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Highlights  21 

• A novel time-course statistical framework was used for omics longitudinal data 22 

• Similar temporal dynamics between microorganisms and metabolites were identified  23 

• Successive growth of guilds of microorganisms across time was revealed  24 

• Microbial dynamics under different ammonia levels were compared 25 

• The influence of ammonia on degradation rate differs between identified metabolites 26 

Abstract  27 

Omics longitudinal studies are effective experimental designs to inform on the stability and 28 

dynamics of microbial communities in response to perturbations, but time-course analytical 29 

frameworks are required to fully exploit the temporal information acquired in this context. In this 30 

study we investigate the influence of ammonia on the stability of anaerobic digestion (AD) 31 

microbiome with a new statistical framework. Ammonia can severely reduce AD performance. 32 

Understanding how it affects microbial communities development and the degradation progress is a 33 

key operational issue to propose more stable processes. Thirty batch digesters were set-up with 34 

different levels of ammonia. Microbial community structure and metabolomic profiles were 35 

monitored with 16S-metabarcoding and GCMS (gas-chromatography-mass-spectrometry). Digesters 36 

were first grouped according to similar degradation performances. Within each group, time profiles 37 

of OTUs and metabolites were modelled, then clustered into similar time trajectories, evidencing for 38 

example a syntrophic interaction between Syntrophomonas and Methanoculleus that was 39 

maintained up to 387 mg FAN/L. Metabolites resulting from organic matter fermentation, such as 40 

dehydroabietic or phytanic acid, decreased with increasing ammonia levels. Our analytical 41 

framework enabled to fully account for time variability and integrate this parameter in data analysis. 42 

Keywords 43 

Metabolomics, inhibition, statistics, longitudinal data, 16S  44 
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1 Introduction 45 

Microorganisms can be found across all environments on Earth and are parts of multiple microbial 46 

ecosystems. In these ecosystems they interact in various ways that can result in an important 47 

dynamics of the microbial populations (Braga et al., 2016). The ecosystem global functioning reflects 48 

the collective activities of the microorganisms and its stability can be related to the dynamics of the 49 

interaction network between microorganisms. If these dynamics were better understood, a better 50 

description and control of microbial ecosystems could be achieved.  51 

Sequencing and omics methods in general are becoming classical tools to take snapshots of microbial 52 

communities and have been used extensively to describe microbial ecosystems. However, while such 53 

snapshots yield a large amount of information regarding the presence or absence of specific 54 

microorganisms, functions or metabolites, they are not sufficient to explain why these 55 

microorganisms, functions or metabolites are there, how they evolve across time or how they 56 

interact within the ecosystem (Ridenhour et al., 2017). As analytical cost is decreasing, more samples 57 

can be processed, especially time series, to record the temporal variation of microbial communities. 58 

Longitudinal studies can go further than snapshots and inform about the stability and dynamics of 59 

the microbiome in response to perturbations or different conditions (Bodein et al., 2019). Thus, they 60 

enable to capture more precisely the consequences of disturbances and could accelerate our 61 

progress in understandingmicrobial sensitivity. Still, they are not employed so commonly.  62 

The statistical analysis of high-throughput longitudinal studies do not always fully exploit temporal 63 

information. Times-series are often analysed as independent samples and experimental design is not 64 

always fully taken into account. So far, only a few computational methods have been proposed to 65 

examine longitudinal studies with different omics measured under different conditions (Bodein et al., 66 

2019; Ridenhour et al., 2017; Straube et al., 2015). In this study we propose a statistical framework to 67 

evidence groups of microorganisms or metabolites exhibiting similar temporal dynamics. We applied 68 

this methodology to a case study related to anaerobic digestion (AD) process. Our objective was to 69 
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explore the consequence of ammonia on AD based on microbial and metabolomic temporal 70 

dynamics. 71 

Anaerobic digestion (AD) is one of the major bioprocesses for converting organic waste into energy. 72 

It is commonly used at industrial scale in anaerobic digesters. During this process, large organic 73 

molecules are successively broken down into smaller molecules and ultimately into biogas, mainly 74 

composed of methane and carbon dioxide. Biogas provides a versatile carrier of renewable energy, 75 

as methane can be used for replacement of fossil fuels in both heat and power generation. Allowing 76 

waste conversion into energy resource, AD is highly relevant for environmental protection and for 77 

our quest to increase energy efficiency. However, it is estimated that only 50% of the potential 78 

energy contained in organic waste is currently recovered during AD (Liu et al., 2015). This low energy 79 

recovery is related to the poor biodegradability of some waste fractions but also to the presence of 80 

several inhibitors in digesters (Amha et al., 2018; Azman et al., 2015; Chen et al., 2008). Many 81 

compounds can affect AD microbiome and cause bioreactor instability resulting in low methane 82 

yield. In particular, ammonia is considered to be the major toxicant of commercial AD reactors 83 

(Rajagopal et al., 2013; Tian et al., 2018). Ammonia inhibition generally occurs in anaerobic digesters 84 

treating wastewater or protein-rich waste, such as slaughterhouse wastewater, food waste or 85 

manure. In these digesters, ammonia is released throughout the anaerobic degradation of organic 86 

nitrogen contained in proteins or urea and is not further degraded.  87 

Ammonia in solution, also called total ammonia nitrogen (TAN), results in dissolved NH3, the free 88 

ammonia nitrogen (FAN), and its ionized form, the ammonium ion (NH4
+). Equilibrium between NH3 89 

and NH4
+ depends on pH and temperature (Anthonisen et al., 1976). FAN is considered as the most 90 

toxic, due to its permeability into cell membrane (Wittmann et al., 1995). However, the sensitivity of 91 

anaerobic microbiome to ammonia varies by orders of magnitude depending on operating 92 

parameters and the composition of the microbial communities (Rajagopal et al., 2013). NH3 93 

concentrations ranging from 27 to 1450 mg NH3/L (Capson-Tojo et al., 2020) have been reported to 94 
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inhibit AD microbiome. All phases of AD, from hydrolysis to methanogenesis, are influenced by the 95 

presence of high ammonia levels. The advancement of molecular tools such as the next-generation 96 

sequencing (NGS) technology allows descriptions of microbial dynamics in digester inhibited by 97 

ammonia. For example, De Vrieze et al. observed that in full-scale digesters, Firmicutes and especially 98 

Clostridiaceae positively correlate with increased ammonia conditions, while Bacteroidales seem to 99 

be more abundant under lower ammonium concentrations (De Vrieze et al., 2015). Similarly, under 100 

ammonia stress, acetoclastic methanogens are usually considered to be vulnerable while the 101 

hydrogenotrophs are more resistant (Poirier et al., 2016b). Shift from acetoclastic to 102 

hydrogenotrophic methanogenesis is reported frequently (Capson-Tojo et al., 2020). In that case, 103 

syntrophic acetate oxidation (SAO) is the predominant acetate-consuming pathway. For example, 104 

important growth of syntrophic acetate oxidation bacteria (SAOB), syntrophic partners of 105 

hydrogenotrophic methanogens, was already observed (Westerholm et al., 2015). However, 106 

contradictory results showed that acetoclastic methanogens could partially resist to the increase of 107 

ammonia level (Hao et al., 2015). Although this topic has already been deeply explored, no consensus 108 

has been found yet. Differences probably arise from the various environmental conditions applied in 109 

the studies, and how AD microbiome is balanced by these conditions. Therefore, a detailed 110 

understanding of AD microbiome remains of great importance to facilitate further optimization of 111 

this bioprocess (Rajagopal et al., 2013). 112 

To complement microbial dynamics data, metabolomics appears to be an effective approach to study 113 

bioprocesses (Vanwonterghem et al., 2014). Untargeted metabolomics consists in the study of all low 114 

molecular-weight molecules. These molecules can be involved in cellular metabolic reactions or arise 115 

from the organic matter degradation by the microorganisms. Monitoring degradation fate with 116 

molecular fingerprints using analytical chemistry methods can provide informative details about key 117 

metabolic pathways, in particular when the microbiome is exposed to stress (Beale et al., 2016). 118 

These methods include gas or liquid chromatographic techniques coupled to mass spectrometry (GC-119 

MS or LC-MS), and nuclear magnetic resonance (NMR). However, application of metabolomics to 120 
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anaerobic digesters remains challenging due to the extreme variability of metabolites with limited a 121 

priori knowledge (Vanwonterghem et al., 2014). So far, only a few examples of metabolomics 122 

application in the AD context have been reported, and they were not related to ammonia inhibition. 123 

Beale et al. used GC-MS to characterise the impact of operational shocks in lab-scale digesters (Beale 124 

et al., 2016). Puig-Castellví et al. used LC-MS to assess substrate biodegradability improvement 125 

during a co-digestion experiment (Puig-Castellví et al., 2020b). Cardona et al. evidenced links 126 

between microbial activity and the degradation of metabolites identified with LC-MS (Cardona et al., 127 

2020). Murovec et al. used 1H NMR spectroscopic profiling to provide a more comprehensive view of 128 

microbial metabolites associated with poor reactor performance in a full-scale mesophilic agricultural 129 

biogas plant (Murovec et al., 2018).  130 

In this study we used time series of 16S rRNA gene sequencing data from AD (Poirier & Chapleur, 131 

2018) to investigate the influence of different levels of ammonia,  as well as GCMS data newly 132 

acquired on the same samples. An original longitudinal analytical framework inspired from (Straube 133 

et al., 2015) was used to integrate temporal aspects while comparing the different conditions in a 134 

data driven approach.  135 

2 Material and methods 136 

2.1 Lab-scale digesters set-up  137 

Thirty bioreactors (1000 mL) were set-up and inoculated with 20 g of centrifuged methanogenic 138 

sludge as inoculum and fed with 50 g of mashed biowaste (corresponding to an initial organic loading 139 

of 12 g COD as substrate vs 1.2 g COD as inoculum). Mashed biowaste was provided by an industrial 140 

food waste deconditioning unit (Chemaudin, France) (pH=4.1, dry mass = 12.5%, volatile solid = 141 

11.0%, C[wt% dry solids] = 49.5%, N[wt% dry solids] = 3.6%; K+ = 1.8 mg/g; NH4
+ = 0.2 mg/g; Na+ = 2.7 mg/g, Mg2+ 142 

= 0.2 mg/g; Ca2+ = 2.4 mg/g, acetic acid = 3.0 mg/g, propionic acid = 0 mg/g, butyric acid = 0 mg/g, 143 

lactic acid = 25 mg/g). Inoculum was sampled from a 50 L laboratory anaerobic bioreactor (pH=7.7, 144 
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dry mass = 2.5%, volatile solid = 1.2%, C[wt% dry solids] = 41.7%, N[wt% dry solids] = 2.5%; K+ = 0.8 mg/g; NH4
+ = 145 

1.7 mg/g; Na+ = 6.4 mg/g, acetic acid = 1.1 mg/g, propionic acid = 0.6 mg/g, butyric acid = 0.2 mg/g, 146 

lactic acid = 0.1 mg/g). A volume of 430 mL of biochemical methane potential buffer (International 147 

Standard ISO 11734 (1995)) was added to reach a total working volume of 500 mL). NH4Cl (99.998%, 148 

Sigma Aldrich) was added in order to reach 10 different TAN concentrations (0.0, 0.5, 1.0, 1.5, 2.5, 149 

5.0, 7.5, 10.0, 25.0 and 50.0 g/L). pH was measured in order to determine FAN concentration (47, 55, 150 

72, 99, 128, 145, 214, 242, 387 and 494 mg/L). All incubations were performed in triplicates. All 151 

reactors were incubated without agitation, in the dark, at 35°C. Liquid samples (8 mL) were 152 

periodically taken and centrifuged at 10,000 g for 10 min. The pellets and supernatant thus obtained 153 

were stored separately at -20°C for analysis of biomass and chemical indicators respectively. In total 154 

9 samples were taken. Digestion tests were run for 160 days, as no biogas production had been 155 

observed for one month in the different bioreactors. Detailed experimental procedures are described 156 

in (Poirier & Chapleur, 2018; Poirier et al., 2016b).  157 

2.2 Degradation monitoring 158 

Biogas accumulation in the headspace was measured using a differential manometer (Digitron 159 

2082P). Headspace gas analysis was performed using a micro GC (CP4900, Varian) as described in 160 

(Chapleur et al., 2016). These data were used to calculate gas production and composition, at 161 

standard temperature and pressure, taking into account the extracted volume of liquid samples. 162 

Biogas was assimilated to an ideal gas. 163 

Volatile Fatty Acids (VFA) concentrations were measured by ionic chromatography coupled to 164 

conductimetric detection, using a Dionex 120 equipped with IonPAc ICE-AS1 column (9 mm x 250 165 

mm). The mobile phases were heptafluorobutyric acid (0.4 mmol/L) and tetrabutylammonium 166 

hydroxide (5 mmol/L) as described in (Cardona et al., 2021). Acetate, propionate, butyrate, lactate, 167 

formate, valerate and caproate were quantified, but mainly acetate and propionate were detected in 168 

the incubations.  169 
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TAN concentration was measured in the supernatants using Nessler’s colorimetric assay following 170 

the French standard (NF T 90-105) and a spectrophotometer (DR-3900, Hach). pH was also measured 171 

using a pH meter (IQ160). From those values, FAN was also calculated from the equilibrium of Eq. 1 172 

(Anthonisen et al., 1976) as described in (Cardona et al., 2019).  173 

𝐹𝐹𝐹𝐹𝐹𝐹 = 10𝑝𝑝𝑝𝑝

𝑒𝑒𝑒𝑒𝑒𝑒�6334𝑇𝑇 �+10𝑝𝑝𝑝𝑝
× 𝑇𝑇𝑇𝑇𝑇𝑇 (Eq. 1) where T is the temperature in Kelvin. 174 

Biowaste degradation was monitored with non-targeted gas chromatography mass spectrometry 175 

(GCMS) of the liquid phase to produce molecular fingerprints. In brief, after thawing, supernatants 176 

were centrifuged for 5 min to remove the precipitate that may have formed during freezing. 1 mL of 177 

the obtained liquid was diluted with 1 mL of ultrapure water and acidified with 10 μL of hydrochloric 178 

acid (37%). Mixture was loaded onto a 60-mg OASIS® HLB cartridge previously conditioned using 2 179 

mL of methanol and 2 mL of ultrapure water. The cartridge was then washed with 2 mL of ultrapure 180 

water. Analytes were eluted in 2 mL of methanol, which was subsequently evaporated under a 181 

stream of nitrogen at 40°C. 80 μL of BSTFA was added to the dried extract and mixture was heated in 182 

an oven at 60°C for 1h. 183 

GC-MS analysis was performed on a Trace/DSQ II (Thermo Fisher Scientific, Bremen, Germany) 184 

equipped with a CombiPAL autosampler and Xcalibur acquisition software. Separation was done by 185 

using a ZB-5MS capillary column (60 m X 0.25 mm X 0.25 µm). Oven temperature was maintained at 186 

50°C for 3 minutes, then increased to 250 °C at the rate of 8 °C min−1 and held for 10 min. Helium was 187 

used as carrier gas with a flow rate of 1.5 ml min−1. 1 µl of sample mixture was injected in splitless 188 

mode. All temperatures (i.e. injector, transfer line and source) were set at 280 °C. Electron impact 189 

mode (EI) at 70eV was used. Data were acquired using full scan mode from 50 to 650 amu with a 190 

solvent delay of 6.5 min. Each sample was analysed three times. 191 

For data processing, scans were averaged using MetAlign. Data were processed using the xcms R 192 

package (version 1.52.0) (Smith et al., 2006). The MatchedFilter method was applied to select peaks 193 
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on chromatogram with a mzdiff of 1 and a signal-to-noise ratio greater than 3. Similar peaks 194 

identified in different samples were grouped using the group method using a bandwidth of 5. 195 

Retention time between samples was corrected using the peakgroup method. A second grouping was 196 

carried out with the same parameters. Finally, the missing peaks between samples were filled using 197 

the fillPeaks method. 198 

To identify the peaks of interest, the mass spectrum of each peak was compared to spectrums from 199 

the library of the National Institute of Standards and Technology (NIST, USA). All samples were 200 

analysed in triplicate.  201 

2.3 Microbial dynamics monitoring  202 

Total DNA from samples’ pellet was extracted using Power Soil DNA Isolation Kit (Mobio Laboratories 203 

Inc. Carlsbad) according to the manufacturer’s instructions. Extracted DNA was quantified by Qubit 204 

(dsDNA HS Assay Kit, Invitrogen, Eugene). Extracted DNA was used for the amplification of the 205 

bacterial and archaeal hypervariable region V4-V5 of the 16S rRNA genes with the primers 515F (5’-206 

GTGYCAGCMGCCGCGGTA-3’) and 928R (5’-CCCCGYCAATTCMTTTRAGT-3’) as described in (Poirier et 207 

al., 2016a). Library preparation is described in (Poirier et al., 2016a). Sequencing was performed on 208 

Ion Torrent Personal Genome Machine using Ion 316 chip and the Ion PGM Sequencing 400 Kit 209 

according to the manufacturer’s instructions. For the 48 sequenced samples, total high-quality reads 210 

varied between 10,000 and 30,000. The sequencing data have been deposited with links to 211 

BioProject accession number PRJNA450311, in the NCBI BioProject database 212 

(https://www.ncbi.nlm.nih.gov/sra/?term=PRJNA450311).  213 

FROGS pipeline was used to analyse 16S rRNA tags reads. FROGS (Find Rapidly OTU with Galaxy 214 

solution) is a galaxy workflow designed to produce an OTU count matrix from high depth sequencing 215 

amplicon data (Escudié et al., 2018). Briefly, after merging the reads comprised between 100 and 500 216 

bp, the software denoised the dataset. It was then clustered with Swarm algorithm. Chimera were 217 
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removed with vsearch. The dataset was further filtered by removing singletons. Taxonomic affiliation 218 

was performed using Silva128 16S as reference database. 219 

2.4 Data analysis 220 

2.4.1 Clustering of the bioreactors into groups according to the performance data  221 

Based on cumulative methane production, bioreactors were grouped according to the similarity of 222 

their performance. This was achieved by first modelling temporal evolution of methane cumulative 223 

production for each bioreactor using smoothing splines (lmeSplines R package, smooth.spline() 224 

function) (Déjean et al., 2007). For each bioreactor, values of modelled methane production profile 225 

were then predicted on a daily time step. K-means clustering (R stats library, kmeans() function) was 226 

applied on this data and enabled to define 5 groups of bioreactors showing similar methane 227 

production profiles. Selection of the number of groups was based on a visual appreciation of the 228 

results (clustering in 4 groups resulted in grouping of bioreactors with different methane profiles, 229 

while clustering in 6 groups did not enable to identify another category of reactors). These 5 groups 230 

were then compared at the omics level.  231 

2.4.2 Filtering and transformation of the omics data 232 

OTUs with more than 1% of relative abundance in at least one sample were retained for the analysis. 233 

To take into account the dispersion in the total number of sequence reads identified in each sample, 234 

microbial OTUs abundances were scaled using centered log ratio (CLR) transformation (Lê Cao et al., 235 

2016). The GCMS dataset was filtered based on blanks. Peaks with abundance more than ten times 236 

superior to the maximum value in the blanks in at least one sample were kept. For each retention 237 

time, only the dominant peak was kept. Data were log transformed. 238 

A fold change filter was then applied on both 16S and metabolomic datasets to remove noisy time 239 

profiles and select only informative variables within a given performance group. The fold change of a 240 

variable was calculated as the difference of the maximum and minimum mean for each of the time 241 

points. A threshold of 3 and 0.5 was applied to filter 16S and metabolomic datasets, respectively. 242 
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Within a given performance group, for each time point and each variable, values were averaged 243 

across the different reactors. A second filter was then applied to assess the significance of time effect 244 

for each profile (16S or metabolite) within a given performance group using a linear mixed model 245 

spline framework from the lmmsDE method (lmms R package, (Straube et al., 2015). Variables that 246 

were differentially expressed in time (p<0.050) were retained.  247 

2.4.3 Omics profiles modelling and clustering  248 

The profile of each variable within each performance group was modelled with Linear mixed model 249 

splines (R lmms package, lmmSpline() function). Briefly, each variable profile (16S or metabolite) was 250 

modelled with the best fitting LMMS model, as described in (Straube et al., 2015) and (Bodein et al., 251 

2019).  252 

Derivatives of the modelled profiles after discretization were calculated (lmmSpline() function). They 253 

contain valuable information about the range of change of expression over time and were 254 

particularly relevant in our study. Hierarchical clustering (Euclidean distance, Ward aggregation) was 255 

applied on the derivative of the modelled profiles to identify groups of correlated profiles over time 256 

and to get insight into the variables that shared similar patterns of time-course trajectories.  257 

3 Results and discussion 258 

3.1 Degradation performance under different levels of ammonia 259 

inhibition 260 

Performance indicators (i.e. biogas production and volatile fatty acids (VFA) accumulation) and 261 

ammonia concentration (TAN and FAN) were monitored for all bioreactors. TAN, FAN and pH values 262 

stabilized quickly and remained stable throughout the experiment (supplementary material) 263 

indicating that neither important amount of additional ammonia was produced during biowaste 264 

degradation nor that ammonia was released in the headspace. However, the presence of ammonia 265 

reduced the performances of degradation and in particular the biogas production. As seen by various 266 
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authors, we did not observe a sharp threshold between no inhibition and total inhibition of the 267 

degradation (Capson-Tojo et al., 2020). On the contrary, the different initial levels of ammonia 268 

resulted in several patterns of reduced performances. To identify these different patterns, the time-269 

course trajectories of one performance indicator (methane cumulative production) was first 270 

modelled in each bioreactor. Bioreactors were then clustered into a few groups with overall similar 271 

methane cumulative production profiles.  272 

A popular modelling approach for time-course data is smoothing splines (Déjean et al., 2007). It 273 

handles varying numbers of time points per bioreactors or different dates of sampling and enables 274 

the interpolation of missing values and to denoise the data if necessary. Methane production 275 

trajectories modelled with this method were clustered into groups with K-means. Five groups of 276 

bioreactors with similar profiles of cumulative methane production were identified as illustrated in 277 

Fig. 1. Group 1 corresponds to the non-inhibited bioreactors, with an initial FAN concentration 278 

between 47 and 72 mg/L. As FAN concentration increased (group 2 to 4), ultimate methane 279 

production declined, as well as production rate. Groups 2, 3 and 4 corresponded to FAN 280 

concentrations of respectively 99 to 145 mg/L, 214 to 242 mg/L and 387 mg/L. In group 5 (494 mg/L 281 

of FAN) nearly no methane production was observed, and methanogenesis was severely inhibited.  282 

Relevance of this clustering was then assessed using three other performance indicators measured in 283 

this study (carbon dioxide cumulative production, acetate and propionate accumulation). To do so, 284 

the time-course trajectories of these three parameters were first modelled in each bioreactor, then 285 

plotted according to the clustering obtained from methane (Fig. 1). Grouping of bioreactors made 286 

with cumulative methane production data was consistent for the other indicators illustrating the 287 

relevance of this approach. We observed that cumulative carbon dioxide production was also 288 

affected by ammonia. From group 1 to group 5 its production declined, as well as production rate. 289 

However, nearly 800 mL of carbon dioxide was produced in group 5, suggesting that even if 290 

methanogenesis was probably strongly inhibited, bacteria were still active as already observed (Puig-291 
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Castellví et al., 2020a). More details on methane and carbon dioxide yield and maximum production 292 

rate are presented in the supplementary material. Profiles of acetate and propionate accumulation 293 

(see detailed values in supplementary material) were rather similar in groups 1 and 2, showing an 294 

important and rapid activity of VFA producing bacteria. In groups 3 to 5, acetate accumulation was 295 

slightly delayed but the main difference was evidenced with the consumption rate. In particular, 296 

propionate was consumed very late in group 4 while acetate and propionate were never consumed 297 

in bioreactors of group 5. These observations suggest that VFA producing bacteria were not totally 298 

inhibited even in bioreactors containing 494 mg/L of FAN. However, acetoclastic archaea or bacteria 299 

responsible for VFA oxidation were potentially impaired by high ammonia levels. Inhibition of 300 

acetoclastic archaea by ammonia was reported and is known to induce a switch towards 301 

hydrogenotrophic methanogenesis. It involves syntrophic pathways with acetate or propionate 302 

oxidizing bacteria (Hao et al., 2011; Schnürer & Nordberg, 2008). Despite this metabolic possibility, 303 

no rapid VFA consumption was observed at high ammonia levels, suggesting that one or both of 304 

these populations were inhibited in our experiment, in particular in group 5. From group 2 to group 305 

5, propionate consumption was also delayed, probably for similar reasons, namely inhibition of 306 

syntrophic propionate oxidizers by ammonia, or because of high level of acetate. In all groups, 307 

comparatively to acetate, propionate consumption phase occurred later as already observed 308 

(Chapleur et al., 2014). It is classically hypothesised that propionate degradation is less 309 

thermodynamically favourable than acetate degradation and occurs preferentially after its 310 

consumption (Capson-Tojo et al., 2017). Regardless VFA accumulation, pH remained above 7 in all 311 

conditions (supplementary material) suggesting that main inhibitory factor to VFA degradation was 312 

ammonia or VFA themselves. 313 

Performance measurements confirmed that the reactors could be clustered in five groups showing 314 

specific patterns of inhibition despite a more important number of initial ammonia concentrations. 315 

Microbial and metabolomics dynamics in these five groups were then explored.  316 



14 
 

3.2 Effect of ammonia on microbial dynamics 317 
DNA of 48 samples from the different performance groups and different sampling dates (days 0, 9, 318 

29, 42 and 57) were sequenced for 16S identification. Archaea and bacteria were analysed together. 319 

In total 1813 OTUs were identified. Samples were divided into different groups corresponding to the 320 

bioreactor performance groups. Group 1 was considered as a non-inhibited reference for the study 321 

and was examined first. Filters based on abundance in group one (83 OTUs remaining) then fold 322 

change and differential expression analysis to identify profiles varying over time within all the 323 

reactors of group 1 were performed (30 OTUs left). Smoothing splines to model time course 324 

trajectories were then applied on these 30 selected OTUs in the group 1 bioreactors. Derivative of 325 

the predicted curves was calculated to capture the rate of change of relative abundance over time. 326 

Hierarchical clustering on the derivatives trajectories identified 6 clusters of correlated profiles over 327 

time (Fig. 2). This approach enabled to identify similar trajectories in terms of rates and speed of 328 

change as well as shapes and magnitude. We hypothesised that microorganisms involved in similar 329 

biological processes behaved similarly across time, as we investigated further.  330 

Time-course trajectories of OTUs abundance for the different clusters of group 1 are presented in Fig. 331 

3 for the different groups. Taxonomic affiliation is presented in table 1. In group 1, abundance of 332 

OTUs from cluster 1, 2, 5 and 6 increased across time while abundance of OTUs from clusters 3 and 4 333 

decreased.  334 

Abundance of OTUs from cluster 1 increased sharply immediately after the start of the experiment. 335 

They belong to Ruminococcaceae family, Ruminococcus genus and Porphyromonadaceae family. 336 

These taxa have been acknowledged to play an important role in degrading complex carbohydrates 337 

(La Reau & Suen, 2018) or carbohydrates and proteins (Krieg et al., 2010) and catalysing the 338 

production of VFAs, ethanol and carbon dioxide. They were thus likely involved in the first steps of 339 

the degradation.  340 
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Similarly, abundance of OTUs from cluster 2 increased rapidly. These very diverse OTUs belonged to 341 

Porphyromonadaceae, Bacteroidaceae, Lachnospiraceae, Acholeplasmataceae, Clostridiaceae 1 and 342 

Methanomicrobiaceae families. Similarly to Porphyromonadaceae, Bacteroidaceae and genus 343 

Bacteroides can degrade carbohydrates and some proteins (Krieg et al., 2010). Lachnospiraceae and 344 

particularly genus Mobilitalea has been suggested to play important roles in fermentation of mono-, 345 

di- and polysaccharides, including microcrystalline cellulose (Podosokorskaya et al., 2014). 346 

Acholeplasmataceae and genus Acholeplasma are glucose and simple sugars fermenters and produce 347 

acids (Krieg et al., 2010). Species Clostridium butyricum from Clostridiaceae 1 family can also 348 

consume sugars and proteins (Vos et al., 2009) while producing different VFA including butyrate. 349 

Consequently, all these families were probably involved in the early steps of biowaste degradation 350 

and their relative abundance increased until there was no more biowaste available in the bioreactor. 351 

Methanoculleus genus, from Methanomicrobiaceae is an hydrogenotrophic methanogen and 352 

probably consumed carbon dioxide and hydrogen resulting from the fermentation which explains 353 

that its growth was correlated to that of the other microorganisms of group 2.  354 

On the contrary, the abundance of the 5 OTUs from cluster 3 decreased immediately. Among them, 3 355 

OTUs of Lactobacillus genus likely originated from the biowaste (Probst et al., 2013) and could not 356 

grow in the anaerobic digesters. One OTU was affiliated to Pseudomonas caeni sp. that was isolated 357 

from the sludge of an anaerobic ammonium-oxidizing bioreactor (Xiao et al., 2009). One OTU 358 

belonged to Paenalcaligenes genus isolated in different types of guts (Lee et al., 2013). The last two 359 

OTUs were probably abundant in the inoculum. However, none of them survived in the conditions of 360 

our bioreactors.  361 

Abundance of OTUs of cluster 4 also decreased, but less rapidly than cluster 3. These OTUs belonged 362 

to various taxa commonly found in anaerobic digesters, such as Bacteroidales, Clostridiales, 363 

Methanobacteriales and Thermoplasmatales orders (Madigou et al., 2019). We hypothesized that 364 

even if the environmental conditions of the digester was not unfavourable to their growth (contrary 365 
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to OTUs of cluster 6), they were progressively outcompeted by microorganisms from cluster 1, 2, 5 366 

and 6 and could not settle in our digesters.  367 

Cluster 5 included 4 OTUs with abundance increasing between day 9 and 29, but not before day 9. 368 

They belonged to Syntrophomonadaceae (2 OTUs) and Peptococcaceae families and to 369 

Armatimonadetes phylum. Members of the Syntrophomonas genus, identified in this system, are 370 

fatty acids (C4–C18) degraders (Narihiro et al., 2016; Zou et al., 2003). Specifically, Syntrophomonas 371 

wolfei mainly uses straight-chain fatty acids containing 4 to 8 carbon atoms as energy sources (Vos et 372 

al., 2009). Members of the family Peptococcaceae are known as propionate oxidizers (Cardona et al., 373 

2021). In particular Pelotomaculum genus has been described as a syntrophic microorganisms that 374 

can have different archaea as partners, including Methanoculleus identified in cluster 2 (Chen et al., 375 

2020). Its growth was in accordance with the degradation pattern of the propionate. 376 

Armatimonadetes phylum is one of the most recently recognised bacterial phylum. It has already 377 

been identified in anaerobic digesters (Campanaro et al., 2020; Puig-Castellví et al., 2020c) but its 378 

role remains unclear. These microorganisms are VFA degraders thus explaining that their abundance 379 

only increased once biowaste degradation already results in the production of large amounts of fatty 380 

acids as intermediates as observed in figure 1. 381 

Abundance of OTUs of cluster 6 increased progressively with time. They belonged to Bacteroidales 382 

order (2 OTUs) and Syntrophomonadaceae and Peptococcaceae families. In particular OTU from 383 

genus Alkaliflexus and Marinilabiaceae family could contribute to hydrolysis by secreting a 384 

cellulolytic enzyme for the degradation of cellulose (Gao et al., 2014). OTU from Peptococcaceae 385 

family is from Cryptoanaerobacter genus, which has been characterized in a methanogenic 386 

consortium derived from a waste mixture. Phenol or 4‐hydroxybenzoate (4‐OHB) could be required 387 

for the growth of this genus (Juteau et al., 2005). They may have been involved in the degradation of 388 

less accessible waste or degradation products.  389 
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Our clustering approach identified several groups of microorganisms with similar time-course 390 

trajectories. These different groups were relevant, as they included microorganisms involved in the 391 

successive steps of the degradation. Based on this non-inhibited reference, trends relative to the 392 

time-course response of the same clusters of OTUs in group 2 to 5 were examined (Fig. 3). As 393 

ammonia concentration increased, we observed delays in the trajectories of the time-course profiles.  394 

Although different inhibitions thresholds could be evidenced for each OTUs, similar trends were 395 

observed for clusters 1 and 2, which both consisted of populations emerging from the inoculum. 396 

OTUs rumi_2 from Ruminococcus genus and bact_4 from genus Bacteroides were inhibited as soon 397 

as FAN initial concentration reached 99 mg/l (group 2). Meanwhile, OTUs lach_1 (Mobilitalea genus), 398 

porp_6 (Porphyromonadaceae family) and clos1_1 (Clostridium butyricum species) relative 399 

abundance still increased in group 2 suggesting that they could survive despite FAN concentrations 400 

up to 145 mg/L. The porp_8 (Porphyromonadaceae family) and acho_1 (Acheoplasma genus) OTUs 401 

appeared more resistant to ammonia levels up to 242 mg/L (group 3). Interestingly, Methanoculleus 402 

was the only OTU from both clusters to resist and thus steer methanogenesis up to 387mg/L of FAN 403 

(group 4). 404 

Clusters 3 and 4, which consisted of dominant populations respectively present in the biowaste and 405 

in the inoculum also demonstrated comparable behaviours between groups. OTUs from the biowaste 406 

(cluster 3) which were not adapted to the environment and thus rapidly disappeared in groups 1, 2, 3 407 

seemed to benefit from ammonia inhibition in group 4 (387 mg FAN/L). Since active populations did 408 

not emerge at this FAN level, they could remain dominant in the ecosystem. Similarly, the decrease 409 

of OTUs present in the inoculum (cluster 4) was more progressive along increasing FAN levels. Some 410 

opportunist populations such as FX1_1 (Anaerosalibacter genus) probably resistant to ammonia even 411 

managed to grow in group 4. 412 

Within cluster 5, different inhibition thresholds could be noticed. Syntrophic populations such as 413 

synt_2 and synt_4 could resist up to group 4 and thus steered the interaction with Methanoculleus. 414 
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Syntrophomonas was already shown to be resistant to the increase of ammonia in CSTR experiment 415 

(Bonk et al., 2018). On the other hand, arma_1 (Armatimonadetes phylum) and pept_5 416 

(Pelotomaculum genus) were respectively inhibited since group 3 (214 mg FAN/L) and group 4 (387 417 

mg FAN/L). Syntrophic OTU from cluster 6 (synt_6, Syntrophomonas genus) showed the same trend, 418 

suggesting that three populations could interact with Methanoculleus at 387 mg FAN/L. 419 

Nevertheless, hydrolytic OTUs from cluster 6 such as pept6 (Cryptanaerobacter genus) and GZK_1 420 

(Bacteroidales order) were inhibited in group 4.  421 

As we considered the bioreactors in group 1 as a reference, the filtering, selection and clustering of 422 

OTUs was based only their trajectories and abundance in group 1. Thus, some OTUs with significant 423 

time effects in groups 2, 3, 4 or 5 may have been omitted in the selection. We evaluated this 424 

potential bias by considering each group as a reference group and compared the OTUs selected. 425 

Details are provided in the supplementary material. To summarise, another 14 OTUs would have 426 

been selected in groups 2, 3, 4 or 5. We observed two categories of OTUs: 7 OTUs decreased over. 427 

They were present in the inoculum but were not adapted to our experimental set-up and were 428 

replaced more or less rapidly by other microorganisms. As their fold change was small, they were not 429 

selected when considering group 1 as a reference. The abundance of the remaining 7 OTUs increased 430 

more sharply over time in groups 2 to 5 compared to group 1. These microorganisms were probably 431 

resistant to ammonia and benefited from the inhibition of other microorganisms sharing the same 432 

ecological niche. Among them, 4 can be highlighted. The abundance of an OTU from Methanosarcina 433 

genus increased with ammonia level (except in group 5). It is in agreement with previous studies 434 

results which revealed that Methanosarcina was able to resist to high TAN concentrations (Hao et al., 435 

2015). Similarly, the abundance of an OTU from Synergistaceae family, Aminobacterium genus 436 

increased in digester with low or medium ammonia level. It is an amino acid degrader (He et al., 437 

2017) and for this reason is probably moderately sensitive to ammonia. OTUs from this family have 438 

also been described as acetate oxidizing bacteria and their growth in presence of ammonia has 439 

already been observed (Puig-Castellví et al., 2020a). The abundance of an OTU from Proteiniphilum 440 
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genus increased in groups 4 and 5. Growth of this OTU is promoted by the thermal hydrolysis of 441 

proteins, which could be a source of ammonia (Chen et al., 2019). It can also adapt to the presence of 442 

ammonia (Puig-Castellví et al., 2020a). Finally, abundance of an OTU from Ruminiclostridium genus 443 

increased in group 3. Increase of the abundance of this genus in presence of ammonia has already 444 

been observed (Fernandez-Gonzalez et al., 2019).  445 

To summarize, the selection of OTUs with respect to the reference group 1 selected the most 446 

dynamic OTUs. While this approach facilitated the comparison with the different groups, an OTU 447 

selection bias was observed and similar procedure should be applied to other groups considered as 448 

reference.  449 

3.3 Effect of ammonia on biowaste degradation 450 

The evolution of organic matter in the digesters was characterised with GCMS. In total 44 samples 451 

from the different performance groups and sampling dates (days 9, 29, 42 and 57) were analysed in 452 

triplicates. Only metabolites with an abundance exceeding 105 were taken into account (92 ions). 453 

Samples were divided into different groups corresponding to the bioreactor performance group. In 454 

order to remove non-informative molecules, a fold change filter was applied within group 1 sub-455 

dataset, as well as a differential expression filter. A total 20 ions were selected for time-course 456 

analysis. The time-course trajectories of the selected metabolites was modelled as described for 457 

OTUs. Derivative trajectories were calculated and clustered with hierarchical clustering (Euclidean 458 

distance and Ward method). Five clusters of ions were identified (Fig. 2). Time-course trajectories of 459 

metabolites abundance for the different clusters from group 1 are presented in Fig. 4. Identification 460 

of the different metabolites is presented in Table 2. In group 1, the abundance of ions from clusters 1 461 

and 2 increased over time while the abundance of ions from clusters 3 to 5 decreased (Fig. 4). 462 

In cluster 1, the abundance of the identified metabolites slowly increased. These metabolites were 463 

likely produced by microorganisms and accumulated during the anaerobic digestion process, 464 

suggesting they could not be metabolised by other microorganisms. Only anthranilic acid, N-465 
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acetylanthranilic acid and dehydroabietic acid were identified. In organisms capable of tryptophan 466 

synthesis, anthranilic acid is a precursor to the amino acid tryptophan. It is also a metabolite of 467 

pigments and dyes anaerobic breakdown (Razo-Flores et al., 1999). N-acetylanthranilic acid can have 468 

similar origins and is metabolised in anthranilic acid. Dehydroabietic acid is found in different plants 469 

and particularly conifers and used in different industrial applications (Jia et al., 2019). These 470 

metabolites were released during the breakdown or hydrolysis of organic matter by the 471 

microorganisms. In general, as the level of inhibition increased, their accumulation rate decreased, 472 

suggesting that ammonia slowed down hydrolysis of organic matter, even if it did not stop totally. 473 

Microorganisms from OTUs cluster 6 could be involved in their production since they are hydrolytic 474 

microorganisms potentially involved in the degradation of recalcitrant organic matter and behaved 475 

similarly toward ammonia. 476 

Metabolites identified in cluster 2 exhibited a higher increase in abundance over time compared to 477 

cluster 1. Three metabolites were identified. Benzoic acid is formed during the degradation of 478 

phenolic compounds (Hoyos-Hernandez et al., 2014) but also from lignin (Zhu et al., 2017). Phytanic 479 

acid is known to be produced during the fermentation of plant materials in the ruminant gut 480 

(Watkins et al., 2010), as well as indole-2-carboxylic acid. It can be hypothesized that they originated 481 

from the slow degradation of complex organic polymers from the biowaste as they progressively 482 

accumulated in the digesters. Their abundance increased more rapidly than that of metabolites from 483 

cluster 1 suggesting that they were more abundant or could be extracted more easily from organic 484 

matter. As observed for metabolites from cluster 1, presence of ammonia reduced their 485 

accumulation rate. They could also be related to microorganisms from OTUs clusters 6, or 1.  486 

The abundance of metabolites from cluster 3 decreased rapidly after the start of the incubation. Two 487 

molecules were identified. Decanoic acid is found in different type of oils and also in the milk of 488 

various mammals. 3-(3-Hydroxyphenyl)propionic acid is one of the major metabolites of ingested 489 

caffeic acid and of the phenolic degradation products of proanthocyanidins (the most abundant 490 

polyphenol present in chocolate) by the microflora in the colon. (Konishi & Kobayashi, 2004; Rios et 491 
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al., 2003). It can also arise from digestion of aromatic amino-acids or breakdown product of lignin or 492 

other plant-derived phenylpropanoids (Torres et al., 2003). These molecules we already abundant at 493 

the beginning of the experiment and were metabolised relatively easily by the microbial community. 494 

Ammonia had a moderate effect on their degradation, till group 3, but their degradation was 495 

stopped in group 4 and 5. Fermentative microorganisms from cluster 2 could be responsible for the 496 

degradation of these compounds. 497 

The abundance of the metabolites identified in cluster 4 also progressively decreased over time as 498 

they were consumed. Among them we identified 3,4-dihydroxyhydrocinnamic acid also commonly 499 

found in plant biomass and its residues (Boerjan et al., 2003) and a fatty acid (tetradecanoic acid) 500 

that can be found in a great variety of oils and fats from vegetal and animal origins. They were 501 

degraded less efficiently than metabolites from cluster 3, and influence of ammonia seemed more 502 

important as degradation of one metabolite (not identified) already stopped in group 2.  503 

The abundance of metabolites from cluster 5 remained stable for a long time, but their degradation 504 

started after 26 days. In this cluster, only hydrocinnamic acid was identified. As 3,4-505 

dihydroxyhydrocinnamic acid, this molecule is commonly found in plant biomass and its residues 506 

(Boerjan et al., 2003). Its molecular structure may have contributed to their slower degradation 507 

compared to other molecules. As ammonia level increased, the degradation of one of the molecules 508 

(not identified) was rapidly slowed down, while hydrocinnamic acid was degraded similarly in group 1 509 

to 3. However, in groups 4 and 5, it was not degraded. Metabolites from clusters 4 and 5 could have 510 

been degraded by microorganisms from cluster 1, 2 or 6, but direct link cannot be established.  511 

Similar the analysis conducted for the OTUs, here we also considered the bioreactor group 1 as a 512 

reference. By repeating the analysis for other groups as reference, we identified additional 513 

metabolites, as fully described in the supplementary material.  514 

To summarise, GCMS enabled to visualize the time-course response of various molecules throughout 515 

AD and under different ammonia stresses. Mainly complex molecules from biomass and plant 516 

degradation were identified. However, this snapshot is not exhaustive. Several parameters should be 517 
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considered when applying metabolomics to AD studies. Depending on the technique used (GC-MS, 518 

LC-MS, NMR…) and experimental preparation, specific categories of molecules can be targeted and 519 

observed.   520 

Additionally, the sampling frequency selected in our study mainly enabled to identify molecules 521 

slowly degraded or produced and persisting in the batch bioreactors. Biowaste also contains multiple 522 

easily degradable metabolites that were probably present only in the first days of the experiment. 523 

Similarly, some metabolites were probably degraded very rapidly after their production and could 524 

thus not be observed or filtered by our analytical pipeline as they appeared transiently.  525 

Finally, even though metabolomics is more and more widely used, it has not been applied extensively 526 

to AD yet. Thus, the identification of AD molecules remains limited to their description in databases 527 

and to the few studies available, leading to possible bias in data interpretation.  528 

3.4 Perspectives for the analysis of time course series of omics 529 

samples in bioprocesses 530 
Microbiome studies have been limited to small sample sizes due to the high cost and complexity of 531 

experimental. Longitudinal replicated studies are now possible and new analytical designs can be 532 

implemented. In particular, they enable studies of temporal dynamics of AD microbiome coupled to 533 

experimental interventions. These experimental designs are essential to move beyond descriptive 534 

associations and attempt to decipher causal mechanisms. It will ultimately enable to rationalize 535 

approaches to manipulate AD microbiome and achieve durable benefits. However, data analysis from 536 

such studies has been hampered by a lack of appropriate computational tools.  537 

In this work, we developed an analytical framework to integrate temporal dynamics of the microbial 538 

ecosystem while exploiting time information. The comparison of time-course profiles enables the 539 

identification of co-evolving biological features that are potentially related. It also allows to identify 540 

succession of events that occur in the digesters, and to draw hypotheses on the chain of events 541 

occurring in AD. As such, in depth-understanding of microbial and degradation dynamics can be 542 

achieved.  543 
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Compared to the few frameworks proposed for omics longitudinal data, our analytical approach 544 

presents multiple advantages. Firstly we focus on relevant and reproducible patterns through the 545 

filtering of relevant biological variables. Smoothing splines denoises experimental values and 546 

manages replicate variability as the spline aggregates signal obtained from different replicates. 547 

Moreover, temporally adjacent samples can compensate for errors. Splines enable the interpolation 548 

of missing values (for example missing date or missing variables) or varying number of time points 549 

per bioreactor, and different number of replicates per time point. Finally, the clustering reduces 550 

dataset complexity by grouping variables into a small number of time-course trajectory types 551 

(clusters) that are likely to be biologically related. It can thus address the high dimensionality of 552 

omics longitudinal data and associated constraints. 553 

Additionally, our pipeline is a very generalist approach, widely applicable, if adapted to the data type. 554 

For example, a relevant clustering approach must take into account the data specificity and question 555 

targeted. For performance data, we used k-means on modelled data, to group the bioreactors based 556 

on both the shape and magnitude of methane production. For omics data we applied hierarchical 557 

clustering to the derivative of the modelled profiles to account for the rates and speeds of changes in 558 

the omics profiles. The absolute level of expression of the molecules or microorganisms was of 559 

limited interest as it can be biased due to the experimental procedure (PCR amplification during 16S 560 

metabarcoding – different ionization capability during mass spectrometry metabolomics analysis). 561 

Instead, curves shapes (accessed through the derivative) could provide meaningful information on 562 

coordinate growth, production or consumption.  563 

Despite these various advantages, a limitation of our pipeline is that it does not enable simultaneous 564 

integration of various data type. For example, we analysed degradation performances, 16S and 565 

metabolomics data independently and did not seek for correlation links between performances 566 

microorganisms and molecules. Correlating several types of data is a challenge as these data are not 567 

generated by the same techniques and do not reflect the same biological phenomena. However, 568 
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several studies attempted to evidence such correlations with different data integration approaches 569 

(Bodein et al., 2019; Cardona et al., 2020). Further development should be undertaken to address 570 

these questions.  571 

For the field of AD and the general field of bioprocess, longitudinal profiling technologies have a 572 

great potential. They can uncover complex relations between variations across microbiome variables 573 

(Jendoubi & Ebbels, 2020), and enlightening complex microbiota interactions in AD. The clustering of 574 

longitudinal profiles helps identifying groups of biological entities that may be functionally related 575 

generate novel hypotheses about the interaction mechanisms that take place within the processes. 576 

Similar framework can be applied to multiple other omics, allowing an in-depth characterization of 577 

ecological niches over time. It can provide enhanced understanding of the underlying biology of the 578 

system that will help the design of optimized processes. 579 

Another benefit of such approaches is that they naturally yield a list of perturbed microbial dynamics 580 

or metabolic pathways, either by comparison of conditions, as illustrated in this study, or by looking 581 

at long term dynamics in continuous processes submitted to disturbance (Herold et al., 2020). It can 582 

thus foster the discovery of early warning bioindicators, namely microorganisms or metabolites that 583 

have significant association patterns with a particular situation, such as the presence of an inhibitor, 584 

overloading, dysfunction, change of substrate. For a diagnosis perspective, these bioindicators can 585 

anticipate failure (Poirier et al., 2020). This knowledge can be used to increase the robustness of the 586 

process and limit dysfunction. 587 

4 Conclusion  588 
Our study provides a novel time-course perspective of the effect of ammonia on AD at the 589 

performance, microbial and metabolic levels. Our analysis framework accounted for variability 590 

between reactors of the same group of performance. Successive growth of guilds of microorganisms 591 

across time was revealed as well as influence of ammonia on the production and degradation of 592 

some metabolites. With increasing availability of high-throughput sequencing time-course data, this 593 
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analytical framework is a powerful tool for characterizing complex datasets and revealing novel 594 

insights into microbiome related issues.  595 
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Figures:  802 
 803 

  804 

Figure 1: cumulated methane, carbon dioxide production (mL of gas) and acetate and propionate 805 

concentration (mg of C per L) over time (number of days) for the different groups of bioreactors 806 

obtained after clustering based on methane production curves.  807 

  808 
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  809 

Figure 2: hierarchical clustering of the OTUs identified with sequencing and ions detected with 810 

GCMS, based on their time-course trajectories, obtained after filtering, modelling and derivative of 811 

the profiles. Colours indicate the grouping of the variables into clusters.  812 
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 814 

Figure 3: Time-course trajectories of the abundance of the different OTUs selected after filtering in 815 

the 5 groups of bioreactors (in column). The different OTUs are grouped based on the time-course 816 

trajectories of their abundance in group 1 (in row). Original spline fitted values. 817 
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820 
  821 

Figure 4: Time-course trajectories of the abundance of the different metabolites selected after 822 

filtering in the 5 groups of bioreactors (in column). The different metabolites are grouped based on 823 

the time-course trajectories of their abundance in group 1 (in row). Original spline fitted values 824 

 825 
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Table 1: Taxonomic affiliation of the OTUs selected after fold change filter and differentially expressed during time in group 1. OTUs are grouped by clusters 827 

with similar time-course trajectories in group 1.  828 

Cluster OTU 
name Domain Phylum Class Order Family Genus Species 

1 
porp_8 Bacteria Bacteroidetes Bacteroidia Bacteroidales Porphyromonadaceae unknown unknown 
rumi_2 Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Ruminococcus 1 unknown 

2 

acho_1 Bacteria Tenericutes Mollicutes Acholeplasmatales Acholeplasmataceae Acholeplasma unknown 

bact_4 Bacteria Bacteroidetes Bacteroidia Bacteroidales Bacteroidaceae Bacteroides Bacteroides 
intestinalis 

clos_1 Bacteria Firmicutes Clostridia Clostridiales Clostridiaceae 1 Clostridium sensu 
stricto 1 

Clostridium 
butyricum 

lach_1 Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Mobilitalea unknown 
MC1 Archaea Euryarchaeota Methanomicrobia Methanomicrobiales Methanomicrobiaceae Methanoculleus unknown 

porp_6 Bacteria Bacteroidetes Bacteroidia Bacteroidales Porphyromonadaceae unknown unknown 

3 

alca_1 Bacteria Proteobacteria Betaproteobacteria Burkholderiales Alcaligenaceae Paenalcaligenes unknown 

lact_3 Bacteria Firmicutes Bacilli Lactobacillales Lactobacillaceae Lactobacillus Lactobacillus 
parabuchneri 

lact_4 Bacteria Firmicutes Bacilli Lactobacillales Lactobacillaceae Lactobacillus Lactobacillus 
guizhouensis 

lact_5 Bacteria Firmicutes Bacilli Lactobacillales Lactobacillaceae Lactobacillus Lactobacillus 
parabrevis 

rike_3 Bacteria Proteobacteria Gammaproteobacteria Pseudomonadales Pseudomonadaceae Pseudomonas Pseudomonas 
caeni 

4 

baci_1 Bacteria Firmicutes Bacilli TSCOR001-H18 unknown unknown unknown 

bact_2 Bacteria Bacteroidetes Bacteroidia Bacteroidales Bacteroidaceae Bacteroides Bacteroides 
uniformis 

bact_7 Bacteria Bacteroidetes Bacteroidia Bacteroidales Bacteroidaceae Bacteroides Bacteroides ovatus 
FXI_1 Bacteria Firmicutes Clostridia Clostridiales Family XI Anaerosalibacter unknown 
lach_6 Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Tyzzerella unknown 
lach_7 Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Mobilitalea unknown species 

MV1 Archaea Euryarchaeota Methanobacteria Methanobacteriales Methanobacteriaceae Methanobrevibacter Methanobrevibacter 
smithii 

TH1 Archaea Euryarchaeota Thermoplasmata Thermoplasmatales Thermoplasmatales 
Incertae Sedis 

Candidatus 
Methanogranum unknown 
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vadi_1 Bacteria Firmicutes Clostridia Clostridiales Clostridiales 
vadinBB60 group unknown unknown 

5 

arma_1 Bacteria Armatimonadetes unknown unknown unknown unknown unknown 
pept_5 Bacteria Firmicutes Clostridia Clostridiales Peptococcaceae Pelotomaculum unknown 
synt_2 Bacteria Firmicutes Clostridia Clostridiales Syntrophomonadaceae Syntrophomonas unknown 

synt_4 Bacteria Firmicutes Clostridia Clostridiales Syntrophomonadaceae Syntrophomonas Syntrophomonas 
wolfei 

6 

GZK_1 Bacteria Bacteroidetes Bacteroidia Bacteroidales GZKB124 unknown unknown 
mari_1 Bacteria Bacteroidetes Bacteroidia Bacteroidales Marinilabiaceae Alkaliflexus unknown 
pept_6 Bacteria Firmicutes Clostridia Clostridiales Peptococcaceae Cryptanaerobacter unknown 
synt_6 Bacteria Firmicutes Clostridia Clostridiales Syntrophomonadaceae Syntrophomonas unknown 
 829 
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Table 2: Identification of the ions detected with GCMS and selected after fold change filter and differentially expressed during time in group 1. Ions are 831 

grouped by clusters with similar time-course trajectories in group 1.  832 

Cluster number Ion name (mass and retention time) Identification 

1 

M266T1372 Anthranilic acid (2-aminobenzoic acid) 
M308T1437 N-Acetylanthranilic acid (2-Acetamidobenzoic acid) 
M291T1584 Not identified 
M369T1850 Not identified 
M357T2099 Dehydroabietic acid (Abieta-8,11,13-trien-18-oic acid) 

2 

M179T1018 Benzoic acid 
M292T1383 Not identified 
M290T1524 Indole-2-carboxylic acid 
M379T1799 Phytanic acid (3,7,11,15-tetramethyl hexadecanoic acid) 

3 
M229T1227 Decanoic acid 
M205T1473 Not identified 
M310T1500 3-(3-Hydroxyphenyl)propionic acid 

4 

M106T894 Not identified 
M299T1033 Phosphoric acid 
M129T1196 Not identified 
M285T1569 Myristic acid (1-tetradecanoic acid) 
M398T1643 3,4-Dihydroxyhydrocinnamic acid (3-(3,4-Dihydroxyphenyl)propionic acid) 
M415T2220 Not identified 

5 
M207T1196 Hydrocinnamic acid (Phenylpropanoic acid) 
M271T1466 Not identified 
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