since it  is particularly relevant to Hortonian runoff catchments, such as Kamech catchment (Hingray et al.,  2014). According to this  

method, the stream runoff is estimated at a constant fraction of the rainfall. We explored the values of runoff coefficient ranging from 0.01  

to 0.5. For every value and at every time resolution (1 to 32 days), the Nash-and-Sutcliffe efficiency was calculated from the observed  

and estimated stream runoff. We retained the value of 0.09 as runoff coefficient, which provided the highest efficiency mean calculated  

from the efficiencies of all the time resolutions. 

2.2. Estimation error, uncertainty and performance

The following two types of uncertainty sources were considered in the analysis of uncertainty in the stream runoff estimation 

based  on  Equation  (2):  the  measurement  uncertainty  and  the  derived  data  uncertainty  (McMillan  et  al.,  2018).  The 

measurement uncertainty was associated with errors in the direct and local measurements of the pan evaporation, rainfall  

rate by rain gauging and reservoir water level by a pressure sensor. The derived data uncertainty in the reservoir water  

volume and area, the evaporation flux and the percolation flux was considered. The derived data uncertainty in the water 

volume and area (Vi and Ai in Equation 2) was assumed to result from the uncertainty in the L-V and L-A relations. The 

uncertainty in the percolation rate (Spi in Equation 2) was assumed to mainly originate from the uncertainty in the percolation 

relation.  At least,  the derived data uncertainty  associated  with the evaporation flux (E i in Equation 2) was assumed to 

originate from the uncertainty in the pan coefficient. Each uncertainty was assumed to vary from time step to time step when 

applying Equation 2. 

As a consequence of the measurement uncertainty and the derived data uncertainty, each variable in Equation (2) was 

considered a random variable characterised by a probability density function (pdf). The range of values defined by the pdf of 

a given term corresponds to the range of possible values due to the errors potentially occurring in the estimation of that term
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The stream runoff at each Δti was also considered a random variable with possible values. Therefore, for each time step Δti 

during a given simulation period (e.g., a water year), we defined the following:  qest
i, a possible value of the stream runoff 

during Δti  ;  qi
est

,the estimated stream runoff during Δti as the mean of all possible values; and Uqi, the uncertainty in the 

estimated stream runoff at  Δti, where the true value qi is in the interval  [qi
est

−Uqi
;qi

est
+U qi

]  with a certain level of 

confidence. With the 99% level of confidence we chose, the uncertainty is equal to 3.0  σqi⁄√n, where  σqi is the standard 

deviation of n possible values.

The error in the estimation, εqi, was considered the difference between the mean estimated stream runoff, qi
est , and the 

unknown true stream runoff, qcatch
i . Then, the mean error (ME) and the mean uncertainty (MU) of the catchment stream runoff 

over the given simulation period are the averages of the errors, εqi, and uncertainties, Uqi, respectively, where i ranges from 1 

to n with n being the total time step considered during the given period. The Nash-Sutcliffe efficiency was calculated as the 

estimation performance criterion considering the stream runoff (NSE) and the square root of the stream runoff (NSEsqrt). The 

motivation to consider the square root transform is to reduce the weights of the high stream runoff values in the analysis of  

the stream runoff estimates.

2.3. Global sensitivity analysis

A global sensitivity analysis (GSA) was performed based on Sobol's method, which is a variance-based method (Sobol et al., 

2001). The output of a model with a discrete time step can be expressed as follows:

y= f (x ,θ) Equation (3)

where y is the output variable of the model, x is the input variable and θ is the parameter set. The variables y and x and the 

parameter θ can be scalar or vectors. Sobol's method evaluates the variance of y caused by changes in the input, x, and the 
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parameter set θ. Therefore, both the input variables and the parameters can be factors in the sensitivity analysis. Typically, 

the direct model output, y, is replaced by a model performance measure of the stream runoff prediction (Tang et al., 2007). 

Thus, a sensitivity analysis applies a measure of the error between the observed and simulated values. In the present work,  

the root mean square error (RMSE) between the observed and estimated stream runoff was chosen as the performance  

measure. Considering y a random variable described by a pdf Y, the total variance of y can be decomposed as follows:

Var ( y )=∑
i

p

Vari+ ∑
i< j=1

p

Var ij+ ∑
i< j<k=1

p

Varijk+...+Var1,2,. ..p  Equation (4)

where  Var(y) is the total variance of the output variable,  y, due to  p factors, p is the number of factors, and Var i is the 

variance attributable to the principal effect of factor i, while the factors are the input variables x and/or parameters θ, and the 

other terms corresponding to the fraction of the total variance attributable to the interaction effects between the factors. The 

interaction reflects how the factors intensify, cancel, or compensate for the effects of the other factors in the model outputs 

(Razavi and Gupta, 2015). Based on the variance decomposition of y, the following two indices are defined:

S i=
Vari
Var ( y )

 Equation (5)

and

STi=1−
Var−i
Var ( y )

Equation (6)

where Si and STii are the first-order Sobol index and total Sobol index, respectively, and Var-i is the variance attributable to all 

factors except for i.

The GSA aims to study the sensitivity of the model simulation to various factors. In contrast to the usual GSA, where the 

model parameters are the factors (e.g., Tang et al., 2007), in our study, the factors are the variables used in Equation (2) to 
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simulate stream runoff. Actually, each variable used in Equation (2) corresponds to a vector, i.e., a time series. Therefore,  

the Sobol indices were calculated from a large number of simulations of stream runoff time series, and each simulation was 

performed with a sampled time series of each variable in Equation (2). In practice, considering a given temporal resolution 

Δt, a large number of sampled time series of the initial water level at the beginning of each time step, the final water level at  

the end of each time step, the rain, the evaporation and the percolation were generated. Furthermore, for each simulated 

time series of stream runoff, we considered a possible L-A relation and a possible L-V relation (see the following section).  

Ultimately,  the  following  six  factors  were  considered  in  the  GSA :  i)  initial  water  level  ii)  final  water  level,  iii)  rain,  iv) 

evaporation, v) percolation and vi) bathymetric relations (L-A and L-V relations). 

2.4 Implementation of estimations

For each temporal resolution  Δt, we estimated n=10,000 possible time series of stream runoff. As a result, we obtained n 

estimations of the stream runoff, qest
i, for each given time step Δti. Each possible time series of runoff was obtained with all 

possible time series of all terms on the right side of Equation (2). To generate a possible time series for each term on the  

right  side,  we  proceeded  as  follows.  For  each  variable  or  derived  variable  used  in  Equation  (2)  and  associated  with 

uncertainty, a possible value at each time step was drawn from a pdf. We assigned a pdf to each variable associated with 

measurement uncertainty and derived data uncertainty.  A given pdf characterised by a mean and a standard deviation was 

considered at each time step for each term. Following previous studies (Horner et al., 2018), the error associated with water 

level measurement was assumed to follow a Gaussian distribution. The mean was considered the measured value and the 

standard deviation was fixed at the absolute error in the measurement. The percolation rate was also assumed to follow a 

Gaussian  distribution  with  a  mean  equal  to  the  value  derived  from the  percolation  relation  and  a  standard  deviation 

corresponding to the prediction error at the 99 % confidence interval in the linear regression used as the percolation relation. 

Regarding the other terms (rainfall and evaporation), due to lack of real distribution or tangible evidence of the shape of the  

pdf, we chose a uniform distribution. This choice, leads to maximizing the uncertainty compared to that of other distributions. 

At each time step, the mean was considered the measured value, and the standard deviation was derived from the relative  
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error associated with the rainfall measurement and evaporation estimation. The relative errors were fixed at 20% for rainfall  

and 30% for the evaporation rate (see section 1). 

 

To estimate n possible time series of stream runoff, n possible L-V and L-A relations were also established randomly by 

considering  the uncertainty  in  these relations.  To  establish  each possible  relation,  we considered  that  each V i and Ai 

measurement used to fit the L-V and L-A relations is characterised by a specific uniform pdf with a mean corresponding to 

the measured value and a standard deviation derived from the standard error in the measurement (section 1). To estimate 

each possible time series of stream runoff, we first randomly drew each Vi and Ai and then fitted the possible L-V and L-A 

relation to the generated Li-Vi and Li-Ai bipoints. 

Then, the estimated stream runoff at a given time step was calculated as the mean of all 10,000 simulated possible values. 

The uncertainty in the estimated stream runoff was calculated based on the standard deviation of the 10,000 simulated 

possible values. Then, the error in the simulated stream runoff at a given time step corresponded to the absolute difference 

between  the  observed  value  and  the  simulated  mean  value.  In  each  temporal  resolution,  the  mean  error  and  mean 

uncertainty were calculated, corresponding to the means of the errors and uncertainties,  respectively,  of each simulated 

stream runoff in the time series. The Nash-Sutcliffe efficiency metrics (NSE and NSEsqrt) were also calculated based on the 

observed values and simulated mean values.

3. Results

3.1 Error and total uncertainty

Considering  the  simulation  performance,  stream  runoff  is  fairly  well  estimated  based  on  the  water  balance  approach 
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regardless of the temporal resolution considered (Figure 3). The Nash-Sutcliffe criteria are greater than 0.87 at all temporal 

resolutions and greater than 0.91 at Δtt≥27 days. The RMSE decreases as the temporal resolution increases up to 6 days, 

and then the RMSE slightly decreases. The largest RMSE (at a temporal resolution of 1 day) is 1.88x10 -4 m/day, while the 

smallest RMSE is 5.8x10-5 m/day at a temporal resolution of 32 days.

Figure 3 : Nash efficiencies calculated based on the stream runoff values NSE (blue points) and the square roots of the  

values NSEsqrt (blue diamonds) on the left y-axis and the RMSE (black squares) and mean uncertainty in the stream runoff  

estimation (grey triangles) on the right y-axis at temporal resolutions ranging from 1 day to 32 days.

The NSEsqrt criteria are more variable than the common NSE depending on the temporal resolution. NSEsqrt  increases from 

0.12 to 0.88 as the resolution increases from 1 day to 32 days, implying that low stream runoff is globally simulated the worst 

at the finest temporal  resolution. A comparison of the simulated and observed stream runoff values at varying temporal 
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resolutions (Figure 4) confirms these results. A large discrepancy is observed in the lowest stream runoff values (smaller 

than 5.0x10-4 m/day) at fine temporal resolutions (1 day and 2 days). Regarding larger temporal resolutions (greater than 8 

days), the discrepancy in the same range of stream runoff values is much smaller.

The mean uncertainty exhibits a strong decreasing trend at temporal resolutions between 1 day and 8 days but remains 

relatively constant at resolutions longer than 8 days. The relative mean uncertainty was calculated for each estimated stream 

runoff as the quotient of the mean of the estimated values over the standard deviation of the estimated values ; then, we 

derived the mean relative uncertainty corresponding to the mean of all  relative uncertainty  values during the simulation 

period. The mean relative uncertainty decreases from 1.16 to 0.51 as the temporal resolution increases from 1 day to 32 

days. Furthermore, the relative uncertainty of low stream runoff seems to be greater than for that of the highest stream runoff  

as illustrated by the spread of the grey squares in Figure 4. To quantify the visual interpretation of Figure 4, the mean relative 

uncertainty was also calculated considering the following two classes of stream runoff values: one class corresponding to 

stream runoff values smaller than the threshold of 5x10-4 m/day,  i.e., low stream runoff, and one class corresponding to 

stream runoff values larger than this threshold, i.e., values considered representative of medium to high stream runoff. At all 

temporal  resolutions,  the  mean  relative  uncertainty  of  the  low  stream  runoff  class  is  much  greater  than  that  for  the 

medium/high  stream runoff  class.  In  both  classes,  the  mean relative  uncertainty  decreases  as the  temporal  resolution 

increases.  The  mean  relative  uncertainty  of  the  low  stream  runoff  class  is  1.21  (121%)  and  0.55  (55%)  at  temporal  

resolutions of 1 day and 32 days, respectively. Regarding the high stream runoff values, the mean relative uncertainty is 0.67 

(67%) and 0.12 (12%) for temporal resolutions of 1 day and 32 days, respectively.
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Figure 4 : Estimated versus observed stream runoff [m/day] at six time steps ranging from 1 to 32 days. The estimated value 

by the reservoir method correspond to the blue points. The estimated values with the runoff coefficient method correspond to  

the golden points. Each light grey point corresponds to one estimation. The 1:1 line is indicated in black.

The stream runoff  was also estimated using the coefficient runoff  method. The best performance in the estimation was 

obtained with a runoff coefficient of 0.09. Based on this value, the NSE ranged from 0.27 (found at 1 day temporal resolution) 

to 0.54 (found at 24 days).  The variation in  the NSEsqrt with the temporal  resolution followed the same pattern as that 

observed using the small reservoir method. However, the values obtained using the coefficient runoff method were lower 

than those obtained using of the small reservoir method, ranging from 0.06 at the 1 day temporal resolution to 0.5-0.7 at 
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temporal resolutions greater than 9 days. The discrepancy between observations and simulations with the runoff coefficient 

method was found for the full range of values at all time steps (Figure 4). Unlike the reservoir method, the runoff coefficient  

method tended to overestimate the medium flow values ranging from 5.0 10-5 to 5.0 10-4 m/day. The reservoir  method 

simulated also better than the coefficient runoff method the highest values larger than 5.0 10-4 m/day. 

 

3.2 Global sensitivity analysis

Regarding the lowest time resolution, the ST of the initial and final volumes are especially large with values exceeding 0.55 

(Figure5).  The other factors,  namely,  bathymetric relations, evaporation,  rainfall  and percolation rates, have very low to 

almost null STi. Regarding the highest time resolution, as illustrated by the plot at the temporal resolution of 32 days in Figure 

5, the percolation rate is the dominant factor in the estimation with STi greater than 0.50. The bathymetric relation is a factor 

with a large STi (>0.3) for temporal resolution greater than 2 days. This is even the dominant factor for resolutions between 4 

and 23 days. The evaporation and rainfall rates have very low STi, lower than 0.02, for all resolutions. The variation shows a 

progressive decrease in the STi for the initial and final water levels as the temporal resolution increases (Figure 6). This 

decrease is particularly sharp up to a temporal resolution of 10 days, and then, the decreasing trend is slow. Regarding the 

percolation, the increase in STiI is sharp up to 10 days, after which the rate of increase is slow. Notably, the cumulative STi of 

each of the six factors is lower than 1.1 at the temporal resolutions greater than 2 days. Thus, the interactions between the 

factors are particularly weak at these temporal resolutions.
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Figure 5 : STis at six time steps from (a) 1 to (f) 32 days. The STi of the following estimated factors are provided: bathymetric  

relations (BATHY), evaporation (EVAP), final and initial reservoir water levels (Hini and Hfin), percolation (PERCOL) and  

direct rainfall (RAIN). 
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Figure 6 : STi at continuous time steps from 1 to 32 days. The STi of the following estimated factors are provided: bathymetric  

relations (BATHY), evaporation (EVAP), final and initial reservoir water levels (Hini and Hfin), percolation (PERCOL) and  

direct rainfall (RAIN). 

4. Discussion

The relevance of using small reservoirs as stream gauges is analysed in this study. The analysis is developed based on a  

specific case study of the Kamech small reservoir, which drains a 2.64 km² catchment in northern Tunisia. Nevertheless,  

general rather than only site-specific outputs can be drawn and emphasized based on the results.

4.1 Using small reservoirs to gauge stream runoff
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Using small  reservoirs  as stream gauges leads to globally  reliable  estimations  of  stream runoff  at  each time step,  as 

illustrated by the estimation performance. However, the reliability must be nuanced according to the temporal resolution and 

stream runoff range. The reliability increases as the temporal resolution increases, as reflected by the variations in the mean 

errors and Nash efficiencies  with the resolution.  Furthermore,  regarding the lowest temporal  resolutions [1-8 days],  the 

highest stream runoff values are estimated better than the lowest values, as indicated by the low NSEsqrt (Figure 3) and the 

differences between the observed and estimated stream runoff values lower than 5x10-4 m/day (Figure 4). Two explanations 

can be offered for this phenomenon. The first explanation is provided by the uncertainty analysis. Indeed, we showed that 

the relative estimation uncertainty due to the uncertainties in the mass balance terms (Equation 2) is higher in low stream 

runoff than high stream runoff (e.g., up to 116% at a 1-day temporal resolution). The second reason is that the observed 

stream  runoff  is  also  affected  by  errors.  In  the  Kamech  catchment,  the  stream  runoff  is  derived  from  water  level 

measurements performed in a channel at the outlet gauge station (Figure 1). Low water levels (a few millimetres in the  

Kamech gauge station) may be affected by errors. Furthermore, water level measurements are performed with a pressure 

sensor whose error is absolute and not relative; consequently, the error in the water level measurement is higher at low 

water levels than high water levels. 

As stream runoff is estimated more reliably in large stream runoff than small stream runoff, using small reservoirs as stream 

gauges appears particularly relevant in arid and semi-arid environments. In environments such as the Mediterranean, excess 

infiltration overland flow (Hortonian flow) is recognized as the main mechanism responsible for stream runoff (Ribolzi et al., 

2000, 2007 ; Ludwig et al., 1999).

The stream runoff in these environments is very intermittent. Furthermore, storm flow usually constitutes the predominant 

fraction of stream runoff, while the baseflow fraction is small and even null in some areas. In the Kamech catchment, the  

baseflow was estimated to account for 11% to 28% of the total stream runoff depending on the year (Raclot  et al., 2010). 

Accordingly, our results show that the implementation of small reservoir water monitoring as a stream gauging network could 

be particularly suitable for this type of hydrological function encountered in arid and semi-arid environments, such as the 
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Mediterranean, where the volume of stream runoff is mainly due to large storm events. In contrast, estimating stream runoff  

based on small reservoir monitoring during low flow periods is associated with relatively large uncertainties and errors and 

appears much less appropriate. In the Kamech catchment, this situation is clearly illustrated by the low values of NSE sqrt at 

the shortest temporal resolutions (<8 days) (Figure 3). Interestingly, the stream runoff was better estimated with the small 

reservoir method compared to a simpler method, namely, the runoff coefficient. The runoff coefficient method, which is a 

simple method used to estimate stream runoff, appears to be particularly appropriate for arid and semi-arid catchments 

where  Hortonian  runoff  is  often  the  dominant  process  as in  Kamech  catchment  (Hingray  et  al.,  2014).  Therefore,  the 

difference in the performance criteria values between the two methods shows the added value that could be provided by the 

small-reservoir method. 

Automatic  devices,  such  as  those  employed  in  the  Kamech  catchment,  are  valid  methods  for  obtaining  water  level 

measurements to estimate stream runoff. However, in remote areas, the financial cost of such devices and the maintenance 

needs and long-term reliability of the equipment are real concerns. Crowdsourcing has been developing in recent years in 

hydrology to produce new data through the involvement of citizens (Lowry et al., 2019 ; Strobl et al., 2020). As a part of the 

development of crowdsourcing in hydrology, collaborative and community-based approaches could be an efficient way to 

obtain reliable measurements while strengthening the relationships with the local populace. In the Kamech catchment, for 

instance, along with automatic measurements, a villager performs daily manual measurements of pan evaporation, rainfall 

and water levels in the reservoir.

4.2. Uncertainty in the stream runoff estimation

The conditions that must be met to obtain reliable stream runoff estimations differ depending on the temporal resolution. At 

short temporal  resolutions, the main uncertainty in stream runoff estimations is caused by uncertainty in the water level 

measurements. Decreasing the uncertainty in the estimated stream runoff could imply decreasing uncertainty in reservoir 

water level  measurements.  In the present study, the water level  measurement error was fixed at 20 mm to incorporate 

equipment errors (the error due to the pressure sensor as given by the manufacturer) and errors arising from environmental  

conditions  (mainly  due  to  small  wind-generated  water  waves).  Reducing  the  error  due  to  in  situ  sensors  may  be 

accomplished in the future by improving the measurement technology. Moreover, the errors due to wind-induced waves 
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could be reduced by performing high-frequency measurements (once every minute or less) to provide an estimate of the 

magnitude and filtering high-frequency variations in water level measurements. Such filtering could be achieved by applying 

a moving average with a window of a few minutes.

At large temporal resolutions (longer than 23 days in the present case), the percolation estimation is the main source of 

uncertainty. In many small reservoir water balance approaches, percolation is often neglected, mainly because it is difficult to 

estimate (Oblinger et al., 2010). Nevertheless, we show that percolation estimations appear crucial for using small reservoirs 

as stream gauges at decadal or longer temporal resolutions. Regarding the percolation issue, the Kamech catchment is likely 

representative of many small reservoirs in arid and semi-arid regions. In dams built to enhance groundwater recharge, the 

percolation rate indeed represents a major flux in the reservoir water dynamics, as this enhancement is the aim of the 

reservoir. In contrast, the engineering of other reservoirs does not prevent unwanted percolation due to leaking dam walls or  

permeable reservoir beds. To resolve this issue, pragmatic approaches have been proposed and applied in previous studies 

to estimate the percolation under small  reservoirs (Oblinger  et al.,  2010 ;  Fowe  et al.,  2015).  The most straightforward 

method is to quantify percolation from the reservoir water balance on many non-rainy days and non-flowing days, i.e., days 

when the runoff entering the reservoir is null or negligible, and by considering the evaporation (Sharda et al., 2006). Under 

such conditions, the percolation volume can be estimated as the reservoir volume decrease minus the evaporation volume. 

A relation with these estimations and corresponding water levels can often be developed and employed to estimate the 

percolation rate as a function of the reservoir water level.

Bathymetric relations (L-A and L-V) constitute a strong factor of uncertainty at all temporal resolutions and may even serve 

as the dominant factor at temporal resolutions ranging from 4 to 23 days. Bathymetric relations are involved in the estimation 

of nearly all terms in Equation 2 used for the runoff estimation. Evaporation, rainfall, and percolation volumes are area-

dependent, and thus dependent on the L-A relations ; the estimation of the initial and final volumes is directly related to the L-

V relations.  In  this  study,  the relations  were established  based on an in  situ  topographic  survey of  the reservoir  bed.  

Performing a topographic survey for several reservoirs would not be trivial and would be a major constraint in deploying the  

24

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391



methods to many reservoirs in a region. However, the different avenues currently explored could at term overcome this  

constraint  and provide  information necessary for  the estimation  of the bathymetric  relations.  The use of a geomorphic  

predictor, such as that used by Sobek et al. (2014), to estimate lake water capacity and depth could be such an avenue.  

Developments  in  methodological  procedures  based  on  remote  sensing  and  image  analysis  techniques  at  fine  spatial 

resolutions represent another avenue. Satellite image analyses have been used to detect and estimate the water storage 

and surface area of small water bodies, such as reservoirs (Miahle et al. 2008; Eilander et al., 2014; Ogilvie et al., 2019). The 

analysis  of  digital  elevation  models  could  be  another  avenue  in  a  context  of  the  increasing  availability  of  fine  spatial 

resolution  DEM.  As  conducted  by  Alcantara  et  al.  (2010)  at  a  large  reservoir,  integrating  historical  and Shuttle  Radar 

Topography  Mission  (SRTM)  topographic  data  prior  to  the  reservoir  construction  could  allow  the  establishment  of 

bathymetric relations in small recent reservoirs.

Many studies investigating  the hydrology  and water  balance of  small  reservoirs  have focused on and emphasized the 

importance of direct evaporation from the reservoir water surface and the need to obtain reliable estimates of such flux. As  

evaporation  is  a  form  of  water  loss,  knowing  and  preventing  evaporation  are  indeed  major  concerns  in  the  water 

management of small reservoirs.  However,  with the objective of estimating stream runoff,  estimating evaporation is less 

crucial because it is far from a major source of uncertainty. Hence, the weight assigned to the percolation rate in the water 

dynamics and water balance of the Kamech reservoir in relation with water levels or bathymetric relations can justify the 

small sensitivity of the stream runoff estimation to the evaporation estimation uncertainty.

 

Conclusion

We analysed the relevance of using small reservoirs to gauge stream runoff. The estimations of high stream runoff are more 

reliable than those of low stream runoff and the performance of estimation improves as the temporal resolution increases 
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from 1 to 32 days.  Using a small reservoir to gauge stream runoff appears appropriate for arid and semi-arid environments,  

in which stream runoff  mainly comprises high magnitudes of infrequent  storm runoff  due to excess infiltration runoff.  In 

addition,  the  uncertainty  factors  change  depending  on  the  temporal  resolution.  The  main  source  of  uncertainty  is  the 

reservoir water level at the shortest temporal resolutions, while at the longest temporal resolutions, the uncertainty in the 

percolation rate is the major source of uncertainty in the stream runoff estimation. The L-A and L-V relations constitute a  

major factor of uncertainty at temporal resolutions greater than 1 day. Therefore, using reservoirs to gauge stream runoff 

requires determining these relations, which currently appears to be a strong constraint in the perspective of deploying this 

method over a large area with a large number of reservoirs. Recent and on-going developments in procedures based on 

remote sensing and image analysis techniques could help liminate this constraint. An obvious limitation of this study is that it 

is  based on only  one catchment.  The same analysis  could  be  conducted  in  other  catchments  with  a wealth  of   data 

comparable to that of the Kamech catchment. At least, using small reservoirs to gauge stream runoff requires water level, 

rain and evaporation measurements. Acquiring such measurements can be a real challenge, especially in remote areas, due 

to financial costs and the maintenance and long-term reliability of monitoring infrastructures. Crowdsourcing by local villagers 

of these hydrological data could be a way to address this challenge and to involve the public in water resource evaluations. 
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