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SHORT COMMUNICATION

VarGoats project: a dataset of 1159 
whole-genome sequences to dissect Capra 
hircus global diversity
Laure Denoyelle1,2† , Estelle Talouarn1† , Philippe Bardou1,3 , Licia Colli4 , Adriana Alberti5 ,  
Coralie Danchin6 , Marcello Del Corvo4, Stéfan Engelen5 , Céline Orvain5, Isabelle Palhière1, Rachel Rupp1 ,  
Julien Sarry1, Mazdak Salavati7,8 , Marcel Amills9 , Emily Clark7,8 , Paola Crepaldi10 , Thomas Faraut1 ,  
Clet Wandui Masiga11, François Pompanon2 , Benjamin D. Rosen12 , Alessandra Stella13 , 
Curtis P. Van Tassell12  and Gwenola Tosser‑Klopp1* The VarGoats Consortium 

Abstract 

Background: Since their domestication 10,500 years ago, goat populations with distinctive genetic backgrounds 
have adapted to a broad variety of environments and breeding conditions. The VarGoats project is an international 
1000‑genome resequencing program designed to understand the consequences of domestication and breeding 
on the genetic diversity of domestic goats and to elucidate how speciation and hybridization have modeled the 
genomes of a set of species representative of the genus Capra.

Findings: A dataset comprising 652 sequenced goats and 507 public goat sequences, including 35 animals repre‑
senting eight wild species, has been collected worldwide. We identified 74,274,427 single nucleotide polymorphisms 
(SNPs) and 13,607,850 insertion‑deletions (InDels) by aligning these sequences to the latest version of the goat refer‑
ence genome (ARS1). A Neighbor‑joining tree based on Reynolds genetic distances showed that goats from Africa, 
Asia and Europe tend to group into independent clusters. Because goat breeds from Oceania and Caribbean (Creole) 
all derive from imported animals, they are distributed along the tree according to their ancestral geographic origin.

Conclusions: We report on an unprecedented international effort to characterize the genome‑wide diversity of 
domestic goats. This large range of sequenced individuals represents a unique opportunity to ascertain how the 
demographic and selection processes associated with post‑domestication history have shaped the diversity of this 
species. Data generated for the project will also be extremely useful to identify deleterious mutations and poly‑
morphisms with causal effects on complex traits, and thus will contribute to new knowledge that could be used in 
genomic prediction and genome‑wide association studies.

© The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco 
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Context
Goats (Capra hircus) were domesticated around 
10,500  years ago in the Fertile Crescent [1]. After their 
dispersion from their center of domestication, goats have 
undergone intense adaptation and occupy diverse agroe-
cological zones around the world. As a result of selection, 
different breeds and lines of goats are now specialized 
for production of milk, meat, fiber [2], and also fuel or 
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fertilizer from manure, thus goats play an important role 
in the livestock sector around the world. According to 
FAOSTAT (www. fao. org/ faost at/ en), the global goat pop-
ulation has increased by 38% since 1994, reaching over 
one billion heads in 2017. The global goat population is 
the third largest among ruminant production species.

In 2010, the first goat reference genome was sequenced 
and assembled [3], and the International Goat Genome 
Consortium (IGGC) was created to support the develop-
ment of genomic tools for studying the genetic variation 
of domestic goats. The next major step was the devel-
opment of the GoatSNP50 BeadChip in 2014 [4], a 50 k 
single nucleotide polymorphism (SNP) panel. The Goat-
SNP50 chip enabled the discovery of quantitative trait 
locus (QTL) through genome-wide association studies 
[5–7] and helped to initiate genomic selection in goats 
[8, 9]. The GoatSNP50 chip also facilitated international 
collaborations because it generated data through unre-
lated studies and different laboratories located across the 
globe that were directly comparable and could be easily 
merged. The AdaptMap project [10–16] was one of these 
collaborations that compiled goat genotypes from across 
the world and explored their genetic diversity. Although 
the AdaptMap dataset collected data from 4653 animals 
across 148 populations and 35 countries [14], it was lim-
ited to a subset of countries, and did not fully represent 
the variability of the Capra species worldwide. Indeed, 
wild goat species other than the bezoar (Capra aegagrus) 
were not investigated. Moreover, data generated from 
SNP chips are known to be distorted by ascertainment 
bias [17], a limitation that can be overcome by carefully 
filtering whole-genome sequencing data of sufficient 
depth [18].

In this paper, we report an international resequenc-
ing effort, the VarGoats project, that has generated 
data from 652 novel goat genomes combined with 507 
existing genome sequences retrieved from public data-
bases. We describe how this comprehensive dataset of 
1159 genomes was obtained and characterized, and also 
present a perspective about the genetic relationships 
between domestic goat breeds on a worldwide scale.

Findings
Data description
Selection of individual goats
Animals sequenced in the VarGoats project were selected 
such that they represent the global genetic diversity of 
goats. First, based on the analysis of Colli et al. [15], 468 
animals included in the AdaptMap dataset were selected 
to cover each of the 19 major gene pools determined by 
the Admixture software, except that from North Amer-
ica. Whenever possible, four to five breeds were selected 
within each group to ensure a fair representation of 

within-gene pool diversity. Eleven of the individuals 
that were included in the AdaptMap genotyped popula-
tion were not included in the final dataset (https:// datad 
ryad. org/ stash/ datas et/ doi: 10. 5061/ dryad. v8g21 pt), from 
which we extracted filtered genotyping data, thus geno-
types were available for 457 individuals. To maximize 
the diversity of goats represented in this population, in 
addition to the 468 animals selected from the AdaptMap 
population, 184 other animals were selected to epitomise 
individual breeds and lineages and to allow investigation 
of adaptation to unique geographic or ecological niches. 
These 184 animals were selected from samples submit-
ted by consortium members. After collecting these 652 
(468 + 184) individuals that were sequenced within the 
VarGoats project, we retrieved 217 additional sequences 
through the Omics  Disco very Index from NextG en 
consortium projects (PRJEB 3134, PRJEB 3135, PRJEB 
3136, PRJEB 4371, PRJEB 5166, and PRJEB 5900), and 
290 sequences from public sequence data repositories 
(sequences extracted from NCBI 7 Feb 2019). Thus, the 
VarGoats dataset included 1159 goat whole sequenced 
genomes.

Besides our efforts to maximize the amount of diversity 
represented in the VarGoat dataset, part of the sequenc-
ing effort aimed at addressing specific research questions. 
For example, since one of our objectives was to better 
understand the genetic variation underpinning com-
mercial dairy breeds, more individuals from the Alpine 
and Saanen breeds than from other breeds were selected 
for sequencing. It should also be noted that several of 
the sequenced individuals are closely related. Among 
the 1159 sequenced animals, a vast majority (1124) cor-
respond to domestic goats (C. hircus), which represent 
a range of breeds from Africa (450: 39%), Europe (443, 
38%), Asia (225: 20%), Oceania (25: 2%) and the Carib-
bean (16: 1%). The geographical distribution of the inves-
tigated populations is shown in Fig. 1. The remaining 35 
(3%) individuals represent wild Capra species, includ-
ing C. aegagrus, Capra caucasica, Capra cylindricornis, 
Capra falconeri, Capra ibex, Capra nubiana, Capra pyr-
enaica, and Capra sibirica.

Code used to identify the animals
A unique identification code (original ID) defined each 
individual. For all sequenced animals, the ID was format-
ted as CCSS-BBB-NNNN: where CC corresponds to the 
country of origin based on the ISO 3166-1 alpha-2 codes, 
SS correspond to the species (CH for C. hircus, CA for C. 
aegagrus, etc.), BBB is the three character breed abbre-
viation (UNK for unknown), and NNNN is a four-digit 
number (with leading zeros) that is assigned sequentially 
within each combination of source country, species, and 
breed and that uniquely identifies each individual. Breed 

http://www.fao.org/faostat/en
https://datadryad.org/stash/dataset/doi:10.5061/dryad.v8g21pt
https://datadryad.org/stash/dataset/doi:10.5061/dryad.v8g21pt
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https://projects.ensembl.org/nextgen/
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https://www.omicsdi.org/dataset/omics_ena_project/PRJEB3136
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https://www.ncbi.nlm.nih.gov/
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and country codes are in Additional file 1: Table S1. For 
the NextGen data, we used the sample’s alias as the origi-
nal ID, and the run’s accession number as the original ID 
for the remaining public data.

An alternative ID, a ‘working name’, was assigned for 
each individual to facilitate the interpretation of the 
results for animals from unknown breeds. The working 
name format is similar to the original ID and is composed 
in the same way, except for a duplication of the country 
code as shown: CCSS-BBB_CC-NNNN.

For public data, information was extracted from BioSa-
mple (NCBI, https:// www. ncbi. nlm. nih. gov/ biosa mple/) 
in order to determine the sex, breed and geographic ori-
gin of each animal. For the VarGoats samples, informa-
tion was collected by VarGoats collaborators. Detailed 
information for each sequenced individual is in Addi-
tional file 2: Table S2.

Concordance rates of the 457 AdaptMap individuals 
and breed ascertainment of outliers
We extracted the 50  k genotypes for the 457 individu-
als with genotyping data from the AdaptMap project to 
detect potential sample mix-ups by checking the con-
cordance rates (CR) between sequence variants and SNP 
array genotypes. Among the 46,654 SNPs genotyped 
in the AdaptMap project, 44,691 were identified in the 
VCF files from sequenced individuals. The distribution 
of CR clearly showed a disruption in this quality indica-
tor at 70%, a value which we used as a threshold in the 

subsequent analyses (see Additional file 3: Figure S1). As 
shown in Fig. 2, low coverage sequences display lower CR 
values. For 14 individuals, although the sequencing depth 
was acceptable (between 7.2 and 23.6), a CR less than 
70% was observed, which indicates a technical problem 
that leads to a lack of correspondence between the geno-
typed and sequenced samples (Fig. 2a.).

To check that the breed assignment indicated in the 
ID of these 14 animals was correct, we performed a 
principal component analysis (PCA) using the PLINK 
software version 1.9 [19] to compare the coordinates of 
these individuals with respect to all the animals belong-
ing to those outlier breeds. The PCA was conducted on 
genotyping data of the autosomal SNPs from the VCF 
file. First of all, we removed SNPs with more than 5% of 
missing data. This filtering step yielded 1,890,194 SNPs 
which were pruned, using the indep-pairwise function 
(“--indep-pairwise 50 10 0.1”) in PLINK [19], i.e. SNPs 
in 50-SNP sliding windows with a step size of 10 SNPs 
displaying pairwise correlations between genotype allele 
counts greater than 0.1, were removed. This filtering step 
reduced the dataset to 667,949 SNPs which were used 
to assess population structure. Twelve of these 14 ani-
mals clustered with their breed counterparts (Fig.  2b), 
but for two individuals (AUCH-BOE-0038 and ITCH-
CCG-0014) breed assignment could not be confirmed.

The 11 animals with missing genotypes, and there-
fore not confirmed, were marked in Additional file  2: 
Table  S2 with a “1” in the fourth column, whereas 

Fig. 1 Geographical distribution of the 1159 sampled Capra individuals included in the dataset. The geographical origin of each sequenced animal 
is indicated both for the country (exterior circle) and the continent (interior circle). For each location, the number of sequenced individuals and their 
percentage in the overall dataset is indicated

https://www.ncbi.nlm.nih.gov/biosample/
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the 14 animals with a concordance rate lower than 
70% (Fig.  2a) were also marked with a “1” in the fifth 
column.

As recommended for any dataset, we advise users to 
perform a global analysis, such as a PCA or a popula-
tion structure analysis based on the full dataset or on 
subsets to identify potential outliers before performing 
in-depth studies.

Breed information
The VarGoats dataset encompasses samples from eight 
wild species [(C. aegagrus (BEZ), C. caucasica (CAU), 
C. pyrenaica (CPY), C. cylindricornis (CYL), C. fal-
coneri (FAL), C. ibex (IBX), C. nubiana (NUB), and C. 
sibirica (SIB)] and from 126 C. hircus breeds (see Addi-
tional file 1: Table S1). They are distributed as follows: 
46 breeds from Africa (36%), 40 from Europe (32%), 
34 from Asia (27%), 5 from Oceania (4%) and 1 from 
the Caribbean (1%). The dataset includes cosmopolitan 
breeds such as Alpine, Boer, and Saanen as well as local 
breeds that are unique to specific regions of the world.

The geographical distribution of the breeds was 
determined based on a literature review (www. fao. org; 
www. races defra nce. fr; http:// eng. agrar ia. org/ goat. htm; 
etc.), which allowed us to define more precisely how 
each breed was derived. In the absence of precise infor-
mation, GPS coordinates of the country of origin (from 
the torop website) were assigned to each sample. Breed 
locations are represented for each continent in Figs. 3, 
4 and 5, except for Creole, which is the only breed iden-
tified as Caribbean (specifically, West Indies).

Library construction and sequencing
For all samples except those from African goats, two pro-
tocols were used for library preparation depending on 
the DNA extraction yield, i.e. 250 ng or much less. In all 
cases, sonication was performed with the E210 Covaris 
sonicator (Covaris, Inc., USA). When 250 ng of genomic 
DNA were available, the NEBNext DNA Modules Prod-
ucts (New England Biolabs, MA, USA) were used for 
end-repair, 3ʹ-adenylation and ligation of NextFlex DNA 
barcodes (Bioo Scientific Corporation, Saint-Marcel, 
France) of the DNA fragments. After two consecutive 
1 × AMPure XP (Beckman Coulter France, Villepinte, 
France) clean-ups, the ligated fragments were amplified 
by 12 PCR cycles by using the Kapa Hifi Hotstart NGS 
library Amplification kit (Kapa Biosystems, Wilming-
ton, MA, USA), followed by 0.6 × AMPure XP purifica-
tion. When DNA extraction yielded DNA quantities 
much smaller than 250 ng, only 10 to 50 ng of genomic 
DNA were sonicated. Fragments were then end-repaired, 
3ʹ-adenylated and NEXTflex DNA barcoded adapters 
were added by using NEBNext Ultra II DNA Library 
prep kit for Illumina (New England Biolabs, MA, USA). 
After two consecutive 1 × AMPure clean-ups, the 
ligated products were PCR-amplified with NEBNext® 
Ultra II Q5 Master Mix included in the kit, followed by 
0.8 × AMPure XP purification.

All the libraries were subjected to size profile analysis, 
with an Agilent 2100 Bioanalyzer (Agilent Technologies, 
USA) and to qPCR quantification (MxPro, Agilent Tech-
nologies, USA). Libraries were sequenced using 151-bp 
length read chemistry in a paired-end flow cell on an Illu-
mina HiSeq 4000 sequencer (Illumina, USA). On average, 

A B

Fig. 2 Analysis of the AdaptMap samples. a Concordance rates of the 457 AdaptMap individuals with 50 K chip and sequence data calculated on 
the basis of 44,691 common SNPs. b PCA to ascertain the breed of outlier animals

http://www.fao.org
http://www.racesdefrance.fr
http://eng.agraria.org/goat.htm
http://www.torop.net/coordonnees-gps.php
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120 million paired-end reads were obtained for each 
sample after clean up (12X expected genomic coverage).

Libraries corresponding to African goat samples were 
prepared by Edinburgh Genomics using the TruSeq 
Nano DNA High Throughput library preparation kit 
(Illumina, USA). The following preparation protocol was 
applied: 1  µg of genomic DNA was sheared to a mean 
fragment size of 450 bp using a Covaris LE220 focused-
ultrasonicator (Covaris, Inc., USA). DNA fragments were 
then blunt-ended, A-tailed, size-selected and adapters 
were ligated to fragment ends according to the Illumina 
TruSeq PCR-free library preparation kit protocol. Insert 
size of the libraries was evaluated using a PerkinElmer 
LapChip GX Touch with an HT DNA 1 k/12 K/HI SENS 
LabChip and HT DNA HI SENS Reagent Kit (Perki-
nElmer, Inc., MA, USA). Final library concentration 
was calculated by qPCR using a Roche LightCycler 480 
(Roche Molecular Systems, Inc., Switzerland) and a Kapa 
Illumina Library Quantification kit and Standards. Then, 

libraries were normalized to a loading concentration of 
150  nM. All library processing steps were carried out 
on Hamilton MicroLab STAR (Hamilton Company, NV, 
USA) liquid handling robots coupled to BaseSpace Clar-
ity LIMS X Edition (Illumina, CA, USA). Libraries were 
loaded into a HiSeq X Flow cell v2.5 and clustered using 
an Illumina cBot2 Illumina, CA, USA). Clustered flow 
cells were sequenced at a 15X coverage using a HiSeq X 
Ten Reagent kit v2.5.

Raw data were filtered to remove clusters that have too 
‘much intensity’ corresponding to bases other than the 
called base. By default, the purity of the signal from each 
cluster is examined over the first 25 amplification cycles 
and calculated as Chastity = Highest_Intensity/(High-
est_Intensity + Next_Highest_Intensity) for each cycle. 
The default filtering implemented at the base calling 
stage allows for at most one cycle with a low (< 0.6) Chas-
tity score. Adapters and primers were removed from the 
sequence read and low-quality (< 20) nucleotides were 

Fig. 3 Geographic distribution of European breeds. Breeds are represented by three letters corresponding to the breed code (see Additional file 1: 
Table S1). If a breed is present in multiple countries, the breed code is followed by the country code (2 letters). Each combination of color and 
symbol corresponds to domestic goats in a single country. Wild goats are identified with a specific color and symbol
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trimmed from both ends. Sequences between the second 
unknown nucleotide (N) and the end of the read were 
also removed. Reads shorter than 30 nucleotides after 
trimming were discarded. Finally, the reads and their 
mates, that mapped to run quality control sequences 
(PhiX genome) were removed. These trimming steps 
were conducted using an in-house software based on the 
FastX package (http:// www. genos cope. cns. fr/ exter ne/ 
fastx tend/).

Data generation and preparation
Read alignment and variant calling
Sequence reads from each sample were processed 
using a pipeline based on the domain reference tools 
and the Genome Analysis Tool Kit—GATK (v3.6) best 

practices: the Burrows–Wheeler Aligner BWA soft-
ware (v 0.7.15) for alignment [20], SAMto ols (v1.6) 
for handling SAM/BAM file formats and calling vari-
ants [21], Picar d tools (v2.1.1) for labelling duplicated 
reads, as well as GATK (v3.6) for insertion/deletion 
(InDel) realignment, base recalibration and calling var-
iants [22], BCFto ols (v1.6) for handling VCF/BCF for-
mats, Freeb ayes (v1.1.0) for calling variants [23], and 
snpEff (v4.3t) for VCF annotation [24].

Reads were mapped to the latest ARS1 genome 
assembly (Genbank accession GCA_001704415.1) 
of C. hircus [25] using the BWA-MEM software with 
default parameters except for “-t 14 -M” and “-R” to 
add read groups. The SAM output files were converted 
to sorted BAM files using SAMtools.

Fig. 4 Geographic distribution of African breeds. Breeds are represented by three letters corresponding to the breed code (see Additional file 1: 
Table S1). If a breed is present in multiple countries, the breed code is followed by the country code (2 letters). Each combination of color and 
symbol corresponds to domestic goats in a single country

http://www.genoscope.cns.fr/externe/fastxtend/
http://www.genoscope.cns.fr/externe/fastxtend/
https://gatk.broadinstitute.org/hc/en-us
http://bio-bwa.sourceforge.net/
http://www.htslib.org/doc/samtools.html
http://broadinstitute.github.io/picard
https://gatk.broadinstitute.org/hc/en-us
http://www.htslib.org/doc/bcftools.html
https://github.com/freebayes/freebayes
https://pcingola.github.io/SnpEff/
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Pre-processing steps (marking duplicates, 
InDel-based realignment and base quality score 
recalibration—(BQSR)) were done using the Picard-
MarkDuplicates and GATK tools. The “known vari-
ants” file that is necessary for the BQSR step was 
computed on a subset of 13 goats (AUCH-CAS-0038, 
BFCH-DJA-0012, CHCH-BOE-0229, ESCH-PAL-0008, 
ESCH-RAS-0011, ETCH-ABR-0036, FICH-LNR-0122, 
FRCH-ALP-0030, FRCH-CRE-0014, FRCH-SAA-0032, 
ITCH-GGT-0026, MZCH-PAF-0003 and ZACH-
ANG-0374), which represented 13 breeds chosen from 
the first 248 animals that were sequenced. These goat 
samples represented 11 of the 15 gene pools deter-
mined by Colli et al. [15] using the Admixture software 
[26]. We added one individual from the Creole breed 
(different from the Creole individuals genotyped in the 
AdaptMap dataset), as a representative of the Ameri-
can gene pool and one from an inbred breed (Palmera). 
Variants that fulfilled both of the following conditions 
were included in the “known variants” file: (1) vari-
ants that had at least six genotypes with at least one 
alternative allele ("snpSift filter ’countVariant() > 6’"); 
and (2) variants that were called by both Freebayes and 
GATK-HaplotypeCaller.

Variant calling for each individual was done with the 
GATK-HaplotypeCaller in ERC mode with a minimum 
read mapping quality of 30 and a minimum Phred-scaled 
confidence threshold of 30 (“-stand_call_conf 30.0 -mmq 
30 -ERC GVCF -variant_index_type LINEAR -variant_
index_parameter 128000”).

Due to the large number of samples, GVCF files were 
combined (CombineGVCFs) before the joint genotyping 
step (GenotypeGVCFs) to produce the raw VCF files by 
chromosome/scaffold.

Filtering process
A variant quality score recalibration (VQSR) step was 
performed on the raw VCF files. The same 13 goats that 
were used in variant calling were also used to estab-
lish training resource sets for VQSR calibration. Two 
training resources of true sites were built. The first set 
of variants included only the highest quality calls, with 
variants consistently identified with GATK, Mpileup 
[21] and Freebayes [23] (“known=false,training=true,tr
uth=true,prior=15.0”). The second set of variants used 
the 60,000 SNPs selected by Tosser-Klopp et  al. [4] to 
generate the set of SNPs included in the GoatSNP50 
BeadChip (“known=false,training=true,truth=true,pr

Fig. 5 Geographic distribution of Asian and Oceanian breeds. Breeds are represented by three letters corresponding to the breed code (see 
Additional file 1: Table S1). If a breed is present in multiple countries, the breed code is followed by the country code (2 letters). Each combination of 
color and symbol corresponds to domestic goats in a single country. Wild goats are identified with a specific color and symbol

https://gatk.broadinstitute.org/hc/en-us
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ior=12.0”). The training resource of non-true sites was 
built using the variants exclusively called by GATK (“kno
wn=false,training=true,truth=false,prior=10.0”). The 
last SNP resource, which was not used to train recali-
bration, was the dbSNP variant database provided by 
Ensembl version 95 (“known=true,training=false,tru
th=false,prior=2.0”). The variant call annotations (for 
SNPs and InDels) QD, DP, FS, MQRankSum, ReadPos-
RankSum, SOR and MQ (only for SNPs) were used for 
VariantRecalibrator. Additional file  4: Figures  S2 and 
Additional file 5: Figure S3 show the pairwise compari-
sons of the annotations chosen in VQSR as described in 
the VQSR docum entat ion. Based on the “snps. tranches” 
files (see Additional file 6: Figure S4 and Additional files 
7 and 8), no false-positive variants were observed in the 
99 tranche. Therefore, the 99.9 tranche was included 
to increase the sensitivity of variant discovery, because 
goats sampled for the VarGoats project included a wide 
range of breeds. We considered the highest tranche (99.9 
to 100) as a false positive and excluded it. The remaining 
variants (SNPs and InDels) were then recalibrated at the 
truth sensitivity filter level (tranche) of 99.9.

In total, 129,043,954 SNPs were identified prior to 
VQSR filtering. Screening removed 14,799,331 (11.5%) 
loci, resulting in 114,244,623 variants passing the VQSR 
filter. Finally, only biallelic SNPs were retained with a 
GATK quality score greater than 100 and with at least 
two individuals carrying the alternative allele. The entire 
filtering process resulted in a high confidence set of 
74,274,427 SNPs and 13,607,850 InDels (Table 1).

Main features of the dataset
The GCF_001704415.1_ARS1_genomic.gff annota-
tion file was used to annotate variants using the SnpEff 
software. Thus for each SNP, descriptive information is 
provided in the INFO field. The exhaustive description 
of the INFO field can be found in snpEff  manual. For 
example, it contains a description of the position of the 
variant relative to a gene (upstream, downstream, exon, 
intron), if the variant hits a transcript (transcript), if it is 
located in an untranslated region (UTR 3ʹ, UTR 5ʹ), its 
location and effect regarding splicing (splice acceptor, 
splice donor, splice region), amino-acid changes (mis-
sense, nonsense, silent), etc. Table  1 summarizes the 
numbers and types of variants found on each chromo-
some for 14 annotations (downstream, exon, intergenic, 
intron, splice acceptor, splice donor, splice region, tran-
script, upstream, UTR 3ʹ, UTR 5ʹ, missense, nonsense, 
silent).

Sex assignment
When known, the sex of each individual is provided in 
Additional file 2: Table S2. However, the sex of 128 animals 

(mostly public data) was not available and was inferred 
by using a pipeline described here. Based on each align-
ment file (BAM) for each goat, the depth of the sequencing 
reads per chromosome or scaffold was determined using 
the idxstat command of SAMtools. The read depth was 
standardized by chromosome or scaffold length as ([read 
number]/[chromosome or scaffold length] * 100). For the 
sex chromosomes, the mean standardized read depth was 
calculated as the standardized read depth for each scaffold 
weighted by the length of that scaffold. The mean stand-
ardized read depth for C. hircus (CHI) chromosome X 
(CHIX) is determined as the weighted standardized mean 
depth extracted from the scaffolds NW_017189516.1 
and NW_017189517.1. The corresponding value for 
chromosome Y (CHIY) was calculated as the weighted 
standardized mean depth determined from scaffolds 
NW_017189563.1, NW_017189610.1, NW_017189618.1, 
NW_017189628.1, NW_017189685.1, NW_017189696.1, 
NW_017189885.1, NW_017189985.1, NW_017190040.1, 
NW_017190154.1, and NW_017195709.1. The ratio of the 
standardized mean read depth of the autosomes to CHIX 
was calculated using the weighted mean of the read depth 
across the autosomes. The expected ratio for females was 
1 for CHIX. No reads from the Y scaffolds were expected. 
For males, alternatively, a two to one ratio is expected for 
read depth of autosomes to CHIX or CHIY. Examination 
of these two values for each animal (see Additional file 9: 
Figure S5) allowed us to determine a threshold that differ-
entiates the two sexes. Individuals that had a mean stand-
ardized read depth of 25 or more from the Y scaffolds were 
considered to be males, and otherwise, they were assigned 
to the female category. This information is reported in 
Additional file  2: Table  S2, in the “assigned sex” column. 
Sixteen animals showed discordances between recorded 
and inferred sex, which corresponds to a 1.6% error rate. 
Given that this percentage is quite low, we are confident 
that our method is accurate and we believe that such 
inconsistencies could be due to errors when declared sexes 
were recorded.

Genetic differentiation
We conducted an exploratory analysis to evaluate the 
genetic differentiation among goat breeds. We included 
breeds that were represented by a single individual 
because we were interested in understanding the rela-
tionship among all the breeds in the overall dataset. To 
perform this genetic differentiation analysis, we used the 
thin-count function from PLINK [19] to extract a sub-
set of random 100,000 SNPs from the reduced set of the 
667,949 autosomal SNPs used in the PCA analysis (see 
“Selection of individual goats” section). Starting from 
this reduced dataset, a matrix of between-population 
Reynolds distances was calculated using the hapFLK 

https://gatk.broadinstitute.org/hc/en-us/articles/360035531612-Variant-Quality-Score-Recalibration-VQSR
https://pcingola.github.io/SnpEff/
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v.1.3.0 program [27, 28] and then it was used to con-
struct a Neighbor-Joining tree (Fig. 6). Since bezoar (C. 
aegagrus) is the wild species closest to domestic goats, it 
was used as an outgroup to root the tree.

In the neighbor-joining tree in Fig.  6, goats were 
grouped according to their ancestral geographic origin 

(Africa, Europe, Asia or Middle East). These results 
were consistent for the Oceanian breeds. Boer goats 
from Australia (BOE_AU) and New Zealand (BOE_
NZ) clustered with other Boer populations sampled 
in Africa (BOE_TZ, BOE_ZW), Asia (BOE_KR), and 
Europe (BOE_CH). Similarly, Australian Cashmere 
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(CAS_AU) goats clustered with Angora goats from 
France and South Africa because of their common 
Middle Eastern origin. A similar clustering pat-
tern based on the ancestral geographic origin is also 
observed in transboundary breeds sampled in different 
countries (i.e., Alpine, Boer and Saanen).

The first branching among domestic goats separated 
the Asian breeds from the remaining populations. This 
branch carried the most ancestral cluster, which was 
mainly composed of breeds that originated in South-
Western Asia (Iranian and Pakistani goats) and were 
thus geographically close to the center of domestication 
[1]. The second branch included a cluster composed 
of long-haired breeds (Angora and Cashmere goats). 
Two additional African and European clusters were 
observed. In each continental group, geographically 
coherent sub-clusters could be clearly distinguished 
(e.g. Northern and Southern Europe, North-Western 
Africa, Eastern Africa and Madagascar). Concern-
ing the two animals with an ambiguous breed status, 
one (UNK_AU, ex AUCH-BOE-0038) grouped with 
long-haired goats and the other (UNK_IT, ex ITCH-
CCG-0014) with Pakistani goats.

Conclusions
This 1159-goat genome dataset (VarGoats dataset) pro-
vides an unprecedented resource for research studies 
on caprine genomics. We provide a detailed method-
ology for calling SNPs, detecting InDels and filtering 
these data, which has led to a dataset that was vali-
dated through a differentiation study. This allowed us 
to verify that samples were properly assigned to their 
corresponding breed and geographical origin (both for 
samples collected for this study and public data). This 
VarGoats dataset will enable an unprecedented view 
of the footprints of the natural and human-mediated 
evolutionary forces that have shaped the diversity of 
caprine genomes. The VarGoats Consortium is cur-
rently organized in working groups, with each team 
conducting detailed analyses of these data. Among the 
various topics that are under study are: (i) analyses of 
structural variations, (ii) population genetics analysis 
and population history domestication reconstruction, 
(iii) detection of selection and adaptation signatures, 
(iv) identification of loss of function alleles, and (v) 
comparison of the goat genomes with those of other 
ruminant species. These ongoing population genet-
ics and genomic analyses of this dataset should lead to 
additional publications together with the public release 
of the variant datasets.
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