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Abstract1

By capturing various patterns of the structuring of genetic variation across populations, f -statistics have proved2

highly effective for the inference of demographic history. Such statistics are defined as covariance of SNP allele3

frequency differences among sets of populations without requiring haplotype information and are hence particu-4

larly relevant for the analysis of pooled sequencing (Pool-Seq) data. We here propose a reinterpretation of the F5

(and D) parameters in terms of probability of gene identity and derive from this unified definition unbiased estima-6

tors for both Pool-Seq and standard allele count data obtained from individual genotypes. We implemented these7

estimators in a new version of the R package poolfstat, which now includes a wide range of inference methods:8

(i) three-population test of admixture; (ii) four-population test of treeness; (iii) F4-ratio estimation of admixture9

rates; and (iv) fitting, visualization and (semi-automatic) construction of admixture graphs. A comprehensive eval-10

uation of the methods implemented in poolfstat on both simulated Pool-Seq (with various sequencing coverages11

and error rates) and allele count data confirmed the accuracy of these approaches, even for the most cost-effective12

Pool-Seq design involving low sequencing coverages. We further analyzed a real Pool-Seq data made of 14 pop-13

ulations of the invasive species Drosophila suzukii which allowed refining both the demographic history of native14

populations and the invasion routes followed by this emblematic pest. Our new package poolfstat provides the15

community with a user-friendly and efficient all-in-one tool to unravel complex population genetic histories from16

large-size Pool-Seq or allele count SNP data.17
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1 Introduction18

In their seminal paper, Reich et al (2009) introduced a new population genetics framework to decipher the his-19

tory of Indian human populations. This inference approach relied on a set of so-called f -statistics that are aimed20

at capturing various patterns of the structuring of genetic diversity across-population based on Single Nucleotide21

Polymorphism (SNP) assayed on a genome-wide scale (see also Patterson et al, 2012). The parameters underly-22

ing these statistics and denoted F following Patterson et al (2012) are defined as covariances in allele frequency23

difference among sets of two (F2), three (F3) or four (F4) populations and were demonstrated to be highly infor-24

mative about populations demographic history when modeled as admixture graphs, i.e., population trees possibly25

including admixture events (Patterson et al, 2012). Hence, formal tests of admixture, called three–population test,26

between a target population and two source population surrogates can be derived from estimates of F3. Con-27

versely, via the so-called four–population test, estimating F4 among quadruplets of populations allows to test for28

their treeness, i.e., if their joint history can be modeled as a simple (unrooted) bifurcating tree. Under certain29

restrictive assumptions about the underlying phylogeny, accurate estimates of the relative contributions of the an-30

cestral sources of an admixed population may be obtained from ratios of F4 involving some of its related sampled31

populations. A normalized version of the F4 parameter, called Patterson’s D, was also developed by Green et al32

(2010) and has become quite popular to characterize introgression in phylogenies of closely related species (Du-33

rand et al, 2011). Finally, f -statistics can directly be used to fit admixture graphs (i.e., estimate branch lengths34

and/or admixture proportions) and to rigorously assess their support (Patterson et al, 2012; Lipson et al, 2013;35

Lipson, 2020).36

A critical advantage of F and D parameters is that they only depend on population allele frequencies and37

their estimation does not require haplotype information. The non-independence of neighboring SNPs (Linkage38

Disequilibrium or LD) can be accurately accounted for with block-jackknife statistical techniques (Patterson et al,39

2012; Kunsch, 1989; Reich et al, 2009; Busing et al, 1999) when computing standard errors of the estimated40

f -statistics which are noticeably required for the derivation of formal tests of admixture or treeness and also41

to assess the residuals of fitted admixture graphs. These characteristics make the f -statistics based inference42

framework particularly attractive for the analysis of Pool-Seq data that result from the massive sequencing of43

pools of individual DNA and have become quite popular, most particularly in non-model species (Schlötterer et al,44

2014). Indeed, although LD information is generally lost in Pool-Seq experiments (but see Long et al, 2011; or45

Feder et al, 2012), they lead to accurate and cost-effective assessment of allele frequencies across populations on a46
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whole genome basis (Gautier et al, 2013; Schlötterer et al, 2014). If the derivation of unbiased estimates of allele47

frequencies from Pool-Seq data is straightforward, estimation of more elaborated population genetics parameters48

characterizing the structuring of genetic diversity within or across populations is more challenging (Gautier et al,49

2013; Ferretti et al, 2013; Hivert et al, 2018). As the individual origin of the sequencing reads is not identifiable50

within pools, it is not possible to assess whether reads are identical because they are sequenced copies of the51

same individual chromosome or because they are copies of different chromosomes carrying the same allele. The52

resulting additional level of variation thus needs to be accounted for in the estimation which, in contrast to the53

nucleotide diversities (heterozygosities) or the well-known FS T differentiation measure (Ferretti et al, 2013; Hivert54

et al, 2018), has to our knowledge not been investigated for the estimation of F and D parameters (but see Leblois55

et al, 2018; Collin et al, 2021).56

In the present paper, we first propose a (re)interpretation of the different F and D parameters in terms of57

probability of identity in state (IIS or AIS for Alike-In-State) of pairs of genes sampled either within the same58

population (Q1) or between two different populations (Q2), extending results we introduced in some earlier studies59

(Hivert et al, 2018; Leblois et al, 2018; Collin et al, 2021). This unified definition simplified the derivation60

of the unbiased estimators for both allele-count and Pool-Seq read count data, that we implemented in a new61

version of our R package poolfstat (Hivert et al, 2018) together with methods that rely on the estimated f–62

statistics for historical and demographic inference. These methods include i) three-population test of admixture; ii)63

four-population test of treeness; iii) F4-ratio estimation of admixture proportion; and iv) fitting, visualization and64

(semi-automatic) construction of admixture graphs. For completion, we briefly present the underlying methods65

as implemented in the package. We then carried out a comprehensive evaluation of the whole package on both66

simulated allele count and Pool-Seq read count data, considering for the latter various sequencing coverages and the67

presence or not of sequencing errors. Finally, we illustrate the power and limitations of poolfstat by analyzing68

real Pool-Seq data available from a previous study (Olazcuaga et al, 2020) for 14 populations of the invasive species69

Drosophila suzukii. This example illustrates how f -statistics based inference and admixture graph construction70

may confirm previous inferences and provide new insights into both the history of populations from the native area71

and the invasion routes followed by an emblematic invasive species. We provide as Supplementary Materials, a first72

vignette (Supplementary Vignette V1) designed as a detailed hands-on manual to outline the main functionalities73

of poolfstat and a second vignette (Supplementary Vignette V2) detailing the analysis of the D. suzukii data to74

make it fully reproducible.75
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2 Material and Methods76

2.1 Definition, estimation and f−statistics based inference methods77

2.1.1 A unified definition of F2, F3 and F4 parameter and their scaled version FS T , F?
3 and D in terms of78

Q1 and Q2 probabilities79

Let pA,pB, pC and pD the allele frequency of an arbitrarily chosen allele at a random SNP segregating in populations80

A, B, C and D respectively. The parameters F2, F3 and F4 were originally defined in terms of covariance in allele81

frequencies difference among different sets of populations as follows (Reich et al, 2009; Patterson et al, 2012):82

• F2(A; B) ≡E
[
(pA − pB)2

]
• F3(A; B,C) ≡E

[
(pA − pB) (pA − pC)

]
=

1
2

(F2(A; B) + F2(A; C) − F2(B; C))

• F4(A, B; C,D) ≡E
[
(pA − pB) (pC − pD)

]
=

1
2

(F2(A; D) + F2(B; C) − F2(A; C) − F2(B; D))

(1)83

In total, with n populations, there are
(

n
2

)
= 1

2 n(n − 1) possible F2; 3
(

n
3

)
= 1

2 n(n − 1)(n − 2) possible F3; and84

3
(

n
4

)
= 1

8 n(n− 1)(n− 2)(n− 3) possible F4. Note that these values exclude the alternative equivalent configurations85

that result from the permutation of populations within pairs (since F2(A; B) = F2(B; A); F3(A; B,C) = F3(A; C, B)86

and F4(A, B; C,D) = F4(B, A; D,C) = −F4(B, A; C,D) . . .). Due to the linear dependency of all these parameters87

(eq. 1), the 1
8 n(n − 1)(n2 − n + 2) F parameters actually span a vector space of dimension 1

2 n(n − 1) the basis of88

which may be specified by the set of all the
(

n
2

)
possible F2 or, given a reference population i (randomly chosen89

among the n ones) the set of all the n − 1 F2 of the form F2(i; j) (with j , i) and all the
(

n−1
2

)
F3 of the form90

F3(i; j, k) (with j , i; k , i and j , k) (Patterson et al, 2012; Lipson, 2020). As mentioned by Patterson et al91

(2012), it is important to notice that these definitions are invariant in the choice of the reference SNP allele since:92

F2(A; B) ≡ E
[
(pA − pB)2

]
= E

[
((1 − pA) − (1 − pB))2

]
It directly follows from this property that:93
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F2(A; B) =
1
2

(
E

[
(pA − pB)2

]
+ E

[
((1 − pA) − (1 − pB))2

])
=

1
2

(
E

[
p2

A

]
+ E

[
(1 − pA)2

])
+

1
2

(
E

[
p2

B

]
+ E

[
(1 − pB)2

])
−

(
E

[
pA pB

]
+ E

[
(1 − pA)(1 − pB)

])
=

QA
1 + QB

1

2
− QA,B

2

(2)94

where QA
1 (resp. QB

1 ) is actually the probability of sampling two genes (or alleles) identical in state (IIS) within95

population A (resp. B) and QA,B
2 is the probability of sampling two IIS genes from A and B. It directly follows96

from equations 1 and 2 that:97

F3(A; B,C) =
1
2

(
QA

1 + QB,C
2 − QA,B

2 − QB,C
2

)
and,98

F4(A, B; C,D) =
1
2

(
QA,C

2 + QB,D
2 − QA,C

2 − QB,C
2

)
The Q1 and Q2 probabilities, and hence the F2, F3 and F4 parameters depend on both demographic parameters99

(i.e., population sizes, divergence times and other historical events) and marker polymorphism (i.e., their mutation100

rates and ascertainment process). For instance, under a simple pure-drift model with no mutation, if pr denotes the101

allele frequency of the ancestral population R of two isolated populations A and B then 1−QA,B
2 = E

[
2pA pB | pr

]
=102

2pr(1− pr) which is the heterozygosity in R. Similarly, 1−QA
1 = 2pr(1− pr)e−τA (resp., 1−QB

1 = 2pr(1− pr)e−τB )103

where τA (resp. τB) is the divergence time separating R and A (resp. B) on a diffusion timescale (i.e., in drift104

units of 1
2Ne

where Ne is the effective population along the branch). As a consequence, the resulting estimates105

of F2, F3 and F4 strongly depend on the underlying set of genetic markers and may not be compared across106

different datasets, even from the same populations. Various scaling procedure may actually helps in reducing this107

dependence. Scaling the F2 with respect to the across population heterozygosity 1 − Q2 leads to the standard108

definition of pairwise-population FS T in terms of IIS probabilities (Rousset, 2007; Hivert et al, 2018) which is also109

concordant with its original definition as the numerator of FS T (Reich et al, 2009; Peter, 2016):110

FS T (A; B) ≡
Q1 − QA,B

2

1 − QA,B
2

=
F2(A; B)

1 − QA,B
2
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where Q1 = 1
2

(
QA

1 + QB
1

)
is the overall probability of sample two IIS genes within the same population (i.e.,111

averaged over populations A and B). Similarly, the scaled versions of the F3 and F4 statistics named F?
3 and D112

respectively (Patterson et al, 2012; Green et al, 2010; Durand et al, 2011), can be expressed as: F?
3 (A; B,C) ≡113

F3(A;B,C)
1−QA

1
and D(A, B; C,D) ≡ F4(A,B;C,D)

(1−QA,B
2 )(1−QC,D

2 ) . To sum up, expressions of the F and D parameters as a function of114

Q1 and Q2 probability are finally defined as follows:115

F2(A; B) ≡
QA

1 + QB
1

2
− QA,B

2 and FS T (A; B) ≡
F2(A; B)
1 − QA,B

2

=
QA

1 + QB
1 − 2QA,B

2

2
(
1 − QA,B

2

)
F3(A; B,C) ≡

QA
1 + QB,C

2 − QA,B
2 − QA,C

2

2
and F?

3 (A; B,C) ≡
F3(A; B,C)

1 − QA
1

=
QA

1 + QB,C
2 − QA,B

2 − QA,C
2

2
(
1 − QA

1

)
F4(A, B; C,D) ≡

QA,C
2 + QB,D

2 − QA,D
2 − QB,C

2

2
and D(A, B; C,D) ≡

F4(A, B; C,D)(
1 − QA,B

2

) (
1 − QC,D

2

) =
QA,C

2 + QB,D
2 − QA,D

2 − QB,C
2

2
(
1 − QA,B

2

) (
1 − QC,D

2

)
(3)116

2.1.2 Unbiased parameter estimators from Pool-Seq read count and standard allele count data117

Let yi j be the allele count for an arbitrarily chosen reference allele and ni j the total number of sampled alleles (e.g.,118

twice the number of genotyped individuals for a diploid species) at SNP i in population j. For Pool–Seq read count119

data, the yi j’s are not observed and for a given pool j, it is assumed that ni j = n j (the haploid sample size) for each120

and every SNP. We thus similarly defined ri j as the read counts for the reference allele and ci j the overall coverage121

observed at SNP i in population j.122

If allele count data are directly observed, unbiased estimators of the IIS probability within population j (Q j
1,i)123

and between a pair of populations j and k (Q j,k
2,i) for a given SNP i are:124

Q̂ j
1,i =

yi j

(
yi j − 1

)
+

(
ni j − yi j

) (
ni j − yi j − 1

)
ni j

(
ni j − 1

) = 1 − 2
yi j

(
ni j − yi j

)
ni j

(
ni j − 1

)
and Q̂ j,k

2,i =
yi jyik +

(
ni j − yi j

)
(nik − yik)

ni jnik

(4)125

For Pool–Seq read count, unbiased estimators of Q1,i and Q2,i are similarly defined as (Hivert et al, 2018, eqns126

A37 and A40):127

Q̂ j
1,i = 1 −

n j

n j − 1

1 − ri j

(
ri j − 1

)
+

(
ci j − ri j

) (
ci j − ri j − 1

)
ci j

(
ci j − 1

)  = 1 − 2
n j

n j − 1

ri j

(
ci j − ri j

)
ci j

(
ci j − 1

)
and Q̂ j,k

2,i =
ri jrik +

(
ci j − ri j

)
(cik − rik)

ci jcik

(5)128
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Genome-wide estimates of all the parameters defined in eq. 3 above are then simply obtained from these129

unbiased estimators of IIS probabilities over all the I SNPs as:130

f2(A; B) = F̂2(A; B) =
1
2I

I∑
i=1

(
Q̂A

1,i + Q̂B
1,i − 2Q̂A,B

2,i

)
and F̂S T (A; B) =

I∑
i=1

(
Q̂A

1,i + Q̂B
1,i − 2Q̂A,B

2,i

)
2

I∑
i=1

(
1 − Q̂A,B

2,i

)

f3(A; B,C) = F̂3(A; B,C) =
1
2I

I∑
i=1

(
Q̂A

1,i + Q̂B,C
2,i − Q̂A,B

2,i − Q̂A,C
2,i

)
and f ?3 (A; B,C) = F̂?

3 (A; B,C) =

I∑
i=1

(
Q̂A

1,i + Q̂B,C
2,i − Q̂A,B

2,i − Q̂A,C
2,i

)
2
(
I −

I∑
i=1

Q̂A
1,i

)

f4(A, B; C,D) = F̂4(A, B; C,D) =
1
2I

I∑
i=1

(
Q̂A,C

2,i + Q̂B,D
2,i − Q̂A,D

2,i − Q̂B,C
2,i

)
and D(A, B; C,D) =

I∑
i=1

(
Q̂A,C

2,i + Q̂B,D
2,i − Q̂A,D

2,i − Q̂B,C
2,i

)
2

I∑
i=1

((
1 − Q̂A,B

2,i

) (
1 − Q̂C,D

2,i

))
(6)131

Similarly, the within-population heterozygosity ĥ j for each population is simply estimated as:132

ĥ j = 1 −
1
I

I∑
i=1

Q̂ j
1,i (7)

Importantly, for the three scaled parameters FS T , F?
3 and D, multi-locus estimators consist of ratios of the133

numerator and denominator averages and not average of ratios (see e.g., Rousset, 2007; Patterson et al, 2012;134

Bhatia et al, 2013; Weir & Goudet, 2017; Hivert et al, 2018). Hence, for pairwise FS T , the above estimator is135

similar to the one described in Rousset (2007) for allele count data and identical to the alternative PID estimator136

described in Hivert et al (2018) for Pool-Seq read count data (so-called “Identity” method of the computeFST137

function from the poolfstat package).138

2.1.3 Block-Jackknife estimation of standard errors139

Following Reich et al (2009), standard-errors of genome-wide estimates of the different statistics are computed140

using block-jackknife (Kunsch, 1989; Busing et al, 1999) which consists of dividing the genome into contiguous141

chunks of a predefined number of SNPs and then removing each block in turn to quantify the variability of the142

estimator. For a given parameter F, if nb blocks are available and F̂b is the estimated statistics when removing all143

SNPs belonging to block b, the standard error σ̂F of the genome-wide estimator F̂ is computed as:144

σ̂F =

√√
nb − 1

nb

nb∑
b=1

(
F̂b − µ̂F

)2

8

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 30, 2021. ; https://doi.org/10.1101/2021.05.28.445945doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.28.445945
http://creativecommons.org/licenses/by-nc-nd/4.0/


where µ̂F = 1
nb

nb∑
b=1

F̂b, which may be slightly different than the estimator obtained with all the I markers since145

the latter may include SNPs that are not eligible for block-jackknife sampling (e.g., those at the chromosome146

or scaffolds boundaries). Finally, block-jackknife sampling may also be used to obtain estimates of the error147

covariance between two estimates F̂u and F̂v as:148

Ĉov
(
F̂u; F̂v

)
=

nb − 1
nb

nb∑
b=1

(
F̂u

b − µ̂Fu

) (
F̂v

b − µ̂Fv

)
For convenience, we here chose to specify the same number of SNPs for each block instead of a block size in ge-149

netic distance (Patterson et al, 2012; Reich et al, 2009). We therefore do not recourse to a weighted block-jackknife150

(Busing et al, 1999). In practice, this has little impact providing the distribution of markers is homogeneous along151

the genome and the amount of missing data is negligible.152

2.1.4 Admixture Graph fitting153

The approach implemented in the new version of poolfstat to fit admixture graphs from f−statistics is directly154

inspired from the one proposed by Patterson et al (2012) and implemented in the qpGraph software (see also155

Lipson, 2020). Briefly, let f̂ the vector (of length nl(nl−1)
2 where nl is the number of graph leaves) of the estimated156

f2 and f3 statistics forming the basis of all the f−statistics (see above). Similarly, let g(e; a) = X(a) × e the vector157

of their expected values given the graph edge lengths vector e and an incidence matrix X(a), which summarize158

the structure of the graph given the vector a of proportions of all admixture events (for a tree-topology, X(a) only159

consists of 0 or 1). In poolfstat, X(a) is derived using simple operations from another nl by ne matrix (where ne160

is the number of graph edges) that specifies the weights of each edge along all the paths connecting the graph leaves161

to the root. It should be noticed that an admixture event is modeled as an instantaneous mixing of two populations162

S 1 and S 2 into a population S directly ancestral to a child population A. An admixture event may thus be specified163

by i) one admixture rate α quantifying the relative S 1 and S 2 ancestry proportions (α and 1−α) in population S ; and164

ii) three edge lengths eS↔A for the branch connecting S and A and eS 1↔G and eS 2↔G for the branches connecting the165

two source populations to the rest of the graph G. Yet, these three edge lengths are not identifiable and can only be166

estimated jointly in a single compound parameter (Pickrell & Pritchard, 2012; Patterson et al, 2012; Lipson, 2020):167

ζ = α2 × eS 1↔G + (1 − α)2 × eS 2↔G + eS↔A. Following Lipson (2020), this identifiability issue is solved by setting168

eS 1↔G = eS 2↔G = 0 (i.e., nullifying the edges connecting the two source populations to the graph). Although it has169

no impact on the interpretation of the graph, this may overestimate the length of eS↔A (i.e, the divergence between170
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the admixed population A and its direct ancestor S ). Proceeding this way differs from the choice made by Pickrell171

& Pritchard (2012) in the Treemix package which consists, following our notations, of setting eS↔A = eS 2↔G = 0172

if α̂ > 0.5 and eS↔A = eS 1↔G = 0 otherwise.173

We finally define Q as the nl(nl−1)
2 by nl(nl−1)

2 covariance matrix of the basis f−statistics estimated by block-174

jackknife. Graph fitting consists of finding the graph parameter values (ê and â) that minimize a cost (score of the175

model) defined as:176

S (e; a) =
(̂
f − g(e; a)

)′
Q−1

(̂
f − g(e; a)

)
=

(
Γ̂f − ΓX(a)e

)′ (
Γ̂f − ΓX(a)e

)
(8)

where Γ results from the Cholesky decomposition of Q−1 (i.e., Q−1 = Γ′Γ). Given admixture rates a, S (e; a)177

is quadratic in the edge lengths e (Patterson et al, 2012) leading us to rely on the Lawson-Hanson non-negative178

linear least squares algorithm implemented in the R package nnls (Lawson & Hanson, 1995)) to estimate the179

vector ê that minimizes S (e; a) (subject to the constraint of positive edge lengths). Full minimization of S (e; a)180

is thus reduced to the identification of the admixture rates a which is performed using the L-BFGS-B algorithm181

implemented in the optim function of the R package stats (Nocedal & Wright, 1999).182

2.1.5 Confidence Intervals and model fit assessment183

Assume f̂ ∼ N (g(ê; â),Q), i.e., the vector of the basis f−statistics follows a multivariate normal distribution184

centered on the vector g(ê; â) specified by the fitted admixture graph parameters and the estimated error covariance185

matrix Q. The optimized score S (ê; â) then verifies S (ê; â) = −2log(L) − K where L is the likelihood of the186

fitted graph and K = n log(2π) + log(|Q|). This makes it straightforward to compute a BIC (Bayesian Information187

Criterion) for the fitted graph from the optimized score as:188

BIC = S (ê; â) + npar log
(

1
2

nl(nl − 1)
)
−

1
2

nl(nl − 1) log(2π) − log(| Q |)

BIC may then be useful to compare different fitted admixture graph topologies. When comparing two graphs G1189

and G2 with BIC equal to BIC1 and BIC2 respectively, we have ∆12 = BIC2 − BIC1 ' 2 log (BF12) where BF12 is190

the Bayes Factor associated to the comparison of the graphs G1 and G2 (Kass & Raftery, 1995, eq. 9). We may191

further rely on the modified Jeffreys’ rule proposed by Kass & Raftery (1995) to assess to which extent the data192

support either the G1 or G2 graphs, with ∆12 > 6 (respectively ∆12 > 10) providing “strong” (respectively “very193

strong”) evidence in favor of G1 (Supplementary Vignette V1).194
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Moreover, the likelihood interpretation of the optimized score S (ê; â) = −2log(L) − K allows constructing195

confidence intervals (CI) for the fitted parameters of a given graph (i.e., elements of the e and a vectors) using196

the following uni-dimensional procedure. For a given parameter ν (either a edge length or an admixture rate), the197

difference S ν(x)−S (ê; â) (where S ν(x) is the score when ν = x and all the other parameters are set to their best fitted198

values) can be interpreted as a likelihood-ratio test statistics following a χ2 distribution with one degree of freedom.199

Lower and upper boundaries νmin and νmax of the 95% CI (such S ν(x)− S (ê; â) < 3.84 for all νmin < x < νmax) may200

then simply be computed using a bisection method, as implemented in poolfstat.201

Finally, a straightforward (but highly informative and recommended) approach to assess the fit of an admixture202

graph is to evaluate to which extent the f−statistics derived from the fitted admixture graph parameters (g(ê; â))203

depart from the estimated ones (Patterson et al, 2012; Lipson, 2020). This can be summarized via a Z-score of204

residuals computed as Z =
f−Ĝ
σ2

F
where Ĝ is a given fitted f−statistics; f is its corresponding estimated values;205

and σ2
F the block-jackknife standard error. The presence of outlying Z-scores for at least one f -statistics (e.g.,206

| Z |> 1.96 at a 95% significance threshold) may suggest poor model fit while also providing insights into the207

leaves or graph edges that are the most problematic (Lipson, 2020).208

2.1.6 Scaling of branch lengths in drift units209

Admixture graph fitting results in estimated edge lengths on the same scale as F2 which limits their interpretation,210

because they depend both on the overall level of SNP polymorphism and on their distance to the root (Patterson211

et al, 2012). Lipson et al (2013) proposed an empirical approach to rescale edge lengths on a diffusion timescale212

using estimates of overall marker heterozygosities within (i.e., 1 − Q1) or across (i.e., 1 − Q2) populations. The213

argument echoes the aforementioned interpretation of pairwise FS T as a scaled F2. If pC and pP are the reference214

allele frequencies in a child node C and its direct parent node P and their divergence time (on a diffusion timescale)215

is τC,P = t
Ne

(where t is the branch length in generations), then conditional on pC , F2(C; P) = (1 − e−τC,P ) pC(1− pC)216

and QC,P
2 = 1 − 2pC(1 − pC) leading to FC,P

S T =
F2(C;P)
1−QC,P

2
= 1

2 (1 − e−τC,P ) (i.e., FC,P
S T '

t
2Ne

when τC,P � 1). Hence,217

the estimated graph edges length F̂2(C; P) = êP↔C are scaled in units of drift by a factor equal to = 2
ĥP

where ĥP218

is the estimated heterozygosity (i.e., 1 − Q̂P
1 ) in the (parent) node P. Rearranging equation 2 and using QC,P

2 = QP
1219

(conditional on pP) shows that hP = F2(C; P) + hC , where hC = (1 − QC
1 ) is the heterozygosity of the child node220

C. Hence, all the node heterozygosities can be inferred iteratively from the leaves to the root along the admixture221

graph using the leave heterozygosities (directly estimated from the data) and the fitted edge lengths (Lipson et al,222

2013).223
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2.1.7 Admixture Graph construction224

Comprehensive exploration of the space of possible admixture graphs rapidly becomes impossible even for a225

moderate number of populations. We implemented in poolfstat different heuristics to facilitate admixture graph226

construction based on a supervised approach (see Supplementary Vignette V1 for details). First the add.leaf227

function allows exploring all the possible connections of a new population to an existing admixture graph. If ne is228

the number of edges of the admixture graphs, ne + 1 possible graphs connecting the new leaf with a non-admixed229

edges (i.e., including a new rooting with the candidate leaf as an outgroup) and 1
2 ne(ne − 1) − 1 connecting the230

new leaf with a two-way admixture event are then tested. Note that an admixture between the two root edges is231

excluded from the exploration since it results in a singular model. More generally, the different possible graphs are232

always checked for singularity by empirically verifying that the rank of the model incidence matrix X(a) is equal233

to the number of edges to fit. The different fitted graph can then be ranked according to their BIC, the graph with234

the lowest BIC having the strongest support.235

The graph.builder function allows a larger exploration of the graph space by successively adding several236

leaves in a given order to an existing admixture graph. At each step of the process, a heap stores the best resulting237

graph together with some intermediary sub-optimal graphs based on their BIC. After initializing the heap with238

some graph (or a list of graphs), the add.leaf function is called to evaluate, for each candidate leaf in turn, all239

its possible connections (with non-admixed or admixed edges) to all the graphs stored in the heap. Among the240

obtained graphs, the one with the lowest BIC together with those with a BIC within a given ∆BIC (∆BIC = 6 by241

default) are included in a newly generated heap. If the resulting heap contains more than a predefined number of242

graphs nmax
g (nmax

g = 25 by default), only the nmax
g graphs with the lowest BIC are finally kept in the heap of graphs243

to be used for the addition of the next leaf. Although helpful, such heuristic should be used cautiously and we244

recommend to only try adding a small number of populations (i.e., ≤ 5) to an existing graph. One also needs to245

evaluate different orders of population inclusion (Supplementary Vignettes V1 and V2).246

It is also critical to start these supervised procedures with graphs that are representative of the whole history of247

the populations under study and not too unbalanced with respect to the candidate leaves. In particular, starting with248

a small tree of closely related populations which are distantly related to the candidate leaves must be avoided. When249

prior knowledge about the history of the investigated population is limited (which is usually the case), Lipson et al250

(2013) proposed to start admixture graph construction with a scaffold tree of populations displaying no evidence251

of admixture. As in the absence of admixture, F2 statistics are expected to be additive along the paths of the252

(binary) population tree, its unrooted topology and branch lengths may simply be inferred with a neighbor-joining253
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algorithm. In poolfstat, we implemented two functions that allow i) identifying candidate sets of unadmixed254

populations among all the genotyped ones (find.tree.popset); and ii) building rooted neighbor-joining tree255

(rooted.njtree.builder). Briefly, find.tree.popset implements a procedure consisting of i) discarding all256

the populations showing at least one significant three-population test (i.e., displaying a negative F3 Z-score lower257

than −1.65 by default) among all the possible ones; and ii) identifying via a greedy algorithm the largest sets of258

populations for which all the possible quadruplets pass the four-population test of treeness (i.e., with an absolute259

F4 Z-score lower than 1.96 by default). The rooted.njtree.builder function builds a scaffold tree from a260

candidate set of (presumably) unadmixed populations using the nj function from the ape package (Paradis et al,261

2004) and then compare the consistency of population heterozygosities between the partitions of the tree to root it262

(Lipson et al, 2013). Note that this latter procedure may be sensitive to long-branch attraction and should thus be263

used carefully when including highly divergent populations.264

2.2 Overview of the new poolfstat package265

Tables 1 and 2 describe the main objects and functions implemented in our new version (v2.0.0) of the R package266

poolfstat publicly available from the CRAN repository (https://cran.r-project.org/web/packages/267

poolfstat/index.html). In-depth analyses of two Pool-Seq and allele count simulated datasets (see below)268

are described for illustration purposes in the package vignette provided as Supplementary Vignette V1. Detailed269

documentation page of the different objects and functions can also be directly accessed from an R terminal with270

poolfstat loaded using the help function (or the ? operator).271

The package includes several functions to parse allele count (e.g., genotreemix2countdata) or Pool-Seq272

(e.g., vcf2pooldata) input data stored in various formats commonly used in population genomics studies (Ta-273

ble 2). These functions allow to clearly distinguish these two different types of data by producing objects of either274

the so-called countdata (for allele count) or pooldata (for Pool-Seq data) classes (Table 1). This step is critical275

to further rely on the appropriate unbiased estimators for the F and D parameters. Some functions allow to per-276

form subsequent manipulation of the input data, for instance to only consider some of the populations or to remove277

SNPs according to various criteria (Table 2).278

The three functions computeFST, compute.pairwiseFST and compute.fstats implement the unbiased279

estimators of the different f−, D− and within-population heterozygosities (based on allele IIS probabilities within280

and between pairs of populations) together with block-jackknife estimation of their standard errors. Importantly,281

these three functions automatically detect the appropriate estimators given the type of data (either allele or Pool-282
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S4 object Description
countdata Standard allele count data (i.e., obtained from individual genotyping or sequencing data)
pooldata† Pool-Seq read count data
pairwisefst Store pairwise FS T estimates. This object is generated by the compute.pairwiseFST func-

tion. Estimates can be conveniently visualized with the heatmap or plot functions, the
latter interfacing the plot fstats function of poolfstat.

fstats Store F2, pairwise FS T , F3, F?
3 , F4 and D estimation results. This object is generated by the

compute.fstats function. Estimates can be conveniently visualized with the heatmap or
plot functions, the latter interfacing the plot fstats function of poolfstat.

graph.params Represent a population tree or an admixture graph and its parameter. This object is generated
by the generate.graph.params function. The graph can be visualized with the plot
function that interfaces the grViz function from the DiagrammeR package (Iannone, 2020).

fitted.graph Represent a population tree or an admixture graph and its underlying fitted parameters as
obtained from the fit.graph or other fitting functions. The graph can be visualized with the
plot function that interfaces the grViz function from the DiagrammeR package (Iannone,
2020).

Table 1. Description of the main S4 objects of the poolfstat package. †Object already existing in the first
poolfstat version.

Seq read counts) according to the input object class (either countdata or pooldata). For the estimation of FS T ,283

the computeFST and compute.pairwiseFST also implement (by default) estimators based on an Analysis of284

Variance framework that correspond to those developed by Weir (1996) for allele count data and by Hivert et al285

(2018) for Pool-Seq data.286

The fit.graph function implements the approach described above to estimate the parameters (i.e., edge287

lengths and admixture rates) of an admixture graph that is stored in a graph.params object (Table 1). Such ob-288

jects can be generated with the generate.graph.params function (Table 2) to include the target basis f−statistics289

and the error covariance matrix (denoted above f̂ and Q, respectively) estimated with compute.fstats (stored290

in an fstats object) and to specify the topology and the parameters of the admixture graph. Note that the291

graph.params2symbolic.fstats function allows exploring in details the properties of an admixture graph292

specified by a graph.params object by deriving a symbolic representation of all the F2, F3, F4 and the model293

equations (see above) by internally relying on the Ryacas package for symbolic computation (Andersen & Højsgaard,294

2019). The fit.graph function then produced an object of class fitted.graph that includes the estimated edge295

lengths (in F2 and also optionally in drift units) and admixture proportions together with (optionally) their 95% CI.296

For model fit assessment purposes, fitted.graph objects also include the BIC and Z-score of the residuals of the297

fitted basis f−statistics. Such a comparison can (and should) be generalized to all the f2, f3 and f4 statistics (not just298

the ones forming the basis) using compare.fitted.fstats jointly applied to a fitted.graph and a fstats ob-299
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jects. Notice that we developed for comparison purposes a function named graph.params2qpGraphFiles to ex-300

port admixture graph specification and their underlying estimated basis f−statistics (both stored in a graph.params301

object) into qpGraph format (Patterson et al, 2012), allowing independent fitting based on the same estimated302

statistics to be carried out with this later program.303

The poolfstat package includes several functions to assist construction of admixture graphs. As mentioned304

in the previous section, the find.tree.popset and rooted.njtree.builder functions allow to identify and305

build rooted tree(s) of scaffold of (presumably) unadmixed populations that may be used as starting graph(s). Be-306

sides, the add.leaf and graph.builder functions implement the above described heuristic to extent an existing307

graph (or tree) by adding one or several leaves (i.e., genotyped populations). These functions generate a list of308

fitted.graph objects together with other information that may be helpful for graph comparison (e.g., BIC of all309

the graphs or index of the best fitted graph).310

Finally, as detailed and exemplified in the Supplementary Vignette V1, fitted graphs (stored in fitted.graph311

objects) and non-fitted graphs (stored in graph.params objects) can be directly and conveniently plotted with the312

plot function which internally interfaces the grViz function from the DiagrammeR package (Iannone, 2020).313

2.3 Data analyses314

2.3.1 Simulation study315

Genetic data for a total of 150 diploid individuals belonging to six different populations (n=25 individuals per pop-316

ulations) related by the demographic scenario depicted in Figure 1 were simulated using the msprime coalescent317

simulator (Kelleher et al, 2016) with the following command:318

mspms 300 20 -t 4000 -I 6 50 50 50 50 50 50 0 -r 4000 100000000 -p 8 -es 0.0125 6 0.25319

-ej 0.0125 6 2 -ej 0.0125 7 3 -ej 0.025 2 1 -ej 0.05 3 1 -ej 0.075 5 4 -ej 0.1 4 1320

Each genome thus consisted of 20 independent chromosomes of L = 100 Mb assuming a scaled chromosome-321

wide recombination rate of ρ = 4LNer = 4, 000 as expected for instance in a population of constant diploid322

effective size of Ne = 103 when the per-base and per-generation recombination rate is r = 10−8 (i.e., one cM323

per Mb). The scaled chromosome-wide mutation rate was set to θ = 4LNeµ = 4, 000 which is also the expected324

nucleotide diversity in a population with Ne = 103 at mutation-drift equilibrium when the per-base mutation rate is325

µ = 10−8. A total of 250 independent genotyping datasets were simulated and each was subsequently processed to326

generate 32 different types of datasets corresponding to:327
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0.00

0.05

0.10

0.15

0.20

τ

P7

P9

S

P8

R

S1 S2
α=25% 1−α=75%

P1 P2 P6 P3 P4 P5

Figure 1. Simulated scenario relating six sampled populations. The population P6 derived from a population
S which is admixed between two ancestral sources (S 1 and S 2) directly related to populations P2 and P3 and
contributing to α = 25% and 1 − α = 75% of its genome, respectively. The branch lengths are in a diffusion
timescale i.e., with τ = t

2Ne
under a pure-drift model of divergence (where t is the number of non-overlapping

generations and Ne the average diploid effective population sizes along the branch). The names of the internal
node populations (not sampled) are represented in grey.

• Two standard allele count datasets (namely ACm≥1% and ACm≥5%) obtained by simple counting of the simu-328

lated individual (haploid) genotypes for each population (i.e., assuming Hardy-Weinberg equilibrium within329

population) and removing SNPs with a Minor Allele Frequency (MAF) computed over all the individuals330

lower than 1% (for ACm>1% datasets) or 5% (for ACm>5% datasets)331

• Thirty Pool-Seq datasets (coded as PSλε=εm>mt%
) for i) five different average sequencing coverages λ (equal to332

30, 50, 75, 100 or 200 reads; a 30X Pool-Seq coverage representing a lower limit for population genomics333

studies); ii) two different MAF thresholds mt of 1% and 5% (MAF being estimated on the read counts over334

all the pools); and iii) three different sequencing error rates ε of 0 (no error), 1h and 2.5h the two latter335

being representative of Illumina sequencers (Glenn, 2011).336

Pool-Seq datasets were simulated from the ACm≥1% allele count datasets following a procedure similar to that337

described in Hivert et al (2018). Briefly, the vector ri j =
{
ri jk

}
of read counts at SNP position i in population j338

for the nucleotide k (where by convention k = 1 and k = 2 for the derived and ancestral alleles respectively) was339

sampled from a Multinomial distribution parameterized as:340
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ri j ∼ Multin
({

yi j

n j

(
1 −

ε

3

)
+

(
1 −

yi j

n j

)
ε

3
;
(
1 −

yi j

n j

) (
1 −

ε

3

)
+

yi j

n j

ε

3
;
ε

3
;
ε

3

}
; ci j

)
where yi j is the derived allele count for SNP i in population j (from the corresponding ACm>1% dataset); n j is341

the haploid sample size of population j (here n j = 50 for all j); and ci j =
k=4∑
k=1

ri jk is the overall read coverage. To342

introduce variation in read coverages across pools and SNPs, each ci j was sampled from a Poisson distribution with343

a parameter λ (the target Pool-Seq mean coverage). When ε = 0, only reads for the derived (k = 1) or ancestral344

(k = 2) alleles can be generated and the above Multinomial sampling actually reduces to a Binomial sampling345

following ri j1 ∼ Bin
(

yi j

n j
; ci j

)
(and ri j2 = ci j − ri j1). However, when ε > 0, sequencing errors might lead to non-null346

read counts for the two other alleles leading to tri- or tetra- allelic SNPs. Morevover, sequencing errors may also347

introduce spurious additional variation by generating false SNPs at monomorphic sites. To account for the latter,348

read count vectors ri′ j for all the 2× 109 − I monomorphic positions i′ (where I is the number of SNPs observed in349

the considered ACm>1% dataset) were sampled as ri′ j ∼ Multin
({

1 − ε
3 ; ε3 ; ε3 ; ε3

}
; ci′ j

)
with coverages ci′ j sampled350

from a Poisson distribution (as ci j for polymorphic positions). Yet, as usually done with empirical datasets, we351

applied a minimum read count filtering step consisting of disregarding all the alleles with less than 2 observed352

reads (over all the populations). Only bi-allelic SNPs passing the overall MAF threshold m f were finally retained353

in the final PSλε=εm≥mt%
datasets.354

Analyses of the simulated data were carried out with poolfstat (Supplementary Vignette V1). Briefly, each355

msms simulated dataset was converted into an ACm≥1% dataset in TreeMix format (Pickrell & Pritchard, 2012)356

further imported into a countdata object with genotreemix2countdata (Tables 1 and 2) and used to generate357

each corresponding ACm≥5% dataset using countdata.subset. To improve computational efficiency, the different358

PSλε=εm>mt%
Pool-Seq datasets were generated from the ACm≥1% countdata objects in the form of pooldata object359

using custom functions (not included in the package) coded in C++ and integrated within R using Rcpp (Eddelbuet-360

tel, 2013). In addition, to evaluate the impact of the (bad) practice consisting of analyzing Pool-Seq data as if they361

were allele count data (i.e., overlooking the sampling of reads from individual genes of the pool), we also created362

“fake” countdata objects from the different pooldata objects. We then used default options (unless otherwise363

stated) of i) computeFST to estimate genome-wide FS T over all the populations; ii) compute.fstats to estimate364

all the f− and D− statistics; iii) compute.f4ratio to estimate admixture proportions; and iv) fit.graph to esti-365

mate the admixture graph parameters (Table 2). As the number of SNPs was variable across the different simulated366

datasets, we adjusted the number of successive SNPs defining a block for block-jackknife estimation of standard367
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errors by dividing the total number of available SNPs by 500. This thus resulted on average in 490 blocks of 4.1368

Mb over the genome for all the analyzed datasets (the simulated genomes consisting of 20 chromosomes). Note369

that the parameter estimates were always taken as the block-jackknife mean values rather than estimates over all370

SNPs (i.e., including those in the chromosome ends). In practice, the differences between the two are insignificant371

(e.g., Supplementary Vignette V1).372

For validation purposes, we also analyzed the 250 ACm≥1% datasets with programs from the AdmixTools suite373

(Patterson et al, 2012) after conversion to the appropriate input format using custom awk scripts. More specifically,374

we ran qpfstats (v. 200) to estimate the 15 basis f−statistics, i.e., taking P1 as the reference population, the five375

f2 of the form (P1,Px) and the ten f3 of the form (P1;Px,Py) (where x = 2, . . . , 6 and y = 3, . . . , 6 with y , x)376

and their corresponding error covariance matrix. Default options were considered except for the disabling of the377

scaling of estimated values (using option -l 1) to facilitate their comparison with poolfstat estimates. We also378

ran with default options qp3Pop (v. 650) to estimate f ?3 for all the 60 possible triplet configurations and qpDstat379

(v. 970) to estimate the D−statistics for all the 45 possible quadruplet configurations together with their associated380

Z−scores. By default, these three programs define blocks of 5 cM to implement the (weighted) block-jackknife381

procedure. As we here converted the simulated SNP positions from Mb to cM assuming one cM per Mb (see382

above), the sizes of the 400 blocks was thus about 20% than for poolfstat analyses.383

2.3.2 Analysis of a real Drosophila suzukii Pool-Seq data384

The spotted wing drosophila, Drosophila suzukii, represents an attractive model to study biological invasion and385

hence recent historical and demographic history. Native to South East Asia, this pest species was first observed386

outside its native range in Hawaii in 1980, and later rapidly invaded America and Europe simultaneously between387

2008 and 2013 (Fraimout et al, 2017). Using DNA sequences and microsatellite markers, Adrion et al (2014)388

and Fraimout et al (2017) deciphered the routes taken by D. suzukii during its worldwide invasion. Both studies389

showed that America and European populations globally represent separate invasion routes with different native390

source populations. Olazcuaga et al (2020) recently generated Pool-Seq genomic data from 22 worldwide pop-391

ulation samples to detect genetic variants associated with the historical status (i.e. invasive versus native) of the392

sampled populations. We here focused our illustration on 14 Pool-Seq data from this study (with 50 to 100 diploı̈d393

individuals per pool) for populations representative of the Asian native area (six populations), Hawaii (one popu-394

lation) and the invaded continental America (seven populations), where the species was first observed in 2008 on395

the Western coast of the USA (around Watsonville, CA; Figure 2A). Beside native populations, we have restricted396
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our analysis to the American continent because the invasion of this area is characterized by multiple admixture397

events between different source populations (Fraimout et al, 2017), which makes it an appealing situation to eval-398

uate the power and the limitation of poolfstat analyzes. Moreover, 13 of our 14 population samples consist of399

individuals originating from the same sites (albeit sometimes collected at different dates for some pools; Table 2400

in Supplementary vignette V2) as those genotyped at 25 microsatellite markers and analyzed with an Approximate401

Bayesian Computation Random Forest (ABC-RF) approach to infer the routes of invasion on a worldwide scale by402

Fraimout et al (2017).403

To allow for complete reproduction (and exploration) of our analyses, all the command lines used to analyze the404

D. suzukii Pool-Seq dataset are described in the Supplementary vignette V2. Briefly, we combined the 14 (bam)405

files, obtained by Olazcuaga et al (2020) after aligning the 14 Pool-Seq data onto the latest near-chromosome406

scale D. suzukii assembly (Paris et al, 2020), into an mpileup file using SAMtools 1.9 with options -q 20 -Q20407

(Li et al, 2009). Variant calling was then performed using VarScan mpileup2snp v2.3.4 Koboldt et al (2012)408

run with options --min-coverage 10 --min-avg-qual 25 --min-var-freq 0.005 --p-value 0.5 (i.e.,409

with very loose criteria). After discarding positions mapping to non-autosomal contigs (Paris et al, 2020), the410

resulting vcf file was parsed with the vcf2pooldata function of poolfstat with default options except for i) the411

overall MAF threshold (computed from read counts) that was set to 5%; and ii) the minimal read coverage for each412

pool that was set to 50. The resulting pooldata object was further filtered with pooldata.subset to discard i)413

all positions with a coverage higher than the 99th coverage percentile within at least one pool; and ii) discard all414

SNPs with MAF<5% over all the populations from the native area to favor ancestral SNPs. The final dataset then415

consisted of read counts for 1,588,569 bi-allelic SNPs with a median read coverage varying from 64 (US-Sok) to416

95 (CN-Bei and US-Haw) among the 14 pools (Table 2 in the Supplementary Vignette V2). We defined blocks of417

10,000 consecutive SNPs for block-jackknife estimation of standard errors leadint to a total of 145 blocks of 698418

kb on average (varying from 414 kb to 2.03 Mb). Hence, most analyses actually relied on 1,450,000 SNPs that419

mapped to the 15 largest contigs of the assembly (totaling 116 Mb). In other words, SNPs mapping to the smallest420

(and less reliable) contigs were discarded in addition to the few ones mapping to the end of the 15 retained contigs.421
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A)

CN−Bei
CN−Lia

CN−Nin
CN−Shi

JP−Sap
JP−Tok

BR−Pal

US−Col
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B) C)

Figure 2. Historical and demographic inferences about native and invasive Drosophila suzukii populations from Pool-Seq data
based on f−statistics. (A) Geographic location of the 14 population samples (Olazcuaga et al, 2020). Names are colored according to their area of
origin. The (invasive) Hawaiian population, which was considered as intermediate between the Asian native and the continental America invasive area, was
first observed in 1980, i.e. ca. 300 generations before the invasion of the American continent assuming 10 generations per year. Solid points indicate the
13 population sampling sites in common with Fraimout et al (2017). B) Best fitting admixture graph connecting five populations of the native areas and the
Hawaiian population with two inferred admixture events. C) Best fitting admixture graph connecting three invasive populations from continental America
with populations from the native area (and Hawaii). In B) and C), estimates of branch lengths (×103, in drift units of t

2Ne
) and admixture rates (and their

95% CI into bracket) are indicated next to the corresponding edges. The worst fitted f -statistics is written in red for each of the two graphs.
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3 Results422

3.1 Evaluation of poolfstat on simulated data423

Historical and demographic inference based on f− and D− statistics has already been extensively evaluated in424

previous studies (e.g., Patterson et al, 2012; Lipson et al, 2013; Peter, 2016). Therefore, the purpose of our425

simulation study was essentially threefold: i) to validate the estimators implemented in poolfstat by comparing,426

for allele count data, with those obtained with the reference AdmixTools suite (Patterson et al, 2012); ii) to evaluate427

the performance of the estimators for Pool-Seq data as a function of read coverage and sequencing errors; and iii)428

to provide example datasets with known ground truth for illustration purposes.429

3.1.1 Description of the simulated datasets430

We simulated 250 genetic datasets for six populations (named P1 to P6) each consisting of 25 diploid individuals431

and that were historically related by the admixture graph represented in Figure 1 (Material and Methods). Each432

of these datasets was further used as template to generate 2 allele count datasets (applying 1% or 5% threshold433

on the overall MAF for ACm>1% and ACm>5% datasets respectively) and to simulate 30 Pool-Seq datasets with five434

different mean read coverages (λ ∈ {30; 50; 75; 100; 200}); three sequencing error rates (ε ∈ {0; 10−3; 2.5 × 10−3})435

and two MAF (computed over all read counts) thresholds (referred to as PSλε=εm>1% and PSλε=εm>5% for 1% and 5%436

MAF thresholds, respectively). This thus lead to a total of 8,000 simulated datasets. The average number of437

available SNPs and false SNPs (for PSλε=1h
m≥mt%

and PSλε=2.5h
m>mt%

datasets) is given in Table S1 for each of the 32438

different types of datasets and represented as a function of the mean coverages λ and MAF thresholds in Figure S1.439

Overall, 471,919 SNPs and 240,369 SNPs were available on average for allele count datasets at the 1%440

(ACm>1%) and 5% (ACm>5%) MAF thresholds respectively consistent with the L-shaped distribution of allele fre-441

quencies (Figure S2A). As expected from binomial sampling (Figure S2B), for Pool-Seq datasets generated with no442

sequencing error, the number of SNPs remained always lower than the ACm>1% datasets at the 1% MAF threshold443

although increasing with coverages from 13.8% for PS30ε=0
m>1% to 2.01% for PS200m > 1%ε=0 datasets (see Ta-444

ble S1 legend for details). Conversely, at the 5% MAF threshold, the number of SNPs was slightly higher than the445

ACm>5% datasets (from 2.58% for PS30ε=0
m>5% to 1.51% for PS200ε=0

m>5%) which is related to i) the shape of the allele446

frequency spectrum (stochastic variation in read sampling leading to include more SNPs with 0.01 < MAF < 0.05447

than exclude SNPs with MAF > 0.05 from the simulated genotying data because they are more numerous); and ii)448

variation in the simulated read coverages that explains the decreasing trend with λ.449
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With sequencing errors, our filtering steps proved efficient to remove false SNPs except at the 1% MAF thresh-450

old when ε = 2.5h or when ε = 1h at the lowest coverage (λ = 30 and λ = 50). These configurations displayed451

substantial to very high proportions of false SNPs (up to 93.8% for PS50ε=2.5h
m>1% ) although decreasing with cover-452

age (Figure S1B). A 5% MAF threshold always resulted in the complete removal of all the false SNPs for all the453

investigated scenarios (Table S1). Note that for the highest coverages, sequencing errors lead to a relative reduction454

of the number of SNPs due to the generation of spurious tri- or tetra- allelic SNPs from the simulated bi-allelic455

SNPs (compare e.g., PS200ε=2.5h
m>5% and PS100ε=2.5h

m>5% on Figure S1A).456

3.1.2 Comparison of poolfstat and Admixtools estimates for allele count data457

We first analyzed the 250 simulated ACm>1% datasets to estimate with both poolfstat and Admixtools programs458

i) the 15 basis f−statistics (taking P1 as the reference population) consisting of five f2 and ten f3 (Figure 3A) and459

their corresponding error covariance matrix (Figure 3B); ii) the 60 f ?3 (Figure 3C) and their associated Z-scores460

(Figure 3D); and iii) the 45 D−statistics (Figure 3E) and their associated Z-scores (Figure 3F). The estimates461

were all found in almost perfect agreement between the two implementations with Mean Absolute Differences462

(MAD) negligible when compared to the range of variation of the underlying values. For f− and D− statistics,463

slight differences were mostly due to the plotted poolfstat estimates corresponded to block-jackknife means464

(i.e., excluding SNPs outside blocks as those from chromosome ends). Using poolfstat estimates based on all465

the SNPs indeed resulted in almost null MAD (MAD’ in Figure 3A, C and E), up to rounding errors due to lower466

decimal precision in the printed output of the Admixtools programs. Note that the differences in block-jackknife467

implementation among the two programs (Material and Methods) had very minor impact on the estimation of error468

variance and covariance of the estimates (Figures 3B). Accordingly, the MAD computed on Z-scores remained469

very small (although inflated for higher values) and Z-score based decision for the underlying three-population470

admixture (Figures 3D) or four-population treeness tests (Figures 3F) were highly consistent (with a proportion471

β = 97.7% and β = 98.0% respectively of Z-scores significant with the two programs among the ones significant472

with at least one program).473

3.1.3 Performance of f3 and f ?3 based tests of admixture and f4 and D- based tests of treeness for allele474

count and Pool-Seq data475

We ran the compute.fstats function on all the simulated allele count and Pool-Seq datasets to estimate all476

f - and D- statistics. To further evaluate the impact of (improperly) treating read counts as allele counts when477
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Figure 3. Comparison of poolfstat and AdmixTools estimates across 250 simulated allele count datasets
(ACm≥1%). A) All estimates of the 15 basis f−statistics taking P1 as the reference population and corresponding to 5 f2 of the
form (P1,Px) and the 10 f3 of the form (P1;Px,Py) (with x = 2, .., 6; y = 3, .., 6 and y > x). B) All Block-jackknife estimates
of the covariance matrix Q of the 15 basis f−statistics (15 error variances and 105 error covariances). C) All estimates of
the 60 f ?3 (scaled f3) and their associated Z-scores (D). E) All estimates of the 45 D−statistics (scaled f4) and their associated
Z-scores (F). For each comparison, the Mean Absolute Difference (MAD) between the parameter estimates of the two programs
are given on the upper left corner of the plots. In A), C) and E), poolfstat estimates correspond to block-jackknife means
(i.e., they only include SNPs eligible for block-jackknife). The given MAD’ value is the MAD between AdmixTools and
poolfstat estimates that include all SNPs (see documentation for the compute.fstats function). In D), a consistency score
β is also given and was computed as the proportion of Z-scores < −1.65 (i.e., significant three-population test of admixture at a
5% threshold) with both programs among the n = 216 ones significant in at least one of the two programs. Similarly, in F), the
given consistency score β is computed as the proportion of absolute Z-scores < 1.96 (i.e., passing the four-population treeness
at a 5% threshold) with both programs among the n = 1, 912 ones with an absolute Z-scores < 1.96 in at least one of the two
programs)
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analyzing Pool-Seq data we also analyzed the simulated Pool-Seq datasets (focusing only on PSλε=0
m>mt%

datasets,478

i.e., simulated without sequencing error) as if they were allele count data. Overall, 42 different configurations were479

thus investigated each originating from the 250 allele count datasets simulated under the demographic scenario480

represented in Figure 1, leading to a total of 42×250=10,500 analyses.481

Tables 3 and S2 provide the estimated power (True Positive Rate, TPR) and False Positive Rate (FPR) of the482

f3- and f ?3 -based test of admixture for each configurations. As P6 was the only admixed population, each TPR was483

estimated as the proportion of f3 (respectively f ?3 ) with an associated Z-score < −1.65 (95% significance thresh-484

old) for the (P6;P2,P3) population triplet (i.e., among 250 estimates). Conversely, the FPR was computed as the485

proportion of f3 (respectively f ?3 ) with an associated Z-score < −1.65 among all the 50 population triplets that do486

not involve P6 as a target (i.e., among 12,250=250×50 estimates). Consistent with Patterson et al (2012), the per-487

formance of f3- and f ?3 -based test of admixture were virtually the same for all the configurations. When the same488

MAF threshold was applied, the performance of Pool-Seq data generated with no sequencing error were very close489

to that obtained with allele count data although the power tended to slightly decrease with decreasing sequencing490

coverage. Interestingly, increasing the MAF threshold from 1% to 5% increased the power by more than 10% and491

in all cases, no false positive signal of admixture was detected. Surprisingly, sequencing errors in Pool-Seq data492

also tended to increase the power from a negligible amount (less or close to 1%) at 5% MAF threshold to a quite493

substantial amount at 1% MAF threshold (decreasing with coverage and increasing with sequencing error rate).494

At the extreme, a power of 100% was even observed when λ ≤ 50 and ε ≥ 1h. This trend was actually directly495

related to the proportion of false SNPs introduced by sequencing error (Figure S1B) that resulted in a downward496

bias of f3 and f ?3 estimates, although the underlying tests remained robust as all the estimated FPR were null except497

for PS50ε=2.5h
m>1% data (FPR=6.47%) which displayed the highest proportion of false SNPs (> 90%, Figure S1B).498

However, this observed apparent robustness of the three-population tests to false SNPs should be interpreted cau-499

tiously since it may rather result from the moderate to high expected f3 and f ?3 values in our simulated scenario500

for the population triplets that do not involve P6 as a target. Overall, applying a 5% MAF threshold on Pool-Seq501

data (even with ε=2.5h) to remove false SNPs (see above) allowed recovering the performances similar to that502

obtained when analyzing datasets with no sequencing error. Finally, it is worth stressing that analyzing Pool-Seq503

data as allele counts, whatever the coverage or MAF threshold considered, lead to no power in detecting admixture504

event with f3 or f ?3 based tests due to a strong upward estimation bias.505

Tables 4 and S3 similarly provide the estimated power (TPR) and FPR of the f4- and D-based tests of treeness506

for the 42 configurations investigated in the simulation study. Given the simulated scenario, eight of the 45 differ-507
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MAF seq. error Pool-Seq (read counts) data allele count
threshold ε λ = 30 λ = 50 λ = 75 λ = 100 λ = 200 data

>1%

0 82.0 (0.00) 84.4 (0.00) 86.0 (0.00) 86.0 (0.00) 85.2 (0.00)

85.6 (0.00)1h 100 (0.00) 100 (0.00) 86.8 (0.00) 87.2 (0.00) 86.4 (0.00)
2.5h 100 (0.00) 100 (6.47) 99.6 (0.00) 92.8 (0.00) 88.4 (0.00)

0 0.00 (0.00)? 0.00 (0.00)? 0.00 (0.00)? 0.00 (0.00)? 0.00 (0.00)?

>5%

0 93.6 (0.00) 95.2 (0.00) 96.4 (0.00) 96.0 (0.00) 96.0 (0.00)

96.8 (0.00)1h 94.0 (0.00) 96.8 (0.00) 96.4 (0.00) 97.2 (0.00) 96.8 (0.00)
2.5h 94.0 (0.00) 96.0 (0.00) 96.0 (0.00) 97.2 (0.00) 96.8 (0.00)

0 0.00 (0.00)? 0.00 (0.00)? 0.00 (0.00)? 0.00 (0.00)? 0.00 (0.00)?

Table 3. Comparison of the performance of f3-based tests of admixture for different types of data simulated
under the Figure 1 scenario processing poolfstat analyses. For each MAF threshold (MAF> 1% or MAF> 5%),
the table gives True and False (in parenthesis) Positive Rates (in %) for 21 different types of analyses relying on i) allele count
data; ii) 15 different Pool-Seq read count data (five mean coverages λ and three sequencing error rates ε); and iii) Pool-Seq
read count data simulated with ε = 0 treated as allele counts (corresponding results of this bad practice are highlighted in
italics and ?). Each TPR was computed from the analysis of 250 independent datasets (generated from the data simulated under
Figure 1 demographic scenario) as the proportion of f3 with an associated Z-score < −1.65 (95% significance threshold) for the
(P6;P2,P3) population triplet (n=250 estimates). The FPR was similarly computed as the proportion of f3 with an associated
Z-score< −1.65 among all the 50 population triplets that do not involve P6 as target population (n=250×50=12,250 estimates).

ent population quadruplets (namely (P1,P2;P3,P4); (P1,P2;P3,P5); (P1,P2;P4,P5); (P1,P3;P4,P5); (P1,P6;P4,P5);508

(P2,P3;P4,P5); (P2,P6;P4,P5); and (P3,P6;P4,P5)) have a null expected F4 (and D) value. Note that this may509

easily be shown with the symbolic calculus derivation implemented in graph.params2symbolic.fstats (Ta-510

ble 2). For each configuration, the TPR of the treeness test was then estimated as the proportion of f4 (respectively511

D) with an associated absolute Z-score < 1.96 (95% significance threshold) for these eight population quadru-512

plets ((P1,P2;P3,P4); (P1,P2;P3,P5); (P1,P2;P4,P5); (P1,P3;P4,P5); (P1,P6;P4,P5); (P2,P3;P4,P5); (P2,P6;P4,P5);513

(P3,P6;P4,P5)) over all the 250 different underlying analyses (i.e., among 2,000=250×8 estimates). Conversely,514

the FPR was estimated as the proportion of f4 (respectively D) with an associated absolute Z-score < 1.96 among515

all the 37 remaining population quadruplets (i.e., among 9,250=250×37 estimates). The power for both F4- and516

D-based tests were remarkably consistent across all the different configurations. In addition, the tests were all517

found almost perfectly calibrated since the estimated power were close to 95%, the probability of rejecting the null518

hypothesis at the chosen 95% significance threshold for Z-scores. Likewise, all FPR remained low (≤ 0.15%),519

although increasing with MAF thresholds (more than twice higher for a given type of data when increasing the520

MAF threshold from 1% to 5%). Overall, sequencing errors and coverage had no impact on the performance of521

the f4- and D-based test of treeness. As expected, analyzing read counts as allele count data did not affect the522

performance of these tests (see Discussion).523
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MAF seq. error Pool-Seq (read counts) data allele count
threshold ε λ = 30 λ = 50 λ = 75 λ = 100 λ = 200 data

>1%

0 94.0 (0.05) 94.4 (0.06) 94.1 (0.04) 94.5 (0.05) 94.3 (0.02)

94.2 (0.02)1h 94.3 (0.04) 94.2 (0.03) 94.3 (0.03) 94.3 (0.03) 94.1 (0.05)
2.5h 94.8 (0.06) 94.5 (0.05) 94.8 (0.03) 94.5 (0.06) 94.3 (0.04)

0 94.0 (0.05)? 94.4 (0.06)? 94.1 (0.04)? 94.5 (0.05)? 94.3 (0.02)?

>5%

0 94.5 (0.14) 94.3 (0.11) 94.1 (0.14) 94.9 (0.09) 94.3 (0.08)

94.3 (0.11)1h 94.5 (0.09) 94.5 (0.11) 94.5 (0.13) 94.2 (0.09) 94.1 (0.15)
2.5h 95.2 (0.13) 93.8 (0.11) 94.2 (0.12) 94.5 (0.11) 94.3 (0.13)

0 94.5 (0.14)? 94.3 (0.11)? 94.1 (0.14)? 94.9 (0.09)? 94.3 (0.08)?

Table 4. Comparison of the performance of f4-based test of treeness for different types of data simulated
under the Figure 1 scenario processing poolfstat analyses. For each MAF threshold (MAF> 1% or MAF> 5%),
the table gives True and False (in parenthesis) Positive Rates (in %) for 21 different types of analyses relying on i) allele count
data; ii) 15 different Pool-Seq read count data (five mean coverages λ and three sequencing error rates ε); and iii) Pool-Seq
read count data simulated with ε = 0 treated as allele counts (corresponding results of this bad practice are highlighted in
italics and ?). Each TPR was computed from the analysis of 250 independent datasets (generated from the data simulated under
Figure 1 demographic scenario) as the proportion of f4 with an associated absolute Z-score < 1.96 (95% significance thresh-
old) among all the eight population quadruplets ((P1,P2;P3,P4); (P1,P2;P3,P5); (P1,P2;P4,P5); (P1,P3;P4,P5); (P1,P6;P4,P5);
(P2,P3;P4,P5); (P2,P6;P4,P5); (P3,P6;P4,P5)) with a null expected F4 (n=250×8=2,000 estimates). The FPR was similarly
computed as the proportion of f4 with an associated absolute Z-score < 1.96 among all the 37 remaining population quadru-
plets (n=250×37=9,250 estimates).

3.1.4 Precision of the F4-ratio based estimation of the admixture rate α524

Given the simulated scenario, two different ratios of f4 estimates could be used to estimate the admixture pro-525

portion α = 0.25 (Figure 1), namely α̂1 =
f4(P1,P4;P3,P6)
f4(P1,P4;P2,P3) and α̂2 =

f4(P1,P5;P3,P6)
f4(P1,P5;P2,P3) (Patterson et al, 2012). The526

graph.params2symbolic.fstats function (Table 2) may also prove useful to identify appropriate quadruplets527

(Supplementary Vignette V2). We used the compute.f4ratio function to obtain these two estimates from all the528

simulated datasets together with their 95% CI (defined as α̂ ± 1.96σ̂α where σ̂α is the block-jackknife standard-529

error estimate). Tables 5 and S4 provide the mean of the estimated α̂1 and α̂2 respectively over the 250 analyzed530

datasets for each of the 42 investigated configurations. As expected from the above evaluation of treeness tests,531

estimates of α were highly consistent among all the investigated configurations and similar for the two considered532

f4-ratio with a mean value varying between 0.245 and 0.248. Yet, a slight downward bias (always < 2%) could be533

noticed but the estimated 95% CIs were almost always optimal (or close to) since they contained the true simulated534

value (α = 0.25) from 90.0% to 95.2% of the time (Tables 5 and S4).535

3.1.5 Evaluation of graph fitting536

We further estimated for all the simulated datasets branch lengths in drift units and admixture proportion α with537

their 95% CIs by fitting the simulated graph with fit.graph. As for the f4-ratio based estimation, estimates of538
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MAF seq. error Pool-Seq (read counts) data allele count
threshold ε λ = 30 λ = 50 λ = 75 λ = 100 λ = 200 data

>1%

0 0.247 (92.4) 0.247 (92.8) 0.247 (94.4) 0.247 (93.6) 0.247 (92.0)

0.247 (92.8)1h 0.248 (91.6) 0.247 (91.6) 0.247 (92.4) 0.247 (93.2) 0.247 (92.0)
2.5h 0.247 (91.6) 0.246 (94.0) 0.248 (93.2) 0.247 (91.2) 0.248 (92.0)

0 0.247 (92.4) 0.247 (92.8)? 0.247 (94.4)? 0.247 (93.6)? 0.247 (92.0)?

>5%

0 0.247 (92.4) 0.248 (93.2) 0.247 (93.6) 0.247 (93.2) 0.247 (92.4)

0.247 (92.4)1h 0.248 (93.2) 0.247 (91.6) 0.247 (91.6) 0.247 (92.8) 0.247 (91.2)
2.5h 0.247 (91.6) 0.246 (95.2) 0.248 (93.2) 0.247 (90.0) 0.248 (93.2)

0 0.247 (92.4)? 0.248 (93.2)? 0.247 (93.6)? 0.247 (93.2)? 0.247 (92.4)?

Table 5. Comparison of F4-ratio based estimation of the simulated admixture proportion α in Figure 1
scenario for different types of data processing poolfstat analyses. For each MAF threshold (MAF> 1% or
MAF> 5%), the table gives the mean of the estimated α̂ =

f4(P1,P4;P3,P6)
f4(P1,P4;P2,P3)) (across 250 independent simulated datasets) for 21

different types of analyses relying on i) allele count data; ii) 15 different Pool-Seq read count data (five mean coverages λ and
three sequencing error rates ε); and iii) Pool-Seq read count data simulated with ε = 0 treated as allele counts (corresponding
results of this bad practice are highlighted in italics and ?). The proportion (in %) of the 250 estimated 95% CIs that contain
the true simulated value (α = 0.25) is given in parenthesis.

α were virtually unbiased and consistent across all the 42 different investigated configurations (Figure S3). Nev-539

ertheless, the 95% CIs were always too narrow since they contained the actual value (α = 0.25) from only 40.8%540

to 74.4% of the time (Table S5) as expected from the χ2 approximation of the LRT underlying the computation of541

these CIs. Figures 4 and S4 plot the distributions of the estimated lengths for the ten branches of the simulated542

admixture graph branches (over the 250 estimates per configuration) when applying 5% and 1% MAF threshold543

respectively. The corresponding mean estimates and proportions of 95% CI’s including the true value are provided544

in Tables S6 to S15. Note that the branches P8 ↔ R and P9 ↔ R that are connected to the root R (Figure 1) can545

only be estimated jointly (as τP8↔P9 = τP8↔R + τP9↔R, R being arbitrarily set in its middle).546

At the 5% MAF threshold, very similar performance were obtained for the allele count and the different Pool-547

Seq datasets whatever the simulated read coverage or sequencing error rates (Figures 4A, 4B, and 4C). Hence,548

mostly unbiased branch lengths were estimated for the four leaves (terminal branches) τP1↔P7, τP2↔S 1, τP6↔S549

and τP3↔S 2. As previously observed with α, the estimated 95% CI’s remained too narrow particularly for τP2↔S 1550

for which less than 50% of the CI’s contained the true value (Table S7) compared to more than 80% for τP1↔P7551

(Table S6). As expected from the the drift-scaling approximation, the estimated branch lengths tended to be552

slightly downwardly biased (ca. 2%) for the two other leaves (τP4↔P9 and τP5↔P9) but the estimated 95% CI553

displayed similar characteristics since from 48.0% to 87.6% contained the true values, the proportion increasing in554

Pool-Seq datasets when coverage and sequencing error decreased (Tables S10 and S11). Conversely, the internal555

branch lengths tended to be upwardly biased from a slight (ca. 2%) for τS 1↔P7, τP7↔P8 and τS 2↔P8 (Tables S12556
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to S14), to a moderate amount (ca. 20%) for the root including branch τP8↔P9, the true value being then always557

outside the estimated 95% CI’s (Table S15). Yet, when analyzing data with a lower MAF threshold of 1%, this558

bias almost completely vanished (Figure S4 and Table S15).559

For the other branches, the estimates had similar characteristics (yet with a slightly decreased performance560

for the τP4↔P9 and τP5↔P9 leaves) for allele count data or Pool-Seq data simulated without sequencing error (Fig-561

ure S4A). In agreement with previous observations, at the 1% MAF threshold, sequencing errors lead to strong562

downward bias at the lowest simulated coverages, i.e., when the percentage of false SNPs became non-negligible563

(Figures S4B and S4C). Finally, whatever the chosen MAF threshold, improperly analyzing read counts as allele564

count data always lead to a substantial upward bias of the lengths of all the leaves (Figure 4D). Notice however,565

that this had no or limited impact on the estimation of internal branch lengths.566

3.1.6 Evaluation of graph construction567

To provide insights into the reliability of graph construction, we evaluated the performance of the add.leaf568

function in positioning the admixed population P6 on the underlying (((P1,P2),P3),(P4,P5)) tree (Figure 1) for569

the different types of simulated datasets. Table S16 gives the proportion of correctly inferred admixture graphs570

(i.e., corresponding to the simulated scenario) with a ∆BIC > 6 support with all other tested graphs over the571

250 analyzed datasets for each of the 42 investigated configurations. As the reference tree with rooted topology572

(((P1,P2),P3),(P4,P5)) consists of eight branches, P6 may be connected with either i) nine non-admixed edges573

(connection to either one of the eight branches or as an outgroup) or; ii)
(

8
2

)
− 1 = 27 admixed edges from two-way574

admixture events. Except for the PS50ε=2.5h
m>1% dataset (the one with the highest percentage of false SNPs), the575

correct admixture graph was always retrieved with a fairly high support (∆BIC > 15).576

3.2 Analysis of real Drosophila suzukii Pool-Seq data577

We here sketched the main findings from the analyses using poolfstat of a subset of the Pool-Seq data previously578

generated by Olazcuaga et al (2020) focusing on 14 population samples of the invasive species D. suzukii. For more579

details, we encourage readers to consult the Supplementary Vignette V2.580

3.2.1 Structuring of genetic diversity across the 14 populations581

Overall, the estimated global FS T across the 14 populations was 7.03% (95% CI; [6.90%; 7.32%]). Estimates of582

all the pairwise-population FS T confirmed that populations tended to cluster according to their geographic area of583
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Figure 4. Distribution of the estimated drift-scaled lengths for all the branches in Figure 1 simulated sce-
nario using admixture graph fitting (as implemented in the fit.graph function of poolfstat) for different
types of data with a 5% threshold on the overall SNP MAF. Each box plot summarize the distribution of
the 250 estimated lengths of each of the ten branches obtained from the analysis of either allele count dataset
(“Counts”) or one of the five different simulated Pool-Seq read count datasets (“PSλX”) with different mean cov-
erages (λ = 30; 50; 75; 100; and200) as generated from the genotyping data simulated under the scenario depicted
in Figure 1. Pool-Seq read count data were generated with no sequencing errors (ε = 0) in A) and D) and with a
sequencing error rate of ε = 1h and ε = 2.5h in panel B) and C) respectively (Table S1). In D), the read count
data were analyzed as allele counts which corresponds to a bad practice. Note that the two branches coming from
the root are combined since the position of the root is not identifiable by the model (i.e., τP8↔P9 = τP8↔R + τP9↔R).
Note that the box plots obtained from the analysis of count data are replicated in each panel for comparison pur-
poses. For each branch, a red dotted line indicates the underlying simulated value. For Pool-Seq data, the overall
MAF was estimated from read counts.
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origin (i.e., Asia, America and Hawaii; Figure 2A), with some geographically close populations showing low level584

of differentiation. For instance, in the American invasive area the US-Nca, US-Col and US-Nca populations all585

displayed pairwise FS T significantly lower than 1%. Likewise, in the native area, the three populations CN-Bei,586

CN-Nin and CN-Lia originating from North-Western China were all found very closely related (all pairwise FS T587

being lower or very close to 1%). Conversely, the Hawaiian sample (US-Haw) was found the most highly differ-588

entiated with all the other populations, all pairwise FS T including US-Haw ranging from 11.7% (with US-Sok) to589

17.0% (with US-Col) suggesting strong drift in this population as confirmed by its lowest estimated heterozygosity590

(Supplementary Vignette V2).591

3.2.2 f3-based tests of admixture suggest pervasive admixture in the invaded area592

Out of the 14 sampled populations, two (CN-Lia and JP-Tok) from the Asian native area and four (US-Col, US-593

Nca, US-Wat and US-Wis) from the continental American invasive areas showed at least one significantly negative594

f3 at the 95% significance threshold (i.e., Z-score < −1.65). Table 6 summarizes for each of these 6 populations595

the number of significantly negative f3 together with the triplet with the lowest Z-score giving insights into the pair596

of populations that branch the closest to the two original sources (assuming a two-way admixture event). Except597

for CN-Lia, all the detected signals were significant at a far more stringent threshold (e.g., Z-score < −2.33 at 99%598

significance threshold). The f3 and f ?3 statistics gave almost exactly the same results (Supplementary Vignette599

V2).600

Population Origin
nb. of signif.

tests (f3 Z < −1.65)
triplet with the lowest

f3 Z-score
CN-Lia Native 1 CN-Lia;CN-Shi,JP-Sap (Z=-1.66)
JP-Tok Native 11 JP-Tok;CN-Nin,JP-Sap (Z=-7.11)
US-Col Invasive (AM) 2 US-Col;BR-Pal,US-Wis (Z=-3.31)
US-Nca Invasive (AM) 6 US-Nca;JP-Sap,US-Col (Z=-3.89)
US-Wat Invasive (AM) 13 US-Wat;US-Sdi,US-Sok (Z=-23.6)
US-Wis Invasive (AM) 4 US-Wis;JP-Sap,US-Col (Z=-5.02)

Table 6. Results of the f3-based tests of admixture on populations from the D. suzukii invasive species.For
all the population displaying at least one significant signal of admixture at the 95% significance threshold (f3 Z < −1.65), the
table gives the number of significant tests (out of the C13

2 = 78 performed per population) and the triplet displaying the lowest
Z-score (i.e., most significant test).

In the native area, JP-Tok showed clear evidence of admixture with 11 significant tests that all involved JP-Sap601

(from Northern Japan) as a source proxy. The three lowest f3 values were obtained with three Chinese populations602

(CN-Nin, CN-Bei and CN-Shi in increasing order of f3). Assuming an admixture-graph like history, this suggests603
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that the two populations branching the closest to the two sources of JP-Tok were JP-Sap and CN-Nin. The remain-604

ing Chinese population, CN-Lia showed some weak evidence for admixture with only one test barely significant605

at the 95% threshold for the triplet involving CN-Shi and JP-Sap as source proxies (Table 6).606

Out of the seven invasive populations from continental America, the four populations US-Col, US-Wis, US-Nca607

and US-Wat showed strong evidence of admixture. Although it has up to now been considered as the closest to the608

first invading population of Continental America (based on historical records), the Western American US-Wat pop-609

ulation displayed the strongest signals with 11 (strongly) significant tests. Interestingly, the three signals supported610

by the lowest (and hence more significant) Z-score all involved pairs of source population proxies originating from611

the continental American invasive area namely, in order of increasing Z-score (i.e., decreasing evidence), the (US-612

Sdi,US-Sok); (BR-Pal,US-Sok) and (US-Col,US-Sok) pairs. As the underlying f3 CI’s did not overlap with those613

of the other triplet configurations, these three pairs of populations may be considered as the closest (among the614

sampled populations) to the original US-Wat source populations. It is worth noting that the Western American615

US-Sok population was involved in nine of the 11 significant negative f3 statistic with US-Wat as a target. The616

three others populations, US-Col, US-Wis and US-Nca only had a moderate number of significant tests (compared617

to others). Such tests always involved at least one of the two other populations and overlapping f3 CI’s. This618

suggests complex patterns of recurrent admixture event among US-Col, US-Wis and US-Nca, a feature consistent619

with their low level of differentiation and close geographic origins.620

3.2.3 Exploring invasion scenarios with admixture graph construction and fitting621

To provide further insights into the relationships of the surveyed populations and the probable scenarios of invasion622

of D. suzukii in the American area, we relied on admixture graph construction. Our purpose was not to build a623

comprehensive admixture graph for the 14 populations, which may be elusive given the close relationships of624

some populations and the pervasiveness of recent and presumably recurrent admixture events among the different625

populations, but rather to identify key regional event that occurred at early time of the invasion history of the626

species. From our extensive analyses (Supplementary Vignette V2), we were in fine able to build and estimate627

the parameters of two admixture graphs represented in Figure 2B and C. The first admixture graph described the628

somewhat complex and so far non-investigated relationships among the populations of the native area (including629

the early invasive population established in Hawaii since 1980) with a very good fit since the Z-score of the630

residuals for the worst fitted f -statistics was 1.06 (Figure 2B). In agreement with previous findings (and geographic631

proximity), the Hawaiian population was found more closely related to the Japanese population JP-Sap than to the632
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other Chinese populations but it experienced a strong differentiation from their common ancestor (named JP in633

Figure 2B) with an estimated branch length of 0.255 drift units ( t
2Ne

). Yet, it was not possible from our data to634

definitively conclude that US-Haw originates from a Japanese population since we have no element to claim that635

the (ancestral) node population JP was located in Japan. To that end additional sampling of Japanese populations636

would be required. The inferred graph also confirmed above f3-based test results of an admixed origins of JP-Tok637

between a population closely related to JP-Sap (the main contributor) and a second source likely of Chinese origin638

although the same caution as for JP are needed regarding the geographic origins of this internal node populations.639

Similarly, CN-Lia was found admixed with a contributing source of Chinese ancestry related to CN-Shi largely640

predominant (estimated contribution α̂C = 96.0%; 95% CI, [95.7;96.3]), and a second (minor) contributing source641

of presumably Japanese origin (related to JP-Sap). This may explain why the corresponding f3-based test was642

only barely significant (Table 6). Interestingly, the graph topology also allowed estimating the Chinese ancestry of643

CN-Lia based on F4-ratio resulting in consistent but larger 95% CI (α̂C = 95.6; 95% CI, [94.4;96.8]) as expected644

from above simulation study. CN-Nin, the remaining population from the native area, could not be positioned with645

reasonable accuracy onto the admixture graph of Figure 2B, the resulting worst fitted f -statistics associated to the646

best fitting graph having a Z-score=3.43. However, both its genetic proximity with CN-Lia and the best fitting647

admixture graph resulting from its positioning onto the scaffold tree including US-Haw, JP-Sap, CN-Bei and CN-648

Shi suggested a small amount of Japanese introgression (see Supplementary Vignette V2 for more details).649

The second admixture graph represented in Figure 2C allowed providing insights into the history of intro-650

duction of D. suzukii into the American continent. It related the three continental American population, US-Sok,651

US-Wat and BR-Pal to a scaffold including the four unadmixed populations US-Haw, JP-Sap, CN-Shi and CN-Bei652

with a good fit (the worst fitted f -statistics had a Z-score=-1.83). The underlying scenario suggested that continen-653

tal American populations originated from at least two major and successive admixture events. The first admixture654

event lead to the internal node population named Am1 and occured in balanced proportions between two sources,655

a Japanese one closely related to JP-Sap and a Hawaiian one relatively distantly related to US-Haw (according to656

the estimated branch lengths). The US-Sok population was the sampled continental American population the clos-657

est to Am1 and may thus be assumed the most closely related to the first invading population (in agreement with658

f3-based test results). Yet US-Sok remained separated by about 0.0816 drift units from Am1 which may explain659

why no significantly negative f3 were found for triplets with US-Sok as a target.660

The second major admixture events occurred between the internal node population named Am2 and a Chinese661

population closely related to the common ancestor of CN-Bei and CN-Shi, with CN-Shi contributing slightly662
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more (58.5% against 41.5% for the other Am1 related ancestor). Interestingly, the closest Am2 representatives663

among the sampled populations were BR-Pal and US-Sdi (also in agreement with f3-based tests) suggesting a664

more Southern geographical origin for Am2. We found that some additional ancestry from a ghost population or665

recurrent admixture events (e.g., related to Hawaiian populations) may also have contributed to US-Sdi, but this666

lead to a poor fit (worst fitted f -statistics Z-score=-5.87 for the best fitting graph resulting from the positioning667

of US-Sdi onto the graph, see Supplementary Vignette V2). Therefore, US-Sdi is not represented in Figure 2C.668

Although geographically distant, the Brazilian population BR-Pal thus appeared as the best proxy for Am2 thereby669

suggesting a rapid spread of D. suzukii in South America from this population without any subsequent admixture670

events. Additional (and preferably ancient) sample from South-American populations would help refining this671

scenario. Finally, according to the inferred graph, US-Wat was found to originate from a recent admixture between672

a population very closely related to US-Sok (and thus Am1) and a population deriving from Am2 with similar673

contributions of both.674

In agreement with f3-based admixture tests that suggested complex admixture histories among the closely675

related US-Col, US-Wis and US-Nca populations, no satisfactory admixture graph could be found when trying to676

position each of these onto the Figure 2C graph. Nevertheless, their resulting best fitted graphs all suggested a677

high contribution of the Am2 admixed source, a second contributing source being related to Japanese populations678

(Supplementary Vignette V2).679

4 Discussion680

4.1 A new version of poolfstat for f-statistics estimation and associated inference from681

both Pool-Seq and allele count data682

The R package poolfstat was originally developed by Hivert et al (2018) to implement an unbiased estimator683

of FS T for PoolSeq data and provide utilities to facilitate manipulation of such data. We here proposed a sub-684

stantially improved version that implements unbiased estimators of F2, F3 and F4 parameters together with their685

scaled versions (i.e., pairwise FS T , F?
3 and D respectively). Although we primarily focused on the analysis of686

Pool-Seq data, we extended the package to analyze standard allele count (as obtained from individual genotyping687

or sequencing data) and to implement unbiased estimators equivalent to those available in the AdmixTools suite688

(Patterson et al, 2012) allowing us in turn to validate our estimation procedure. Recently, the admixr package was689
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developed to interface most of the AdmixTools programs with R for the estimation of f -statistics (only from allele690

count data), with the noticeable exception of the admixture graph fitting program qpGraph (Petr et al, 2019). We691

implemented in poolfstat our own functions for fitting, building, visualizing and quality assessment of admix-692

ture graphs based on the estimated f -statistics. The underlying procedures shared strong similarities with those693

implemented in qpGraph (Patterson et al, 2012) resulting on the same fitting on some examples (e.g., Supple-694

mentary Vignette V1) or also MixMapper (Lipson et al, 2013, 2014) programs. As recognized by the developers695

themselves, the latter program specifically developed for admixture inference from allele count data was written696

in C++ and MATLAB making it ‘cumbersome to use’ for users, as ourselves, with no MATLAB license. More-697

over, to facilitate local exploration of the admixture graphs space, we also implemented in poolfstat efficient698

semi-automated building utilities (add.leaf and graph.builder functions). It should be noticed that although699

it does not include functions for the estimation of f -statistics, the admixturegraph R package (Leppälä et al,700

2017) also provides several alternative valuable utilities for the fitting (based on a slightly different approach), the701

manipulation, and the visualization of admixture graphs together with utilities for the plotting of the statistics with702

their confidence intervals or the symbolic derivation f -statistics (as poolfstat). Overall, our effort of developing703

with poolfstat a self-contained, efficient and user-friendly R package capable of performing the entire workflow704

for f -statistics based demographic inference from both standard allele count and Pool-Seq read count data will705

hopefully make such a powerful framework accessible to a wider range of researchers and biological models.706

4.2 A unified definition of the F parameters in terms of probability of gene identities707

To derive our unbiased estimators, we proposed to recapitulate and unify the different definitions of the F and D708

parameters in terms of probability of gene identity within population (Q1) or between pairs of populations (Q2) as709

summarized in equation 1. This formulation offers a complementary perspective to the original description of these710

parameters in terms of covariance of allele frequencies (Patterson et al, 2012). In practice, a little algebra shows711

that the unbiased estimators derived from these two alternative formulations are strictly equivalent (i.e., when com-712

paring eq. 6 for allele count data with Appendix A in Patterson et al, 2012). Formally, the Q1 and Q2 probabilities713

can be viewed as expected identity (in state) of genes across independent replicates of the (stochastic) evolutionary714

process (Rousset, 2007) that may themselves be expressed as a function of other demo-genetic population parame-715

ters. Hence, the obtained expressions for F2, F3 and F4 in terms of Q1 and Q2 probabilities can be directly related716

to those by Peter (2016) in terms of coalescent times which allowed him to provide an in-depth exploration of their717

theoretical properties under a wide range of demographic models other than admixture graphs (see e.g., Figure 7 in718
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Peter, 2016). More precisely, under an infinite-site mutation model with constant per-generation mutation rate µ,719

the probability that two genes are identical in state is Q =
∞∑

t=1
Ct(1−µ)2t = 1−2µE [T ]+O(µ2), where Ct is the prob-720

ability that the two genes coalesced t generations in the past and E [T ] ≡
∞∑

t=1
tCt is the expected coalescence time721

of two genes (see Slatkin, 1991; Rousset, 2007, pp.58-59). Using Q(1)
1 = 1− 2µE [T11] and Q(2)

1 = 1− 2µE [T22] as722

the IIS probabilities within populations 1 and 2 respectively and Q2 = 1− 2µE [T12] as the IIS probability between723

1 and 2 allows recovering equations 16 (after fixing a typo into it), 20c and 24 by Peter (2016) for F2, F3 and724

F4 respectively. Likewise, the estimators derived from (unbiased) estimators of Q1 and Q2 are equivalent to those725

expressed in terms of average pairwise differences between and within populations which are natural estimators726

for 2µE [T ] terms as proposed by Peter (2016, eq. 17) for F2 estimator based on allele count data (e.g., noting that727

π̂11 = 1 − Q̂1
1, π̂22 = 1 − Q̂2

1 and π̂12 = 1 − Q̂2 following his notations). For Pool-Seq data, replacing the latter728

estimators of nucleotide diversities by the unbiased estimators described in Ferretti et al (2013, eqs. 3 and 10)729

would also result in the same estimator for F2 (and other parameters) as those defined in our equation 6.730

In practice, estimators are obtained by averaging over (a high) number of SNPs which amounts assuming that731

each represent an independent outcome of a common demographic processes that shaped the genome-wide patterns732

of genetic diversity. This generally allows to provide accurate estimations and LD between markers (i.e., violation733

of the marker independence assumption) can be accounted for with block-jackknife estimation of standard errors734

(Patterson et al, 2012). Importantly, as originally noticed by Patterson et al (2012), expressions of F2, F3 and F4735

in terms of coalescent times (Peter, 2016) show explicitly that they both depend on the demography (via E [T ])736

and the marker mutation rate (µ). In the scaled versions of F2 and F3 (FS T and F?
3 respectively), the parameter737

µ cancels out making them presumably more comparable across different datasets. It should however be noticed,738

that for demographic inference purposes, scaling of the f -statistics is not needed. Indeed, the three-population test739

of admixture is informed by the sign of f3 which is not affected by the denominator of F?
3 . Similarly, the four-740

population test evaluates departure of f4 (i.e., the numerator of D) from a null value expected under the hypothesis741

of treeness. Patterson et al (2012) also showed both analytically and using simulations that F3 and F4 estimates742

remained mostly robust to various realistic SNP ascertainment scheme. It is finally worth stressing that admixture743

graph inference only requires additivity of F2 (Patterson et al, 2012), a feature not fulfilled by FS T (or F?
3 and D).744

4.3 Estimation of f -statistics and inference from Pool-Seq data745

Our simulation study showed that accurate estimates of F and D parameters could be obtained from Pool-Seq data746

from the unbiased estimators we developed, thereby extending our findings for the Pool-Seq FS T estimator (Hivert747
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et al, 2018). With no sequencing error, this remained true even at a read coverage as low as 30X which was here748

lower than our simulated haploid sample size of 50. Increasing the coverage only provided marginal gain. When749

introducing sequencing errors, the performance of the estimators tended to decrease for the lowest investigated read750

coverages (up to 50X) and MAF filtering threshold. This was however essentially due to the presence of spurious751

SNPs that were not completely filtered out when considering too loose criteria. As a result, simply increasing the752

threshold on the overall MAF (computed from read counts over all the pool samples) to 5% allowed to remove all753

the spurious SNPs and recover accurate estimates of the parameters at the lowest read coverages. In agreement754

with original observations made for allele count data (Patterson et al, 2012), all the f−statistics based analyses (i.e.,755

three-population test of admixture, four-population test of treeness, F4-ratio estimation of admixture proportions or756

admixture graph fitting) remained remarkably robust to a MAF-based ascertainment process. From our simulation757

study, discarding lowly polymorphic SNPs was only found to increase the bias of the drift-scaled length estimates758

of internal branch in admixture graph. In practice, cost-effective designs consisting of sequencing pools of 30 to759

50 individuals at a 50-100X coverage and applying MAF threshold of 5% to filter the called SNPs are expected to760

provide good performance for all the different f−statistics based inference methods we presented here.761

For Pool-Seq data, all the above conclusions were nevertheless only valid for the analyses based on the unbiased762

estimator that accounts for the additional level of variation introduced by the sampling of the DNA of pooled763

individuals (non identifiable) at the sequencing step. We found that improperly analyzing Pool-Seq read counts as764

standard allele counts had high detrimental consequence on the estimation of all the F parameters that involved765

Q1 probabilities (within population probability of identity) in their definition, i.e., F2, FS T (as previously observed766

by Hivert et al, 2018, see also Figure S5), F3 and F?
3 leading to a complete loss of power of the associated three-767

population test in our simulation. When processing admixture graph fitting, this also resulted in a strong upward768

bias in the estimation of branch lengths, including the external ones that were accurately estimated when relying on769

unbiased estimators. Loosely speaking, not accounting for the extra-variance introduced by the sampling of reads770

has the same effect of adding a (substantial) amount of extra drift explaining the two aforementioned observations.771

Although not investigated here (and of little interest since we should definitely rely on unbiased estimators), the772

amount of extra variance may be inversely proportional to the pool haploid sample size (i.e., bias may decrease773

with increasing pool sample size). Conversely, analyzing Pool-Seq read counts as standard allele counts did not774

affect the performance of the f4- (and D) based test of treeness or the estimation of admixture proportion from F4-775

ratio. This was expected from the properties of the underlying parameters that only depends on the Q2 probabilities776

across the different pairs of population involved in the quadruplet of interest (eq. 3) resulting in the same estimators777
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(see eqns. 4 and 5) for both allele count and Pool-Seq data. More generally, analyzing Pool-Seq read count data778

with popular programs that were developed for standard allele count data such as those from the AdmixTools779

(Patterson et al, 2012) or TreeMix (Pickrell & Pritchard, 2012) suites should definitely be avoided and, if not,780

results should be carefully interpreted.781

4.4 Insights into the history of the invasive species D. suzukii from Pool-Seq data analysis782

To illustrate both the power and limitations of f−statistics based methods for historical and demographic inference783

as implemented in poolfstat, we analyzed Pool-Seq data available for 14 populations of the invasive species784

D. suzukii (Olazcuaga et al, 2020). These population samples were representative of both the Asian native area785

and the recently invaded American area. Most of them consisted of individuals originating from the same sites as786

those genotyped in Fraimout et al (2017) at microsatellite markers and analyzed under an ABC-RF framework.787

The results remained consistent between the two studies, both of them pointing to complex invasion pathways788

including multiple introductions leading to admixed origins of the continental American populations. The main789

source contributions were from Hawaii, where D. suzukii was described about 30 years earlier and the native790

area (China and Japan). However, some inferred scenarios appeared somewhat conflicting. First, for the Hawaiian791

population that played a key role in American invasion route, both poolfstat and Fraimout et al (2017) suggested792

a Japanese origin. However, we here found that the sample the closest to the source (internal node population JP in793

Figure 2) was JP-Sap (sampled in Sapporo) while Fraimout et al (2017) rather concluded it was JP-Tok (sampled794

in Tokyo) which was not found to be directly contributing to US-Haw in poolfstat analyses and was even found795

to be admixed by native populations from Japan and China. In the ABC-RF treatments by Fraimout et al (2017),796

all populations from the native area were assumed to be non-admixed and no “ghost” (i.e., unsampled) populations797

were included in the model whereas such populations are present in admixture graphs through internal nodes.798

Moreover, the samples from Hawaii and Tokyo both differed in their exact location and collection date (2013 and799

2016 for Hawaii, 2014 and 2016 for Tokyo) between the two studies, which may further explain the observed800

discrepancies and more generally promotes the sequencing of additional samples in this area to better resolve the801

origin of the Hawaiian population(s).802

Interestingly, poolfstat results challenged the initial view about the pioneering origin of the Californian pop-803

ulation US-Wat in the invasion of continental America (as suggested by historical records) suggesting it rather804

originates from an admixture between two already established but unsampled continental American populations,805

one presumably Northern (related to Am1 and here represented by US-Sok) and the other presumably more South-806
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ern (related to Am2 and here represented by BR-Pal from Brazil and US-Sdi from South-California). This dis-807

crepancy between Fraimout et al (2017) and poolfstat results points to three key issues. First, a too strong808

reliance on the reported date of first observation of the species in the invasive area when formalizing the scenario809

to be compared in ABC modeling may actually mislead inference and this especially since D. suzukii was first810

observed at very close dates in the US-Wat, US-Sdi and US-Sok sampled locations (i.e., 2008, 2009 and 2009,811

respectively). As a matter of fact, Fraimout et al (2017) only considered scenarios in which US-Wat was the first812

population introduced in continental America. Second, in ABC, scenarios are defined by hand justifying the use813

of dates of first observation to minimize their number (Estoup & Guillemaud, 2010). The functions implemented814

in poolfstat circumvent this constraint by facilitating a quick and automatic exploration of the admixture graph815

space to identify key historical events relating the populations of interest. Third, our finding reinforces the concern816

that the formalization of invasion scenarios including the possibility of unsampled populations is crucial. This817

possibility is by construction included in admixture graph construction but is also possible in ABC modeling (e.g.818

Guillemaud et al, 2010). Similarly, Fraimout et al (2017) argued for an admixed origin of the Brazilian BR-Pal819

population (first observed in 2013) between undefined North-Western and North-Eastern American sources, while820

we here found that this population was the best proxy for the ancestral “ghost” American population Am2 (Fig-821

ure 2C) which may be viewed as one of the main contributor of all the sampled North-American populations (but822

US-Sok). Again, this results underline advantages of not relying on historical dates as for poolfstat analyses,823

and promotes the sequencing of additional samples in South and North-Western America areas to more thoroughly824

decipher the invasion routes followed by continental American populations.825

If Pool-Seq data analyzed with poolfstat allowed to refine historical and demographic scenarios in both the826

native and invasive areas, the D. suzukii Pool-Seq data analysis also illustrated some inherent constraints imposed827

to the modeled demographic history when fitting admixture graph. In particular, more complex histories involving828

recurrent admixture events turned out to be difficult or even impossible to fit unless a number of source key samples829

are included, as observed here for the North-Eastern American populations. In real-life applications involving a830

large number of invasive populations characterized by numerous and recurrent introduction events, summarizing831

precisely and with a good fit the history of all surveyed populations with a comprehensive admixture graph may832

remain elusive. However, as previously underlined (Patterson et al, 2012; Lipson & Reich, 2017; Lipson, 2020),833

in addition to providing robust formal tests of admixture or treeness, a decisive advantage of f−based inference834

methods is to allow straightforward assessment of the fitted admixture graph by carefully inspecting and reporting835

Z-score of the residuals of the fitted statistics, an option not available in other related methods such as TreeMix836
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(Pickrell & Pritchard, 2012). Beyond modeling the history of populations as admixture graphs (via formal tests of837

admixture of treeness or graph fitting), Peter (2016) provided valuable theoretical insights to interpret the estimated838

f−statistics under alternative demographic models such as island, stepping-stone or serial founder models. This839

suggests in turn that these statistics should be informative to estimate the parameters of demographic scenarios840

more complex than admixture graphs (e.g., under an ABC framework as in Collin et al, 2021).841
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