

Ruminal bacteria heritabilities: Which is the impact of different data processing?

Guillermo Martinez Boggio, Annabelle Meynadier, Charlotte Allain, Christel

Marie-Etancelin

▶ To cite this version:

Guillermo Martinez Boggio, Annabelle Meynadier, Charlotte Allain, Christel Marie-Etancelin. Ruminal bacteria heritabilities: Which is the impact of different data processing?. EAAP 2021, Aug 2021, Davos, Switzerland. hal-03480858

HAL Id: hal-03480858 https://hal.inrae.fr/hal-03480858

Submitted on 14 Dec 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Ruminal bacteria heritabilities:

Which is the impact of different data processing?

Guillermo Martinez Boggio¹, Annabelle Meynadier¹, Charlotte Allain², Christel Marie-Etancelin¹ ¹GenPhySE, Université de Toulouse, INRAE, ENVT, France. ²INRAE, Experimental Unit of La Fage, France

Conclusions

Zeros replacement impact the most the number of heritable

OTUs.

GBM leads to less difference between the two data

transformation.

guillermo.martinez-boggio@inrae.fr

Overall **no differences** in h²

Introduction and objective Ruminal bacteria h² are affected by data processing. Microbiome data is **compositional**: the information is

found in the operational taxonomic unit (OTU) ratios.

As high-dimensional data with zeros, it is necessary to replace the zeros, and apply value transformation.

To compare **data processing methods** in terms of **heritability** estimates (h²).

Materials and methods

Rumen samples of 795 Lacaune ewes Metabarcoding 16s rRNA gene

Table 1. Data processing methods to be compare.

	GBM	C1	Z01
CLR	GBM-CLR	C1-CLR	Z01-CLR
Log	GBM-Log	C1-Log	Z01-Log

Zeros replacement:

GBM= Geometric Bayesian Method C1= Add constant equal 1 **Z01**= Replace only zeros with 0.001

Data transformation:

CLR= Centred Log-Ratio transformation Log= Logarithm transformation

Heritability estimates*:

 $\mathbf{v} = \mathbf{X}\mathbf{b} + \mathbf{Z}\mathbf{a} + \mathbf{e}$

y: OTU abundances processed with each of the 6 methods. **b**: fixed effects lactation stage, litter size, year, number of lactation, sequencing run, sampling order and total nb. sequences. **a:** random animal effect ~ N(0, σ^2 , A). **e**: residual ~ N(0, σ_{e}^{2} I).

*The threshold of significance obtained by phenotype-animal permutation

But, the number of heritable OTUs defined by the methods were variable.

OTUS

Number

Table 2. Number of heritable* OTUs by processing data method.

Results

C1-CLR

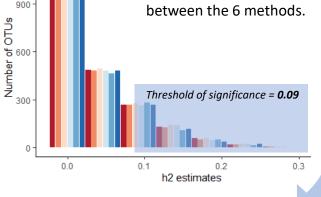
C1-Log

GBM-CLR

GBM-Log Z01-CLR

Z01-Loa

	GBM	C1	Z01
CLR	326	293	249
Log	294	274	254


% OTUs in common between CLR and Log

GBM > C1 > Z01

By replacing only the zeros we obtain lower number of heritable OTUs.

