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. Abstract

2 By capturing various patterns of the structuring of genetic variation across populations, f-statistics have proved
s highly effective for the inference of demographic history. Such statistics are defined as covariance of SNP allele
+ frequency differences among sets of populations without requiring haplotype information and are hence particu-
s larly relevant for the analysis of pooled sequencing (Pool-Seq) data. We here propose a reinterpretation of the F
¢ (and D) parameters in terms of probability of gene identity and derive from this unified definition unbiased estima-
7 tors for both Pool-Seq and standard allele count data obtained from individual genotypes. We implemented these
s estimators in a new version of the R package poolfstat, which now includes a wide range of inference methods:
s (i) three-population test of admixture; (ii) four-population test of treeness; (iii) F4-ratio estimation of admixture
10 rates; and (iv) fitting, visualization and (semi-automatic) construction of admixture graphs. A comprehensive eval-
11 uation of the methods implemented in poolfstat on both simulated Pool-Seq (with various sequencing coverages
12 and error rates) and allele count data confirmed the accuracy of these approaches, even for the most cost-effective
13 Pool-Seq design involving low sequencing coverages. We further analyzed a real Pool-Seq data made of 14 pop-
1+ ulations of the invasive species Drosophila suzukii which allowed refining both the demographic history of native
15 populations and the invasion routes followed by this emblematic pest. Our new package poolfstat provides the
1« community with a user-friendly and efficient all-in-one tool to unravel complex population genetic histories from

17 large-size Pool-Seq or allele count SNP data.
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s 1 Introduction

19 In their seminal paper, Reich er al (2009) introduced a new population genetics framework to decipher the his-
20 tory of Indian human populations. This inference approach relied on a set of so-called f-statistics that are aimed
21 at capturing various patterns of the structuring of genetic diversity across-population based on Single Nucleotide
22 Polymorphism (SNP) assayed on a genome-wide scale (see also Patterson et al, 2012). The parameters underly-
23 ing these statistics and denoted F following Patterson et al (2012) are defined as covariances in allele frequency
2 difference among sets of two (F»), three (F3) or four (F4) populations and were demonstrated to be highly infor-
25 mative about populations demographic history when modeled as admixture graphs, i.e., population trees possibly
26 including admixture events (Patterson et al, 2012). Hence, formal tests of admixture, called three—population test,
27 between a target population and two source population surrogates can be derived from estimates of F3. Con-
s versely, via the so-called four—population test, estimating F4, among quadruplets of populations allows to test for
2 their treeness, i.e., if their joint history can be modeled as a simple (unrooted) bifurcating tree. Under certain
a0 restrictive assumptions about the underlying phylogeny, accurate estimates of the relative contributions of the an-
a1 cestral sources of an admixed population may be obtained from ratios of F, involving some of its related sampled
2 populations. A normalized version of the F, parameter, called Patterson’s D, was also developed by Green et al
s (2010) and has become quite popular to characterize introgression in phylogenies of closely related species (Du-
a rand et al, 2011). Finally, f-statistics can directly be used to fit admixture graphs (i.e., estimate branch lengths
ss and/or admixture proportions) and to rigorously assess their support (Patterson et al, 2012; Lipson et al, 2013;
s Lipson, 2020).

a7 A critical advantage of F' and D parameters is that they only depend on population allele frequencies and
s their estimation does not require haplotype information. The non-independence of neighboring SNPs (Linkage
s Disequilibrium or LD) can be accurately accounted for with block-jackknife statistical techniques (Patterson et al,
w0 2012; Kunsch, 1989; Reich et al, 2009; Busing et al, 1999) when computing standard errors of the estimated
41 f-statistics which are noticeably required for the derivation of formal tests of admixture or treeness and also
«2 to assess the residuals of fitted admixture graphs. These characteristics make the f-statistics based inference
s framework particularly attractive for the analysis of Pool-Seq data that result from the massive sequencing of
4 pools of individual DNA and have become quite popular, most particularly in non-model species (Schlotterer et al,
s 2014). Indeed, although LD information is generally lost in Pool-Seq experiments (but see Long et al, 2011; or

4« Feder et al, 2012), they lead to accurate and cost-effective assessment of allele frequencies across populations on a
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47 whole genome basis (Gautier et al, 2013; Schlotterer et al, 2014). If the derivation of unbiased estimates of allele
s frequencies from Pool-Seq data is straightforward, estimation of more elaborated population genetics parameters
4 characterizing the structuring of genetic diversity within or across populations is more challenging (Gautier et al,
so 2013; Ferretti et al, 2013; Hivert et al, 2018). As the individual origin of the sequencing reads is not identifiable
s+ within pools, it is not possible to assess whether reads are identical because they are sequenced copies of the
sz same individual chromosome or because they are copies of different chromosomes carrying the same allele. The
s resulting additional level of variation thus needs to be accounted for in the estimation which, in contrast to the
s« nucleotide diversities (heterozygosities) or the well-known Fgr differentiation measure (Ferretti et al, 2013; Hivert
ss et al, 2018), has to our knowledge not been investigated for the estimation of F and D parameters (but see Leblois
s et al, 2018; Collin et al, 2021).

57 In the present paper, we first propose a (re)interpretation of the different F and D parameters in terms of
ss probability of identity in state (IIS or AIS for Alike-In-State) of pairs of genes sampled either within the same
s population (Q)) or between two different populations (Q,), extending results we introduced in some earlier studies
e (Hivert et al, 2018; Leblois et al, 2018; Collin et al, 2021). This unified definition simplified the derivation
e1 of the unbiased estimators for both allele-count and Pool-Seq read count data, that we implemented in a new
e version of our R package poolfstat (Hivert er al, 2018) together with methods that rely on the estimated f-
e statistics for historical and demographic inference. These methods include i) three-population test of admixture; ii)
e four-population test of treeness; iii) F4-ratio estimation of admixture proportion; and iv) fitting, visualization and
es (semi-automatic) construction of admixture graphs. For completion, we briefly present the underlying methods
e as implemented in the package. We then carried out a comprehensive evaluation of the whole package on both
&7 simulated allele count and Pool-Seq read count data, considering for the latter various sequencing coverages and the
e presence or not of sequencing errors. Finally, we illustrate the power and limitations of poolfstat by analyzing
e real Pool-Seq data available from a previous study (Olazcuaga et al, 2020) for 14 populations of the invasive species
70 Drosophila suzukii. This example illustrates how f-statistics based inference and admixture graph construction
7+ may confirm previous inferences and provide new insights into both the history of populations from the native area
72 and the invasion routes followed by an emblematic invasive species. We provide as Supplementary Materials, a first
73 vignette (Supplementary Vignette V1) designed as a detailed hands-on manual to outline the main functionalities
7 of poolfstat and a second vignette (Supplementary Vignette V2) detailing the analysis of the D. suzukii data to

75 make it fully reproducible.
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» 2 Material and Methods

7 2.1 Definition, estimation and f—statistics based inference methods

75 2.1.1 A unified definition of F;, F; and F4 parameter and their scaled version Fsr, F} and D in terms of

79 0; and Q, probabilities

s Let pa,pp, pc and pp the allele frequency of an arbitrarily chosen allele at a random SNP segregating in populations
st A, B, C and D respectively. The parameters F», F3 and F4 were originally defined in terms of covariance in allele

s frequencies difference among different sets of populations as follows (Reich ef al, 2009; Patterson et al, 2012):

o FiA;B) =E [(ps - p»)’|
1
& e F3(A;B,0) =E[(pa — pB) (pa — o) = 3 (F2(A; B) + F5(A; C) — F2(B; C)) (D

1
e F4A,B;C,D) =E[(pa—ps)(pc—pp)l= 3 (F2(A; D) + F2(B; C) — Fa2(A; C) — Fo(B; D))

s In total, with n populations, there are (;) = %n(n — 1) possible Fj; 3(’31) = %n(n — 1)(n — 2) possible F3; and
85 3(2) = %n(n — 1)(n—2)(n — 3) possible F4. Note that these values exclude the alternative equivalent configurations
s that result from the permutation of populations within pairs (since F»(A; B) = F»(B;A); F3(A; B,C) = F3(A; C, B)
o7 and F4(A, B;C,D) = F4(B,A; D,C) = —F4(B,A;C,D)...). Due to the linear dependency of all these parameters
s (eq. 1), the %n(n D2 -n+2) F parameters actually span a vector space of dimension %n(n — 1) the basis of
s which may be specified by the set of all the (g) possible F, or, given a reference population i (randomly chosen
90 among the n ones) the set of all the n — 1 F, of the form F,(i; j) (with j # i) and all the (”;1) F5 of the form
ot F3(i; j,k) (with j # i; k # i and j # k) (Patterson et al, 2012; Lipson, 2020). As mentioned by Patterson et al

e (2012), it is important to notice that these definitions are invariant in the choice of the reference SNP allele since:

F>(A; B) = B|(pa — pp)*| = E[((1 = pa) = (1 - pp))’|

93 [t directly follows from this property that:
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Fo(d:B) = 5 (B[(pa — o] + E[(1 = pa) — (1 = p)?))
= % (E[rA] +E[a - par?]) + % (E[p3] +E[( - ps]) - Blpapsl +EI0 = p)1 = pp)]) ()
_ o+ o7

A,B
> %

where Q’l‘ (resp. Qf) is actually the probability of sampling two genes (or alleles) identical in state (ILS) within
population A (resp. B) and Q‘;"B is the probability of sampling two IIS genes from A and B. It directly follows

from equations 1 and 2 that:

1
F3(A;B,C) = 5 (of + 03¢ - 03" - 05°)

and,

F4(A,B:C.D) = - (05 + 07 - 07 - 07°)

2 2

N =

The Q; and Q, probabilities, and hence the F,, F3 and F, parameters depend on both demographic parameters
(i.e., population sizes, divergence times and other historical events) and marker polymorphism (i.e., their mutation
rates and ascertainment process). For instance, under a simple pure-drift model with no mutation, if p, denotes the

allele frequency of the ancestral population R of two isolated populations A and B then 1 — Q‘;

P =E[2paps | p/] =
2p,(1 — p,) which is the heterozygosity in R. Similarly, 1 — Q/l‘ =2p,(1—-pe ™ (resp., 1 — Qf =2p,(1—=p,e ™)
where 74 (resp. 7p) is the divergence time separating R and A (resp. B) on a diffusion timescale (i.e., in drift
units of ﬁ where N, is the effective population along the branch). As a consequence, the resulting estimates
of F;, F3 and F4 strongly depend on the underlying set of genetic markers and may not be compared across
different datasets, even from the same populations. Various scaling procedure may actually helps in reducing this
dependence. Scaling the F, with respect to the across population heterozygosity 1 — O, leads to the standard

definition of pairwise-population Fg7 in terms of IIS probabilities (Rousset, 2007; Hivert et al, 2018) which is also

concordant with its original definition as the numerator of Fgr (Reich et al, 2009; Peter, 2016):

01 -0 _ Fy4;B)

Fg7r(A;B) = =
1 _ Q124,B 1 _ Q./;,B
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111 where Q) = % (Q? + Qlf) is the overall probability of sample two IIS genes within the same population (i.e.,
12 averaged over populations A and B). Similarly, the scaled versions of the F3 and F; statistics named F5 and D
13 respectively (Patterson et al, 2012; Green et al, 2010; Durand et al, 2011), can be expressed as: F ; (A;B,C) =
e 22 Z;AC) and D(A, B;C,D) = %. To sum up, expressions of the F and D parameters as a function of
1s Q1 and Q, probability are finally defined as follows:

A L OB Fo(A: B A4 0B_2 A,B
Fy(A;B) = 9 3 9 _ o and Fsr(A;B) = 24 13 _2ta ABQZ
1-0y 2(1-05")
4 L OBC _ oAB _ pAC AL OBC _ oAB _ OAC
e F3(A;B, C) = Q] Qz 2Q2 Qz and F;(A;B, C) Fsl(A B C) Q Qz QzA Q2 (3)
-o 2(1-01)
C | ABD _ AAD _ ABC AC | ABD _ AAD _ ABC
C L obP ot - o . €L 08P _ D _ B
Fy(A,B;C,D) = 00" -0 -0 and D(A,B;C,D) = FyA.B.CD) Q0 +Q; 0" -0,

2

(-o)(-¢7) (- e)(i-e)
w7 2.1.2 Unbiased parameter estimators from Pool-Seq read count and standard allele count data

1 Let y;; be the allele count for an arbitrarily chosen reference allele and #;; the total number of sampled alleles (e.g.,
19 twice the number of genotyped individuals for a diploid species) at SNP i in population j. For Pool-Seq read count
120 data, the y;;’s are not observed and for a given pool j, it is assumed that n;; = n; (the haploid sample size) for each
21 and every SNP. We thus similarly defined r;; as the read counts for the reference allele and c;; the overall coverage
122 observed at SNP i in population j.

123 If allele count data are directly observed, unbiased estimators of the IIS probability within population j (Q{’[.)

12« and between a pair of populations j and k& (Qé’if) for a given SNP i are:

5 Vi (yij - 1) (n,, y,]) (nij - yij— 1) Y (”ij _yﬁ)
125 Li n;; (nij - l) nij (nij _ 1) “
and ij YijYik + (n,jnl—jj::) (nix — yix)
126 For Pool-Seq read count, unbiased estimators of Q;; and Q,; are similarly defined as (Hivert et al, 2018, eqns
12z A37 and A40):
O —1- n; l_f"ij(rij ) (c,j r,,)(c,j rij— ) i, 0, rij(cij_r,‘j)
128 Li nj—1 Clj(cl] 1) nj—1 Cij(cij— 1) s

Fijrik + (Cij - Vij) (cik = ri)

CijCik

and Qélf =
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129 Genome-wide estimates of all the parameters defined in eq. 3 above are then simply obtained from these

130 unbiased estimators of IIS probabilities over all the I SNPs as:

I, - —~ —
N o r(@nra-ao)
A B) = FxA:B) = 52 3 (01, + OF - 20;7) and  Fy(AB) =
22(1-037)
I~ —, — —
_ Py o e _ 2 (0l + 0 - 03 - 05
f3(A;B,C)=F3(A;B,C)=§Z(Q‘?’i+QZB’}C—Q§f—Q§:’.C) and f}(A;B,C) = F}(A;B,C) = = -
i=1 Z(I—ZQA.)
g
I, — — —
> (05 + 03 - 0y - 05F)

1

1
fi(A, B;C,D) = Fy(A, B;C,D) = (@ + 0} - 0P - 0)f) and D(A,B;C,D) = =
=1

21 4 1 —
, 25 ((1-0)(1- 359)
131 (6)
132 Similarly, the within-population heterozygosity fz; for each population is simply estimated as:
_ 1 <~ —
hi=1-5> 0, )
i=1
133 Importantly, for the three scaled parameters Fgr, F ; and D, multi-locus estimators consist of ratios of the

13« numerator and denominator averages and not average of ratios (see e.g., Rousset, 2007; Patterson et al, 2012;
135 Bhatia et al, 2013; Weir & Goudet, 2017; Hivert et al, 2018). Hence, for pairwise Fs7, the above estimator is
136 similar to the one described in Rousset (2007) for allele count data and identical to the alternative PID estimator
177 described in Hivert et al (2018) for Pool-Seq read count data (so-called “Identity” method of the computeFST

13 function from the poolfstat package).

1o 2.1.3 Block-Jackknife estimation of standard errors

140 Following Reich et al (2009), standard-errors of genome-wide estimates of the different statistics are computed
141 using block-jackknife (Kunsch, 1989; Busing et al, 1999) which consists of dividing the genome into contiguous
142 chunks of a predefined number of SNPs and then removing each block in turn to quantify the variability of the
13 estimator. For a given parameter F, if nj, blocks are available and F,, is the estimated statistics when removing all

1s  SNPs belonging to block b, the standard error & of the genome-wide estimator Fis computed as:

p

e\t S

b=1
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s where up = t Z}i E, which may be slightly different than the estimator obtained with all the I markers since
b=1

1s the latter may include SNPs that are not eligible for block-jackknife sampling (e.g., those at the chromosome

147 or scaffolds boundaries). Finally, block-jackknife sampling may also be used to obtain estimates of the error

s covariance between two estimates F“ and FV as:

n
I’lb—l b

oo (7 F) = 2L S ) (7 - )

I
149 For convenience, we here chose to specify the same number of SNPs for each block instead of a block size in ge-
10 netic distance (Patterson et al, 2012; Reich et al, 2009). We therefore do not recourse to a weighted block-jackknife
151 (Busing et al, 1999). In practice, this has little impact providing the distribution of markers is homogeneous along

12 the genome and the amount of missing data is negligible.

13 2.1.4 Admixture Graph fitting

1.« The approach implemented in the new version of poolfstat to fit admixture graphs from f—statistics is directly
15 inspired from the one proposed by Patterson et al (2012) and implemented in the gpGraph software (see also
s Lipson, 2020). Briefly, let f the vector (of length @ where 7; is the number of graph leaves) of the estimated
17 f> and f3 statistics forming the basis of all the f—statistics (see above). Similarly, let g(e; a) = X(a) X e the vector
18 of their expected values given the graph edge lengths vector e and an incidence matrix X(a), which summarize
19 the structure of the graph given the vector a of proportions of all admixture events (for a tree-topology, X(a) only
160 consists of 0 or 1). In poolfstat, X(a) is derived using simple operations from another n; by n, matrix (where n,
161 1s the number of graph edges) that specifies the weights of each edge along all the paths connecting the graph leaves
12 to the root. It should be noticed that an admixture event is modeled as an instantaneous mixing of two populations
s S and S, into a population S directly ancestral to a child population A. An admixture event may thus be specified
164 by 1) one admixture rate @ quantifying the relative S and S, ancestry proportions (@ and 1 —«) in population S ; and
165 1i) three edge lengths es., 4 for the branch connecting S and A and ey, g and es, g for the branches connecting the
16 two source populations to the rest of the graph G. Yet, these three edge lengths are not identifiable and can only be
17 estimated jointly in a single compound parameter (Pickrell & Pritchard, 2012; Patterson et al, 2012; Lipson, 2020):
o8 { =a*Xes, o6+ (1 —a) Xes,og + esoa. Following Lipson (2020), this identifiability issue is solved by setting
18 €566 = es,0g = 0 (i.e., nullifying the edges connecting the two source populations to the graph). Although it has

170 no impact on the interpretation of the graph, this may overestimate the length of eg.,4 (i.e, the divergence between


https://doi.org/10.1101/2021.05.28.445945
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.28.445945; this version posted May 30, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

171 the admixed population A and its direct ancestor ). Proceeding this way differs from the choice made by Pickrell
172 & Pritchard (2012) in the Treemix package which consists, following our notations, of setting es,4 = €5,0,6 = 0
s if @ > 0.5 and egn = €5, = 0 otherwise.

174 We finally define Q as the ’”(”TH) by "’(”TH) covariance matrix of the basis f—statistics estimated by block-
175 jackknife. Graph fitting consists of finding the graph parameter values (€ and 4) that minimize a cost (score of the

176 model) defined as:

S(e;a) = (f - ge:a)) Q' (f - g(e:a)) = (If - IX(a)e) (If - IX(a)e) 8)

177 where T results from the Cholesky decomposition of Q~! (i.e., Q' = I'T'). Given admixture rates a, S (e;a)
178 1s quadratic in the edge lengths e (Patterson et al, 2012) leading us to rely on the Lawson-Hanson non-negative
179 linear least squares algorithm implemented in the R package nnls (Lawson & Hanson, 1995)) to estimate the
10 vector € that minimizes S (e; a) (subject to the constraint of positive edge lengths). Full minimization of S (e; a)
11 1s thus reduced to the identification of the admixture rates a which is performed using the L-BFGS-B algorithm

1e2 implemented in the optim function of the R package stats (Nocedal & Wright, 1999).

1ws  2.1.5 Confidence Intervals and model fit assessment

s Assume f ~ N (g(&;a),Q), i.e., the vector of the basis f—statistics follows a multivariate normal distribution
s centered on the vector g(€; a) specified by the fitted admixture graph parameters and the estimated error covariance
s matrix Q. The optimized score S (€;4) then verifies S(€;4) = —2log(L) — K where L is the likelihood of the
17 fitted graph and K = nlog(2n) + log(|Q|). This makes it straightforward to compute a BIC (Bayesian Information

18s Criterion) for the fitted graph from the optimized score as:

A A 1 1
BIC = §(&;4) + npy log (Enz(nz - 1)) - Enz(nz - 1) log(2m) —log(1 Q )

19 BIC may then be useful to compare different fitted admixture graph topologies. When comparing two graphs G,
10 and G, with BIC equal to BIC,| and BIC; respectively, we have Ay, = BIC, — BIC| ~ 21log (BF ;) where BF is
191 the Bayes Factor associated to the comparison of the graphs G; and G, (Kass & Raftery, 1995, eq. 9). We may
192 further rely on the modified Jeffreys’ rule proposed by Kass & Raftery (1995) to assess to which extent the data
13 support either the G| or G, graphs, with A, > 6 (respectively A, > 10) providing “strong” (respectively “very

14 strong”) evidence in favor of G| (Supplementary Vignette V1).
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195 Moreover, the likelihood interpretation of the optimized score S (€;4) = —2log(L) — K allows constructing
19s  confidence intervals (CI) for the fitted parameters of a given graph (i.e., elements of the e and a vectors) using
17 the following uni-dimensional procedure. For a given parameter v (either a edge length or an admixture rate), the
198 difference S, (x)—S (& a) (where S, (x) is the score when v = x and all the other parameters are set to their best fitted
e values) can be interpreted as a likelihood-ratio test statistics following a y? distribution with one degree of freedom.
200  Lower and upper boundaries v, and v,y of the 95% CI (such S, (x) — S (€;4) < 3.84 for all vpip < X < Vjpax) May
201 then simply be computed using a bisection method, as implemented in poolfstat.

202 Finally, a straightforward (but highly informative and recommended) approach to assess the fit of an admixture
203 graph is to evaluate to which extent the f—statistics derived from the fitted admixture graph parameters (g(€; a))
204 depart from the estimated ones (Patterson et al, 2012; Lipson, 2020). This can be summarized via a Z-score of
205 residuals computed as Z = %%6 where G is a given fitted f—statistics; f is its corresponding estimated values;
206 and o-% the block-jackknife standard error. The presence of outlying Z-scores for at least one f-statistics (e.g.,

207 | Z |> 1.96 at a 95% significance threshold) may suggest poor model fit while also providing insights into the

208 leaves or graph edges that are the most problematic (Lipson, 2020).

200 2.1.6 Scaling of branch lengths in drift units

20 Admixture graph fitting results in estimated edge lengths on the same scale as F, which limits their interpretation,
211 because they depend both on the overall level of SNP polymorphism and on their distance to the root (Patterson
22 et al, 2012). Lipson et al (2013) proposed an empirical approach to rescale edge lengths on a diffusion timescale
213 using estimates of overall marker heterozygosities within (i.e., 1 — Q) or across (i.e., 1 — Q) populations. The
214 argument echoes the aforementioned interpretation of pairwise Fgr as a scaled F5. If pc and pp are the reference
215 allele frequencies in a child node C and its direct parent node P and their divergence time (on a diffusion timescale)

26 ISTCp = NL (where ¢ is the branch length in generations), then conditional on p¢, F2(C; P) = (1 — e77¢*) pc(1—-pc¢)

217 and QZC’P =1-2pc(1 — pc) leading to Fscf = ?_(g;;) = %(1 —e7er) (ie., Fscf ~ 2+chhen Tcp < 1). Hence,
28 the estimated graph edges length F>(C; P) = poc are scaled in units of drift by a factor equal to = % where /1p
219 1s the estimated heterozygosity (i.e., 1 — Qf ) in the (parent) node P. Rearranging equation 2 and using Qg’P =0of
20 (conditional on pp) shows that hp = F,(C; P) + h¢, where he = (1 — QIC) is the heterozygosity of the child node
221 C. Hence, all the node heterozygosities can be inferred iteratively from the leaves to the root along the admixture

222 graph using the leave heterozygosities (directly estimated from the data) and the fitted edge lengths (Lipson et al,

2 2013).
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2¢  2.1.7 Admixture Graph construction

25 Comprehensive exploration of the space of possible admixture graphs rapidly becomes impossible even for a
26 moderate number of populations. We implemented in poolfstat different heuristics to facilitate admixture graph
227 construction based on a supervised approach (see Supplementary Vignette V1 for details). First the add.leaf
28 function allows exploring all the possible connections of a new population to an existing admixture graph. If n, is
29 the number of edges of the admixture graphs, n, + 1 possible graphs connecting the new leaf with a non-admixed
20 edges (i.e., including a new rooting with the candidate leaf as an outgroup) and %ne(ne — 1) — 1 connecting the
21 new leaf with a two-way admixture event are then tested. Note that an admixture between the two root edges is
22 excluded from the exploration since it results in a singular model. More generally, the different possible graphs are
2 always checked for singularity by empirically verifying that the rank of the model incidence matrix X(a) is equal
24 to the number of edges to fit. The different fitted graph can then be ranked according to their BIC, the graph with
25 the lowest BIC having the strongest support.

23 The graph.builder function allows a larger exploration of the graph space by successively adding several
237 leaves in a given order to an existing admixture graph. At each step of the process, a heap stores the best resulting
28 graph together with some intermediary sub-optimal graphs based on their BIC. After initializing the heap with
20 some graph (or a list of graphs), the add.leaf function is called to evaluate, for each candidate leaf in turn, all
200 its possible connections (with non-admixed or admixed edges) to all the graphs stored in the heap. Among the
21 obtained graphs, the one with the lowest BIC together with those with a BIC within a given Ag;c (Apic = 6 by
22 default) are included in a newly generated heap. If the resulting heap contains more than a predefined number of
2 graphs ng™ (ng™ = 25 by default), only the ng™ graphs with the lowest BIC are finally kept in the heap of graphs
24 to be used for the addition of the next leaf. Although helpful, such heuristic should be used cautiously and we
25 recommend to only try adding a small number of populations (i.e., < 5) to an existing graph. One also needs to
2s  evaluate different orders of population inclusion (Supplementary Vignettes V1 and V2).

247 It is also critical to start these supervised procedures with graphs that are representative of the whole history of
28 the populations under study and not too unbalanced with respect to the candidate leaves. In particular, starting with
29 asmall tree of closely related populations which are distantly related to the candidate leaves must be avoided. When
20 prior knowledge about the history of the investigated population is limited (which is usually the case), Lipson et al
251 (2013) proposed to start admixture graph construction with a scaffold tree of populations displaying no evidence
22 of admixture. As in the absence of admixture, F, statistics are expected to be additive along the paths of the

23 (binary) population tree, its unrooted topology and branch lengths may simply be inferred with a neighbor-joining
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24 algorithm. In poolfstat, we implemented two functions that allow i) identifying candidate sets of unadmixed
255 populations among all the genotyped ones (find.tree.popset); and ii) building rooted neighbor-joining tree
x6  (rooted.njtree.builder). Briefly, find. tree.popset implements a procedure consisting of i) discarding all
257 the populations showing at least one significant three-population test (i.e., displaying a negative F3 Z-score lower
28 than —1.65 by default) among all the possible ones; and ii) identifying via a greedy algorithm the largest sets of
259 populations for which all the possible quadruplets pass the four-population test of treeness (i.e., with an absolute
%0 Fy4 Z-score lower than 1.96 by default). The rooted.njtree.builder function builds a scaffold tree from a
261 candidate set of (presumably) unadmixed populations using the nj function from the ape package (Paradis et al,
22 2004) and then compare the consistency of population heterozygosities between the partitions of the tree to root it
23 (Lipson et al, 2013). Note that this latter procedure may be sensitive to long-branch attraction and should thus be

24 used carefully when including highly divergent populations.

s 2.2 Overview of the new poolfstat package

266 Tables 1 and 2 describe the main objects and functions implemented in our new version (v2.0.0) of the R package
267 poolfstat publicly available from the CRAN repository (https://cran.r-project.org/web/packages/
268 poolfstat/index.html). In-depth analyses of two Pool-Seq and allele count simulated datasets (see below)
260 are described for illustration purposes in the package vignette provided as Supplementary Vignette V1. Detailed
270 documentation page of the different objects and functions can also be directly accessed from an R terminal with
271 poolfstat loaded using the help function (or the ? operator).

272 The package includes several functions to parse allele count (e.g., genotreemix2countdata) or Pool-Seq
s (e.g., vef2pooldata) input data stored in various formats commonly used in population genomics studies (Ta-
27 ble 2). These functions allow to clearly distinguish these two different types of data by producing objects of either
275 the so-called countdata (for allele count) or pooldata (for Pool-Seq data) classes (Table 1). This step is critical
276 to further rely on the appropriate unbiased estimators for the F' and D parameters. Some functions allow to per-
277 form subsequent manipulation of the input data, for instance to only consider some of the populations or to remove
272 SNPs according to various criteria (Table 2).

279 The three functions computeFST, compute.pairwiseFST and compute.fstats implement the unbiased
20 estimators of the different f—, D— and within-population heterozygosities (based on allele IIS probabilities within
251 and between pairs of populations) together with block-jackknife estimation of their standard errors. Importantly,

22 these three functions automatically detect the appropriate estimators given the type of data (either allele or Pool-
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S4 object Description
countdata Standard allele count data (i.e., obtained from individual genotyping or sequencing data)
pooldata’ Pool-Seq read count data

pairwisefst Store pairwise Fs7 estimates. This object is generated by the compute.pairwiseFST func-
tion. Estimates can be conveniently visualized with the heatmap or plot functions, the
latter interfacing the plot_fstats function of poolfstat.

fstats Store F», pairwise Fsr, F3, F ; , F4 and D estimation results. This object is generated by the
compute. fstats function. Estimates can be conveniently visualized with the heatmap or
plot functions, the latter interfacing the plot_fstats function of poolfstat.
graph.params | Represent a population tree or an admixture graph and its parameter. This object is generated
by the generate.graph.params function. The graph can be visualized with the plot
function that interfaces the grviz function from the DiagrammeR package (Iannone, 2020).
fitted.graph | Represent a population tree or an admixture graph and its underlying fitted parameters as
obtained from the fit.graph or other fitting functions. The graph can be visualized with the
plot function that interfaces the grViz function from the DiagrammeR package (Iannone,
2020).

Table 1. Description of the main S4 objects of the poolfstat package. 'Object already existing in the first
poolfstat version.

23 Seq read counts) according to the input object class (either countdata or pooldata). For the estimation of Fr,
2a  the computeFST and compute.pairwiseFST also implement (by default) estimators based on an Analysis of
25 Variance framework that correspond to those developed by Weir (1996) for allele count data and by Hivert et al
256 (2018) for Pool-Seq data.

287 The fit.graph function implements the approach described above to estimate the parameters (i.e., edge
208 lengths and admixture rates) of an admixture graph that is stored in a graph.params object (Table 1). Such ob-
280 jects can be generated with the generate.graph.params function (Table 2) to include the target basis f—statistics
200 and the error covariance matrix (denoted above f and Q, respectively) estimated with compute. fstats (stored
201 1in an fstats object) and to specify the topology and the parameters of the admixture graph. Note that the
202 graph.params2symbolic.fstats function allows exploring in details the properties of an admixture graph
203 specified by a graph.params object by deriving a symbolic representation of all the F», F3, F4 and the model
204 equations (see above) by internally relying on the Ryacas package for symbolic computation (Andersen & Hgjsgaard,
205 2019). The fit.graph function then produced an object of class fitted.graph that includes the estimated edge
206 lengths (in F, and also optionally in drift units) and admixture proportions together with (optionally) their 95% CI.
207 For model fit assessment purposes, fitted.graph objects also include the BIC and Z-score of the residuals of the
208 fitted basis f—statistics. Such a comparison can (and should) be generalized to all the f>, f5 and f; statistics (not just

200 the ones forming the basis) using compare.fitted. fstats jointly applied toa fitted.graphand a fstats ob-
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a0 jects. Notice that we developed for comparison purposes a function named graph . params2gpGraphFiles to ex-
a1 port admixture graph specification and their underlying estimated basis f—statistics (both stored in a graph.params
a2 object) into gpGraph format (Patterson et al, 2012), allowing independent fitting based on the same estimated
as  statistics to be carried out with this later program.

304 The poolfstat package includes several functions to assist construction of admixture graphs. As mentioned
a5 in the previous section, the find.tree.popset and rooted.njtree.builder functions allow to identify and
as  build rooted tree(s) of scaffold of (presumably) unadmixed populations that may be used as starting graph(s). Be-
a7 sides, the add.leaf and graph.builder functions implement the above described heuristic to extent an existing
ae graph (or tree) by adding one or several leaves (i.e., genotyped populations). These functions generate a list of
ae fitted.graph objects together with other information that may be helpful for graph comparison (e.g., BIC of all
a0 the graphs or index of the best fitted graph).

a1 Finally, as detailed and exemplified in the Supplementary Vignette V1, fitted graphs (stored in fitted.graph
sz objects) and non-fitted graphs (stored in graph.params objects) can be directly and conveniently plotted with the

asn plot function which internally interfaces the grViz function from the DiagrammeR package (Iannone, 2020).

s 2.3 Data analyses
a5 2.3.1 Simulation study

as  Genetic data for a total of 150 diploid individuals belonging to six different populations (n=25 individuals per pop-
a7 ulations) related by the demographic scenario depicted in Figure 1 were simulated using the msprime coalescent

ais  simulator (Kelleher et al, 2016) with the following command:

so mspms 300 20 -t 4000 -I 6 50 50 50 50 50 50 O -r 4000 100000000 -p 8 -es 0.0125 6 0.25

@ -ej 0.0125 6 2 -ej 0.0125 7 3 -ej 0.025 2 1 -ej 0.05 3 1 -ej 0.075 5 4 -ej 0.1 4 1

a1 Each genome thus consisted of 20 independent chromosomes of L = 100 Mb assuming a scaled chromosome-
a2 wide recombination rate of p = 4LN,r = 4,000 as expected for instance in a population of constant diploid
s22s  effective size of N, = 10° when the per-base and per-generation recombination rate is » = 1078 (i.e., one cM
a2s per Mb). The scaled chromosome-wide mutation rate was set to 8§ = 4LN,u = 4,000 which is also the expected
s nucleotide diversity in a population with N, = 10? at mutation-drift equilibrium when the per-base mutation rate is
22 = 1078, A total of 250 independent genotyping datasets were simulated and each was subsequently processed to

a7 generate 32 different types of datasets corresponding to:
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Figure 1. Simulated scenario relating six sampled populations. The population P6 derived from a population
S which is admixed between two ancestral sources (S1 and S2) directly related to populations P2 and P3 and
contributing to @ = 25% and 1 — @ = 75% of its genome, respectively. The branch lengths are in a diffusion
timescale i.e., with 7 = 241\@ under a pure-drift model of divergence (where ¢ is the number of non-overlapping
generations and N, the average diploid effective population sizes along the branch). The names of the internal

node populations (not sampled) are represented in grey.

328 e Two standard allele count datasets (namely AC,,>14 and AC,,>54) obtained by simple counting of the simu-
329 lated individual (haploid) genotypes for each population (i.e., assuming Hardy-Weinberg equilibrium within
330 population) and removing SNPs with a Minor Allele Frequency (MAF) computed over all the individuals
331 lower than 1% (for AC,,>4, datasets) or 5% (for AC,,>59, datasets)

a2 e Thirty Pool-Seq datasets (coded as PS/I;::mI% ) for 1) five different average sequencing coverages A (equal to
33 30, 50, 75, 100 or 200 reads; a 30X Pool-Seq coverage representing a lower limit for population genomics
334 studies); ii) two different MAF thresholds m;, of 1% and 5% (MAF being estimated on the read counts over
3 all the pools); and iii) three different sequencing error rates € of 0 (no error), 1%. and 2.5%0 the two latter
a3 being representative of Illumina sequencers (Glenn, 2011).

a7 Pool-Seq datasets were simulated from the AC,,;54, allele count datasets following a procedure similar to that

ss  described in Hivert et al (2018). Briefly, the vector r;; = {ri jk} of read counts at SNP position i in population j
s for the nucleotide k& (where by convention k = 1 and k = 2 for the derived and ancestral alleles respectively) was

a0 sampled from a Multinomial distribution parameterized as:
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Tij~ Multin({% (1 - g) + ( - }r)z_lj) g;(l - );l—l;)(l - g) + };l—ljjg, g; g} ;cij)

a1 where y;; is the derived allele count for SNP i in population j (from the corresponding AC,,»19 dataset); n; is
a2 the haploid sample size of population j (here n; = 50 for all j); and ¢;; = iij riji is the overall read coverage. To
ws  introduce variation in read coverages across pools and SNPs, each c;; was sar;lpled from a Poisson distribution with
as a parameter A (the target Pool-Seq mean coverage). When € = 0, only reads for the derived (k = 1) or ancestral
aus  (k = 2) alleles can be generated and the above Multinomial sampling actually reduces to a Binomial sampling
us following r;j; ~ Bin (%’ ci j) (and r;j» = ¢;j — r;j1). However, when € > 0, sequencing errors might lead to non-null
a7 read counts for the two other alleles leading to tri- or tetra- allelic SNPs. Morevover, sequencing errors may also
aus  introduce spurious additional variation by generating false SNPs at monomorphic sites. To account for the latter,
as  read count vectors 7 ; for all the 2 X 10° — I monomorphic positions i’ (where I is the number of SNPs observed in
s the considered AC,,, 4, dataset) were sampled as ry; ~ Multin ({1 - 5155 %} Cir j) with coverages c;; sampled
s from a Poisson distribution (as ¢;; for polymorphic positions). Yet, as usually done with empirical datasets, we
sz applied a minimum read count filtering step consisting of disregarding all the alleles with less than 2 observed
ss  reads (over all the populations). Only bi-allelic SNPs passing the overall MAF threshold m; were finally retained
s+ in the final PSATZ  datasets.

as5 Analyses of the simulated data were carried out with poolfstat (Supplementary Vignette V1). Briefly, each
a6 msms simulated dataset was converted into an AC,,>¢ dataset in TreeMix format (Pickrell & Pritchard, 2012)
a7 further imported into a countdata object with genotreemix2countdata (Tables 1 and 2) and used to generate
ass  each corresponding AC,,>s4 dataset using countdata. subset. To improve computational efficiency, the different
359 PS/I’E;E%% Pool-Seq datasets were generated from the AC,,»19 countdata objects in the form of pooldata object
a0 using custom functions (not included in the package) coded in C++ and integrated within R using Rcpp (Eddelbuet-
s tel, 2013). In addition, to evaluate the impact of the (bad) practice consisting of analyzing Pool-Seq data as if they
sz were allele count data (i.e., overlooking the sampling of reads from individual genes of the pool), we also created
s “fake” countdata objects from the different pooldata objects. We then used default options (unless otherwise
sss stated) of i) computeFST to estimate genome-wide Fg7 over all the populations; ii) compute. fstats to estimate
ass all the f— and D— statistics; iii) compute.f4ratio to estimate admixture proportions; and iv) £it.graph to esti-

ass mate the admixture graph parameters (Table 2). As the number of SNPs was variable across the different simulated

a7 datasets, we adjusted the number of successive SNPs defining a block for block-jackknife estimation of standard
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as  errors by dividing the total number of available SNPs by 500. This thus resulted on average in 490 blocks of 4.1
s Mb over the genome for all the analyzed datasets (the simulated genomes consisting of 20 chromosomes). Note
a0 that the parameter estimates were always taken as the block-jackknife mean values rather than estimates over all
a1 SNPs (i.e., including those in the chromosome ends). In practice, the differences between the two are insignificant
a2 (e.g., Supplementary Vignette V1).

a7 For validation purposes, we also analyzed the 250 AC,,>14, datasets with programs from the AdmixTools suite
a7« (Patterson et al, 2012) after conversion to the appropriate input format using custom awk scripts. More specifically,
a5 we ran gpfstats (v. 200) to estimate the 15 basis f—statistics, i.e., taking P1 as the reference population, the five
as  f> of the form (P1,Px) and the ten f3 of the form (P1;Px,Py) (where x = 2,...,6 andy = 3,...,6 withy # x)
a7 and their corresponding error covariance matrix. Default options were considered except for the disabling of the
ars  scaling of estimated values (using option -1 1) to facilitate their comparison with poolfstat estimates. We also
7o ran with default options gp3Pop (v. 650) to estimate f* for all the 60 possible triplet configurations and gpDstat
a0 (v. 970) to estimate the D—statistics for all the 45 possible quadruplet configurations together with their associated
s Z—scores. By default, these three programs define blocks of 5 cM to implement the (weighted) block-jackknife
sz procedure. As we here converted the simulated SNP positions from Mb to cM assuming one cM per Mb (see

s above), the sizes of the 400 blocks was thus about 20% than for poolfstat analyses.

s« 2.3.2 Analysis of a real Drosophila suzukii Pool-Seq data

sss  The spotted wing drosophila, Drosophila suzukii, represents an attractive model to study biological invasion and
ass  hence recent historical and demographic history. Native to South East Asia, this pest species was first observed
a7 outside its native range in Hawaii in 1980, and later rapidly invaded America and Europe simultaneously between
ass 2008 and 2013 (Fraimout et al, 2017). Using DNA sequences and microsatellite markers, Adrion et al (2014)
ase and Fraimout et al (2017) deciphered the routes taken by D. suzukii during its worldwide invasion. Both studies
a0 showed that America and European populations globally represent separate invasion routes with different native
a1 source populations. Olazcuaga et al (2020) recently generated Pool-Seq genomic data from 22 worldwide pop-
a2 ulation samples to detect genetic variants associated with the historical status (i.e. invasive versus native) of the
s sampled populations. We here focused our illustration on 14 Pool-Seq data from this study (with 50 to 100 diploid
s individuals per pool) for populations representative of the Asian native area (six populations), Hawaii (one popu-
ss lation) and the invaded continental America (seven populations), where the species was first observed in 2008 on

as  the Western coast of the USA (around Watsonville, CA; Figure 2A). Beside native populations, we have restricted
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a7 our analysis to the American continent because the invasion of this area is characterized by multiple admixture
as events between different source populations (Fraimout et al, 2017), which makes it an appealing situation to eval-
ass  uate the power and the limitation of poolfstat analyzes. Moreover, 13 of our 14 population samples consist of
400 1individuals originating from the same sites (albeit sometimes collected at different dates for some pools; Table 2
s01 1n Supplementary vignette V2) as those genotyped at 25 microsatellite markers and analyzed with an Approximate
w2 Bayesian Computation Random Forest (ABC-RF) approach to infer the routes of invasion on a worldwide scale by
403 Fraimout et al (2017).

404 To allow for complete reproduction (and exploration) of our analyses, all the command lines used to analyze the
ss  D. suzukii Pool-Seq dataset are described in the Supplementary vignette V2. Briefly, we combined the 14 (bam)
ws files, obtained by Olazcuaga et al (2020) after aligning the 14 Pool-Seq data onto the latest near-chromosome
w07 scale D. suzukii assembly (Paris et al, 2020), into an mpileup file using SAMtools 1.9 with options -q 20 -Q20
ws (Li et al, 2009). Variant calling was then performed using VarScan mpileup2snp v2.3.4 Koboldt et al (2012)
w0 run with options --min-coverage 10 --min-avg-qual 25 --min-var-freq 0.005 --p-value 0.5 (.e.,
a0 with very loose criteria). After discarding positions mapping to non-autosomal contigs (Paris et al, 2020), the
an  resulting vcf file was parsed with the vef2pooldata function of poolfstat with default options except for i) the
a1z overall MAF threshold (computed from read counts) that was set to 5%; and ii) the minimal read coverage for each
an pool that was set to 50. The resulting pooldata object was further filtered with pooldata. subset to discard 1)
s all positions with a coverage higher than the 99th coverage percentile within at least one pool; and ii) discard all
a5 SNPs with MAF<5% over all the populations from the native area to favor ancestral SNPs. The final dataset then
s consisted of read counts for 1,588,569 bi-allelic SNPs with a median read coverage varying from 64 (US-Sok) to
#1795 (CN-Bei and US-Haw) among the 14 pools (Table 2 in the Supplementary Vignette V2). We defined blocks of
a1e 10,000 consecutive SNPs for block-jackknife estimation of standard errors leadint to a total of 145 blocks of 698
a9 kb on average (varying from 414 kb to 2.03 Mb). Hence, most analyses actually relied on 1,450,000 SNPs that
s20 mapped to the 15 largest contigs of the assembly (totaling 116 Mb). In other words, SNPs mapping to the smallest

221 (and less reliable) contigs were discarded in addition to the few ones mapping to the end of the 15 retained contigs.
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Worst fitted f-statistic: f4(CN-Bei, CN-Shi;US-Haw,US-Wat) [Z-score=-1.83]

Figure 2. Historical and demographic inferences about native and invasive Drosophila suzukii populations from Pool-Seq data
based on f—statistics. (A) Geographic location of the 14 population samples (Olazcuaga et al, 2020). Names are colored according to their area of
origin. The (invasive) Hawaiian population, which was considered as intermediate between the Asian native and the continental America invasive area, was
first observed in 1980, i.e. ca. 300 generations before the invasion of the American continent assuming 10 generations per year. Solid points indicate the
13 population sampling sites in common with Fraimout e al (2017). B) Best fitting admixture graph connecting five populations of the native areas and the
Hawaiian population with two inferred admixture events. C) Best fitting admixture graph connecting three invasive populations from continental America
with populations from the native area (and Hawaii). In B) and C), estimates of branch lengths (x10°, in drift units of ﬁ) and admixture rates (and their
95% Cl into bracket) are indicated next to the corresponding edges. The worst fitted f-statistics is written in red for each of the two graphs.
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=~ 3 Results

2 3.1 Evaluation of poolfstat on simulated data

«2« Historical and demographic inference based on f— and D- statistics has already been extensively evaluated in
45 previous studies (e.g., Patterson et al, 2012; Lipson et al, 2013; Peter, 2016). Therefore, the purpose of our
226 simulation study was essentially threefold: i) to validate the estimators implemented in poolfstat by comparing,
427 for allele count data, with those obtained with the reference AdmixTools suite (Patterson et al, 2012); ii) to evaluate
w2 the performance of the estimators for Pool-Seq data as a function of read coverage and sequencing errors; and iii)

429 to provide example datasets with known ground truth for illustration purposes.

w0 3.1.1 Description of the simulated datasets

s1 We simulated 250 genetic datasets for six populations (named P1 to P6) each consisting of 25 diploid individuals
sz and that were historically related by the admixture graph represented in Figure 1 (Material and Methods). Each
s of these datasets was further used as template to generate 2 allele count datasets (applying 1% or 5% threshold
s« on the overall MAF for AC,,~ 14 and AC,,.s¢, datasets respectively) and to simulate 30 Pool-Seq datasets with five
4«5 different mean read coverages (4 € {30; 50;75; 100; 200}); three sequencing error rates (€ € {0; 1073;2.5x 1073))
s and two MAF (computed over all read counts) thresholds (referred to as PSA; €, and PSA°"%,, for 1% and 5%
w7 MAF thresholds, respectively). This thus lead to a total of 8,000 simulated datasets. The average number of
4 available SNPs and false SNPs (for PS/lf;_er"% and PS/l;:iiZfo datasets) is given in Table S1 for each of the 32
w9 different types of datasets and represented as a function of the mean coverages 4 and MAF thresholds in Figure S1.
440 Overall, 471,919 SNPs and 240,369 SNPs were available on average for allele count datasets at the 1%
war (ACps19) and 5% (AC,»59) MAF thresholds respectively consistent with the L-shaped distribution of allele fre-
w2 quencies (Figure S2A). As expected from binomial sampling (Figure S2B), for Pool-Seq datasets generated with no
w3 sequencing error, the number of SNPs remained always lower than the AC,,. ¢, datasets at the 1% MAF threshold
ws  although increasing with coverages from 13.8% for PS3O;12>01% to 2.01% for PS200m > 1%=" datasets (see Ta-
ws  ble S1 legend for details). Conversely, at the 5% MAF threshold, the number of SNPs was slightly higher than the
a5 AC,,>59 datasets (from 2.58% for PS30;1:>05% to 1.51% for PS200:~~,, ) which is related to i) the shape of the allele
w7 frequency spectrum (stochastic variation in read sampling leading to include more SNPs with 0.01 < MAF < 0.05

ws  than exclude SNPs with MAF > 0.05 from the simulated genotying data because they are more numerous); and ii)

we  variation in the simulated read coverages that explains the decreasing trend with A.
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450 With sequencing errors, our filtering steps proved efficient to remove false SNPs except at the 1% MAF thresh-
st old when € = 2.5%¢ or when € = 1% at the lowest coverage (1 = 30 and A = 50). These configurations displayed
42 substantial to very high proportions of false SNPs (up to 93.8% for PSSO;ZZI'E/O%O) although decreasing with cover-
w3 age (Figure S1B). A 5% MAF threshold always resulted in the complete removal of all the false SNPs for all the
s« investigated scenarios (Table S1). Note that for the highest coverages, sequencing errors lead to a relative reduction

4«55 of the number of SNPs due to the generation of spurious tri- or tetra- allelic SNPs from the simulated bi-allelic

6 SNPs (compare e.g., PSZOO;ZZS';O%O and PSlOO;iZS';D%O on Figure S1A).

7 3.1.2 Comparison of poolfstat and Admixtools estimates for allele count data

w8 We first analyzed the 250 simulated AC,,,»14, datasets to estimate with both poolfstat and Admixtools programs
w9 1) the 15 basis f—statistics (taking P1 as the reference population) consisting of five f, and ten f; (Figure 3A) and
w  their corresponding error covariance matrix (Figure 3B); ii) the 60 f3* (Figure 3C) and their associated Z-scores
w1 (Figure 3D); and iii) the 45 D-statistics (Figure 3E) and their associated Z-scores (Figure 3F). The estimates
sz were all found in almost perfect agreement between the two implementations with Mean Absolute Differences
ws  (MAD) negligible when compared to the range of variation of the underlying values. For f— and D- statistics,
w4 slight differences were mostly due to the plotted poolfstat estimates corresponded to block-jackknife means
w5 (i.e., excluding SNPs outside blocks as those from chromosome ends). Using poolfstat estimates based on all
ss the SNPs indeed resulted in almost null MAD (MAD’ in Figure 3A, C and E), up to rounding errors due to lower
s7 decimal precision in the printed output of the Admixtools programs. Note that the differences in block-jackknife
ws implementation among the two programs (Material and Methods) had very minor impact on the estimation of error
w0 variance and covariance of the estimates (Figures 3B). Accordingly, the MAD computed on Z-scores remained
a0 very small (although inflated for higher values) and Z-score based decision for the underlying three-population
an admixture (Figures 3D) or four-population treeness tests (Figures 3F) were highly consistent (with a proportion
a2 8 =97.7% and B = 98.0% respectively of Z-scores significant with the two programs among the ones significant

4z with at least one program).

w2 3.1.3 Performance of f; and f;° based tests of admixture and f; and D- based tests of treeness for allele
475 count and Pool-Seq data
a7 We ran the compute.fstats function on all the simulated allele count and Pool-Seq datasets to estimate all

a7 f- and D- statistics. To further evaluate the impact of (improperly) treating read counts as allele counts when
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Figure 3. Comparison of poolfstat and AdmixTools estimates across 250 simulated allele count datasets
(AC,;519%). A) All estimates of the 15 basis f—statistics taking P1 as the reference population and corresponding to 5 f, of the
form (P1,Px) and the 10 f; of the form (P1;Px,Py) (with x = 2,..,6; y = 3,..,6 and y > x). B) All Block-jackknife estimates
of the covariance matrix @ of the 15 basis f—statistics (15 error variances and 105 error covariances). C) All estimates of
the 60 f;* (scaled f3) and their associated Z-scores (D). E) All estimates of the 45 D—statistics (scaled f3) and their associated
Z-scores (F). For each comparison, the Mean Absolute Difference (MAD) between the parameter estimates of the two programs
are given on the upper left corner of the plots. In A), C) and E), poolfstat estimates correspond to block-jackknife means
(i.e., they only include SNPs eligible for block-jackknife). The given MAD’ value is the MAD between AdmixTools and
poolfstat estimates that include all SNPs (see documentation for the compute. fstats function). In D), a consistency score
B is also given and was computed as the proportion of Z-scores < —1.65 (i.e., significant three-population test of admixture at a
5% threshold) with both programs among the n = 216 ones significant in at least one of the two programs. Similarly, in F), the
given consistency score § is computed as the proportion of absolute Z-scores < 1.96 (i.e., passing the four-population treeness
at a 5% threshold) with both programs among the n = 1,912 ones with an absolute Z-scores < 1.96 in at least one of the two
programs)
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e=0

o datasets,

475 analyzing Pool-Seq data we also analyzed the simulated Pool-Seq datasets (focusing only on PSA
49 1.e., simulated without sequencing error) as if they were allele count data. Overall, 42 different configurations were
40 thus investigated each originating from the 250 allele count datasets simulated under the demographic scenario
w1 represented in Figure 1, leading to a total of 42x250=10,500 analyses.

482 Tables 3 and S2 provide the estimated power (True Positive Rate, TPR) and False Positive Rate (FPR) of the
@ f3-and f}'-based test of admixture for each configurations. As P6 was the only admixed population, each TPR was
w4 estimated as the proportion of f (respectively f;) with an associated Z-score < —1.65 (95% significance thresh-
45 old) for the (P6;P2,P3) population triplet (i.e., among 250 estimates). Conversely, the FPR was computed as the
s proportion of f3 (respectively f;°) with an associated Z-score < —1.65 among all the 50 population triplets that do
s7  not involve P6 as a target (i.e., among 12,250=250x50 estimates). Consistent with Patterson et al (2012), the per-
w formance of f3- and f-based test of admixture were virtually the same for all the configurations. When the same
a0 MAF threshold was applied, the performance of Pool-Seq data generated with no sequencing error were very close
a0 to that obtained with allele count data although the power tended to slightly decrease with decreasing sequencing
w1 coverage. Interestingly, increasing the MAF threshold from 1% to 5% increased the power by more than 10% and
sz 1in all cases, no false positive signal of admixture was detected. Surprisingly, sequencing errors in Pool-Seq data
as  also tended to increase the power from a negligible amount (less or close to 1%) at 5% MAF threshold to a quite
s substantial amount at 1% MAF threshold (decreasing with coverage and increasing with sequencing error rate).
ws At the extreme, a power of 100% was even observed when A < 50 and € > 1%o. This trend was actually directly
ws related to the proportion of false SNPs introduced by sequencing error (Figure S1B) that resulted in a downward
w7 bias of f3 and f7 estimates, although the underlying tests remained robust as all the estimated FPR were null except
s for PSSO;ZZI‘;O%O data (FPR=6.47%) which displayed the highest proportion of false SNPs (> 90%, Figure S1B).
ss  However, this observed apparent robustness of the three-population tests to false SNPs should be interpreted cau-
s tiously since it may rather result from the moderate to high expected f3 and f;* values in our simulated scenario
soo  for the population triplets that do not involve P6 as a target. Overall, applying a 5% MAF threshold on Pool-Seq
s2  data (even with €=2.5%0) to remove false SNPs (see above) allowed recovering the performances similar to that
sos  obtained when analyzing datasets with no sequencing error. Finally, it is worth stressing that analyzing Pool-Seq
sa data as allele counts, whatever the coverage or MAF threshold considered, lead to no power in detecting admixture
sos event with f3 or f7* based tests due to a strong upward estimation bias.

506 Tables 4 and S3 similarly provide the estimated power (TPR) and FPR of the f;- and D-based tests of treeness

so7  for the 42 configurations investigated in the simulation study. Given the simulated scenario, eight of the 45 differ-
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MAF seq. error Pool-Seq (read counts) data allele count
threshold € A1=30 A1=50 A=175 A =100 A =200 data

0 82.0 (0.00) 84.4 (0.00) 86.0 (0.00) 86.0 (0.00) 85.2 (0.00)
1% 100 (0.00) 100 (0.00) 86.8 (0.00) 87.2 (0.00) 86.4 (0.00)

>1% 85.6 (0.00)
2.5%0 100 (0.00) 100 (6.47) 99.6 (0.00) 92.8 (0.00) 88.4 (0.00)
0 0.00 (0.00)* | 0.00 (0.00)* | 0.00 (0.00)* | 0.00(0.00)* | 0.00 (0.00)*
0 93.6 (0.00) 95.2 (0.00) 96.4 (0.00) 96.0 (0.00) 96.0 (0.00)
1% 94.0 (0.00) 96.8 (0.00) 96.4 (0.00) 97.2 (0.00) 96.8 (0.00)

>5% 96.8 (0.00)
2.5%0 94.0 (0.00) 96.0 (0.00) 96.0 (0.00) 97.2 (0.00) 96.8 (0.00)
0 0.00 (0.00)* | 0.00 (0.00)* | 0.00(0.00)* | 0.00(0.00)* | 0.00 (0.00)*

Table 3. Comparison of the performance of f;-based tests of admixture for different types of data simulated
under the Figure 1 scenario processing poolfstat analyses. For each MAF threshold (MAF> 1% or MAF> 5%),
the table gives True and False (in parenthesis) Positive Rates (in %) for 21 different types of analyses relying on 1) allele count
data; ii) 15 different Pool-Seq read count data (five mean coverages A and three sequencing error rates €); and iii) Pool-Seq
read count data simulated with e = O treated as allele counts (corresponding results of this bad practice are highlighted in
italics and *). Each TPR was computed from the analysis of 250 independent datasets (generated from the data simulated under
Figure 1 demographic scenario) as the proportion of f; with an associated Z-score < —1.65 (95% significance threshold) for the
(P6;P2,P3) population triplet (n=250 estimates). The FPR was similarly computed as the proportion of f; with an associated
Z-score< —1.65 among all the 50 population triplets that do not involve P6 as target population (n=250x50=12,250 estimates).

sos  ent population quadruplets (namely (P1,P2;P3,P4); (P1,P2;P3,P5); (P1,P2;P4,P5); (P1,P3;P4,P5); (P1,P6;P4,P5);
s0  (P2,P3;P4,PS); (P2,P6;P4,P5); and (P3,P6;P4,P5)) have a null expected F4 (and D) value. Note that this may
sio  easily be shown with the symbolic calculus derivation implemented in graph.params2symbolic. fstats (Ta-
st ble 2). For each configuration, the TPR of the treeness test was then estimated as the proportion of f; (respectively
sz D) with an associated absolute Z-score < 1.96 (95% significance threshold) for these eight population quadru-
sis plets (P1,P2;P3,P4); (P1,P2;P3,P5); (P1,P2;P4,P5); (P1,P3;P4,P5); (P1,P6;P4,P5); (P2,P3;P4,P5); (P2,P6;P4,P5);
siu (P3,P6;P4,P5)) over all the 250 different underlying analyses (i.e., among 2,000=250x8 estimates). Conversely,
s the FPR was estimated as the proportion of f; (respectively D) with an associated absolute Z-score < 1.96 among
sis  all the 37 remaining population quadruplets (i.e., among 9,250=250%37 estimates). The power for both F4- and
stz D-based tests were remarkably consistent across all the different configurations. In addition, the tests were all
sis  found almost perfectly calibrated since the estimated power were close to 95%, the probability of rejecting the null
sis  hypothesis at the chosen 95% significance threshold for Z-scores. Likewise, all FPR remained low (< 0.15%),
s20  although increasing with MAF thresholds (more than twice higher for a given type of data when increasing the
szt MAF threshold from 1% to 5%). Overall, sequencing errors and coverage had no impact on the performance of
s22 the fy- and D-based test of treeness. As expected, analyzing read counts as allele count data did not affect the

s2a  performance of these tests (see Discussion).
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MAF seq. error Pool-Seq (read counts) data allele count
threshold € A1=30 A1=50 A=175 A =100 A =200 data

0 94.0 (0.05) 94.4 (0.06) 94.1 (0.04) 94.5 (0.05) 94.3 (0.02)
1% 94.3 (0.04) 94.2 (0.03) 94.3 (0.03) 94.3 (0.03) 94.1 (0.05)

>1% 94.2 (0.02)
2.5%0 94.8 (0.06) 94.5 (0.05) 94.8 (0.03) 94.5 (0.06) 94.3 (0.04)
0 94.0 (0.05)* | 94.4(0.06)* | 94.1(0.04)* | 94.5(0.05)* | 94.3(0.02)*
0 94.5 (0.14) 94.3 (0.11) 94.1 (0.14) 94.9 (0.09) 94.3 (0.08)
1% 94.5 (0.09) 94.5 (0.11) 94.5(0.13) 94.2 (0.09) 94.1 (0.15)

>5% 94.3 (0.11)
2.5%0 95.2 (0.13) 93.8 (0.11) 94.2 (0.12) 94.5 (0.11) 94.3 (0.13)
0 94.5(0.14)* | 94.3(0.11)* | 94.1(0.14)* | 94.9 (0.09)* | 94.3 (0.08)*

Table 4. Comparison of the performance of f;-based test of treeness for different types of data simulated
under the Figure 1 scenario processing poolfstat analyses. For each MAF threshold (MAF> 1% or MAF> 5%),
the table gives True and False (in parenthesis) Positive Rates (in %) for 21 different types of analyses relying on 1) allele count
data; ii) 15 different Pool-Seq read count data (five mean coverages A and three sequencing error rates €); and iii) Pool-Seq
read count data simulated with e = O treated as allele counts (corresponding results of this bad practice are highlighted in
italics and *). Each TPR was computed from the analysis of 250 independent datasets (generated from the data simulated under
Figure 1 demographic scenario) as the proportion of f; with an associated absolute Z-score < 1.96 (95% significance thresh-
old) among all the eight population quadruplets ((P1,P2;P3,P4); (P1,P2;P3,P5); (P1,P2;P4,P5); (P1,P3;P4,P5); (P1,P6;P4,P5);
(P2,P3;P4,P5); (P2,P6;P4,P5); (P3,P6;P4,P5)) with a null expected Fy (n=250x8=2,000 estimates). The FPR was similarly
computed as the proportion of f; with an associated absolute Z-score < 1.96 among all the 37 remaining population quadru-
plets (n=250%37=9,250 estimates).

s2«  3.1.4 Precision of the F4-ratio based estimation of the admixture rate o

s»s Given the simulated scenario, two different ratios of f; estimates could be used to estimate the admixture pro-

fa(P1,P4;P3,P6)

H(PLPEPLPS) = LELPSPIPO (Patterson ef al, 2012). The

and @ F.(P1,P5,P2,P3)

ss  portion @ = 0.25 (Figure 1), namely &, =
sz graph.params2symbolic. fstats function (Table 2) may also prove useful to identify appropriate quadruplets
s2s (Supplementary Vignette V2). We used the compute. f4ratio function to obtain these two estimates from all the
s29  simulated datasets together with their 95% CI (defined as & + 1.966-, where G, is the block-jackknife standard-
s0  error estimate). Tables 5 and S4 provide the mean of the estimated &; and &, respectively over the 250 analyzed
ss1  datasets for each of the 42 investigated configurations. As expected from the above evaluation of treeness tests,
sz estimates of @ were highly consistent among all the investigated configurations and similar for the two considered
si3  fy-ratio with a mean value varying between 0.245 and 0.248. Yet, a slight downward bias (always < 2%) could be

ss«  noticed but the estimated 95% ClIs were almost always optimal (or close to) since they contained the true simulated

sss  value (@ = 0.25) from 90.0% to 95.2% of the time (Tables 5 and S4).

s 3.1.5 Evaluation of graph fitting

ss7 - We further estimated for all the simulated datasets branch lengths in drift units and admixture proportion @ with

sss  their 95% Cls by fitting the simulated graph with fit.graph. As for the fs-ratio based estimation, estimates of
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MAF seq. error Pool-Seq (read counts) data allele count
threshold € A1=30 A1=50 A=175 A =100 A =200 data
0 0.247 (92.4) 0.247 (92.8) 0.247 (94.4) 0.247 (93.6) 0.247 (92.0)
1% 1% 0.248 (91.6) 0.247 (91.6) 0.247 (92.4) 0.247 (93.2) 0.247 (92.0) 0.247 (92.8)
2.5%0 0.247 (91.6) 0.246 (94.0) 0.248 (93.2) 0.247 (91.2) 0.248 (92.0) ’ ’
0 0.247 (92.4) | 0.247 (92.8)* | 0.247 (94.4)* | 0.247 (93.6)* | 0.247 (92.0)*
0 0.247 (92.4) 0.248 (93.2) 0.247 (93.6) 0.247 (93.2) 0.247 (92.4)
1% 0.248 (93.2) 0.247 (91.6) 0.247 (91.6) 0.247 (92.8) 0.247 (91.2)
>3% 2.5%0 0.247 (91.6) 0.246 (95.2) 0.248 (93.2) 0.247 (90.0) 0.248 (93.2) 0.247 (92.4)
0 0.247 (92.4)* | 0.248(93.2)* | 0.247 (93.6)* | 0.247 (93.2)* | 0.247 (92.4)*

Table 5. Comparison of F,-ratio based estimation of the simulated admixture proportion « in Figure 1
scenario for different types of data processing poolfstat analyses. For each MAF threshold (MAF> 1% or

MAF> 5%), the table gives the mean of the estimated & = % (across 250 independent simulated datasets) for 21

different types of analyses relying on i) allele count data; ii) 15 different Pool-Seq read count data (five mean coverages A and
three sequencing error rates €); and iii) Pool-Seq read count data simulated with € = O treated as allele counts (corresponding
results of this bad practice are highlighted in italics and *). The proportion (in %) of the 250 estimated 95% Cls that contain
the true simulated value (@ = 0.25) is given in parenthesis.

a were virtually unbiased and consistent across all the 42 different investigated configurations (Figure S3). Nev-
ertheless, the 95% CIs were always too narrow since they contained the actual value (@ = 0.25) from only 40.8%
to 74.4% of the time (Table S5) as expected from the y? approximation of the LRT underlying the computation of
these CIs. Figures 4 and S4 plot the distributions of the estimated lengths for the ten branches of the simulated
admixture graph branches (over the 250 estimates per configuration) when applying 5% and 1% MAF threshold
respectively. The corresponding mean estimates and proportions of 95% CI’s including the true value are provided
in Tables S6 to S15. Note that the branches P8 < R and P9 < R that are connected to the root R (Figure 1) can
only be estimated jointly (as Tpgep9 = Trgor + Troosr, R being arbitrarily set in its middle).

At the 5% MAF threshold, very similar performance were obtained for the allele count and the different Pool-
Seq datasets whatever the simulated read coverage or sequencing error rates (Figures 4A, 4B, and 4C). Hence,
mostly unbiased branch lengths were estimated for the four leaves (terminal branches) Tpip7, Tp2ost, TrPeos
and Tp3os2. As previously observed with «, the estimated 95% CI’s remained too narrow particularly for Tpye,s1
for which less than 50% of the CI’s contained the true value (Table S7) compared to more than 80% for Tpipy
(Table S6). As expected from the the drift-scaling approximation, the estimated branch lengths tended to be
slightly downwardly biased (ca. 2%) for the two other leaves (Tpse,p9 and Tpse,pg) but the estimated 95% CI
displayed similar characteristics since from 48.0% to 87.6% contained the true values, the proportion increasing in
Pool-Seq datasets when coverage and sequencing error decreased (Tables S10 and S11). Conversely, the internal

branch lengths tended to be upwardly biased from a slight (ca. 2%) for Tg1p7, Tp7eps and Tsaopg (Tables S12
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ss7  to S14), to a moderate amount (ca. 20%) for the root including branch 7pg, py, the true value being then always
sss - outside the estimated 95% CI’s (Table S15). Yet, when analyzing data with a lower MAF threshold of 1%, this
s bias almost completely vanished (Figure S4 and Table S15).

560 For the other branches, the estimates had similar characteristics (yet with a slightly decreased performance
se1  for the Tpye,pg and Tpse, pg leaves) for allele count data or Pool-Seq data simulated without sequencing error (Fig-
se ure S4A). In agreement with previous observations, at the 1% MAF threshold, sequencing errors lead to strong
ses  downward bias at the lowest simulated coverages, i.e., when the percentage of false SNPs became non-negligible
ss«  (Figures S4B and S4C). Finally, whatever the chosen MAF threshold, improperly analyzing read counts as allele
ses  count data always lead to a substantial upward bias of the lengths of all the leaves (Figure 4D). Notice however,

ses  that this had no or limited impact on the estimation of internal branch lengths.

s7 3.1.6 Evaluation of graph construction

ses 10 provide insights into the reliability of graph construction, we evaluated the performance of the add.leaf
se0  function in positioning the admixed population P6 on the underlying (((P1,P2),P3),(P4,P5)) tree (Figure 1) for
s the different types of simulated datasets. Table S16 gives the proportion of correctly inferred admixture graphs
st (i.e., corresponding to the simulated scenario) with a Ag;c > 6 support with all other tested graphs over the
sz 250 analyzed datasets for each of the 42 investigated configurations. As the reference tree with rooted topology
s ((P1,P2),P3),(P4,P5)) consists of eight branches, P6 may be connected with either i) nine non-admixed edges

s (connection to either one of the eight branches or as an outgroup) or; ii) (g) — 1 =27 admixed edges from two-way

05:2.5%0

s5  admixture events. Except for the PS50¢ %/

dataset (the one with the highest percentage of false SNPs), the

s correct admixture graph was always retrieved with a fairly high support (Ag;c > 15).

s 3.2 Analysis of real Drosophila suzukii Pool-Seq data

s7s  We here sketched the main findings from the analyses using poolfstat of a subset of the Pool-Seq data previously
sz generated by Olazcuaga et al (2020) focusing on 14 population samples of the invasive species D. suzukii. For more

ss0  details, we encourage readers to consult the Supplementary Vignette V2.

st 3.2.1 Structuring of genetic diversity across the 14 populations

sz Overall, the estimated global Fgr across the 14 populations was 7.03% (95% CI; [6.90%; 7.32%]). Estimates of

sss  all the pairwise-population Fsr confirmed that populations tended to cluster according to their geographic area of
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Figure 4. Distribution of the estimated drift-scaled lengths for all the branches in Figure 1 simulated sce-
nario using admixture graph fitting (as implemented in the fit.graph function of poolfstat) for different
types of data with a 5% threshold on the overall SNP MAF. Each box plot summarize the distribution of
the 250 estimated lengths of each of the ten branches obtained from the analysis of either allele count dataset
(“Counts”) or one of the five different simulated Pool-Seq read count datasets (“PSAX”) with different mean cov-
erages (4 = 30;50;75; 100; and200) as generated from the genotyping data simulated under the scenario depicted
in Figure 1. Pool-Seq read count data were generated with no sequencing errors (¢ = 0) in A) and D) and with a
sequencing error rate of € = 1%o and € = 2.5%o in panel B) and C) respectively (Table S1). In D), the read count
data were analyzed as allele counts which corresponds to a bad practice. Note that the two branches coming from
the root are combined since the position of the root is not identifiable by the model (i.e., Tpgcspg = Tpgesr + TP9oR)-
Note that the box plots obtained from the analysis of count data are replicated in each panel for comparison pur-
poses. For each branch, a red dotted line indicates the underlying simulated value. For Pool-Seq data, the overall

MAF was estimated from read counts.
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ss«  origin (i.e., Asia, America and Hawaii; Figure 2A), with some geographically close populations showing low level
sss  of differentiation. For instance, in the American invasive area the US-Nca, US-Col and US-Nca populations all
s displayed pairwise Fgr significantly lower than 1%. Likewise, in the native area, the three populations CN-Bei,
sz CN-Nin and CN-Lia originating from North-Western China were all found very closely related (all pairwise Fgr
s being lower or very close to 1%). Conversely, the Hawaiian sample (US-Haw) was found the most highly differ-
ss9  entiated with all the other populations, all pairwise Fg7 including US-Haw ranging from 11.7% (with US-Sok) to
s 17.0% (with US-Col) suggesting strong drift in this population as confirmed by its lowest estimated heterozygosity

st (Supplementary Vignette V2).

s2 3.2.2 f3-based tests of admixture suggest pervasive admixture in the invaded area

ses  Out of the 14 sampled populations, two (CN-Lia and JP-Tok) from the Asian native area and four (US-Col, US-
se  Nca, US-Wat and US-Wis) from the continental American invasive areas showed at least one significantly negative
ss f3 at the 95% significance threshold (i.e., Z-score < —1.65). Table 6 summarizes for each of these 6 populations
se6  the number of significantly negative f3 together with the triplet with the lowest Z-score giving insights into the pair
ss7  of populations that branch the closest to the two original sources (assuming a two-way admixture event). Except
sos  for CN-Lia, all the detected signals were significant at a far more stringent threshold (e.g., Z-score < —2.33 at 99%

seo  significance threshold). The f; and f* statistics gave almost exactly the same results (Supplementary Vignette

s0 V2).
. .. nb. of signif. triplet with the lowest
Population | Origin tests (f3 Z <g—1.65) ’ f3 Z-score
CN-Lia Native 1 CN-Lia;CN-Shi,JP-Sap (Z=-1.66)
JP-Tok Native 11 JP-Tok;CN-Nin,JP-Sap (Z=-7.11)
US-Col Invasive (AM) 2 US-Col;BR-Pal,US-Wis (Z=-3.31)
US-Nca Invasive (AM) 6 US-Nca;JP-Sap,US-Col (Z=-3.89)
US-Wat Invasive (AM) 13 US-Wat;US-Sdi,US-Sok (Z=-23.6)
US-Wis Invasive (AM) 4 US-Wis;JP-Sap,US-Col (Z=-5.02)

Table 6. Results of the f;-based tests of admixture on populations from the D. suzukii invasive species.For
all the population displaying at least one significant signal of admixture at the 95% significance threshold (f3 Z < —1.65), the
table gives the number of significant tests (out of the C;* = 78 performed per population) and the triplet displaying the lowest
Z-score (i.e., most significant test).

601 In the native area, JP-Tok showed clear evidence of admixture with 11 significant tests that all involved JP-Sap
ez (from Northern Japan) as a source proxy. The three lowest f3 values were obtained with three Chinese populations

es  (CN-Nin, CN-Bei and CN-Shi in increasing order of f3). Assuming an admixture-graph like history, this suggests
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e« that the two populations branching the closest to the two sources of JP-Tok were JP-Sap and CN-Nin. The remain-
es ing Chinese population, CN-Lia showed some weak evidence for admixture with only one test barely significant
es at the 95% threshold for the triplet involving CN-Shi and JP-Sap as source proxies (Table 6).

607 Out of the seven invasive populations from continental America, the four populations US-Col, US-Wis, US-Nca
es and US-Wat showed strong evidence of admixture. Although it has up to now been considered as the closest to the
e first invading population of Continental America (based on historical records), the Western American US-Wat pop-
s0 ulation displayed the strongest signals with 11 (strongly) significant tests. Interestingly, the three signals supported
et1 by the lowest (and hence more significant) Z-score all involved pairs of source population proxies originating from
ez the continental American invasive area namely, in order of increasing Z-score (i.e., decreasing evidence), the (US-
ez Sdi,US-Sok); (BR-Pal,US-Sok) and (US-Col,US-Sok) pairs. As the underlying f; CI’s did not overlap with those
e1a of the other triplet configurations, these three pairs of populations may be considered as the closest (among the
e1s  sampled populations) to the original US-Wat source populations. It is worth noting that the Western American
es  US-Sok population was involved in nine of the 11 significant negative f; statistic with US-Wat as a target. The
e17 three others populations, US-Col, US-Wis and US-Nca only had a moderate number of significant tests (compared
e1s  to others). Such tests always involved at least one of the two other populations and overlapping f; CI's. This
e1o  suggests complex patterns of recurrent admixture event among US-Col, US-Wis and US-Nca, a feature consistent

e with their low level of differentiation and close geographic origins.

e1  3.2.3 Exploring invasion scenarios with admixture graph construction and fitting

e22 To provide further insights into the relationships of the surveyed populations and the probable scenarios of invasion
e2s  of D. suzukii in the American area, we relied on admixture graph construction. Our purpose was not to build a
e« comprehensive admixture graph for the 14 populations, which may be elusive given the close relationships of
es  some populations and the pervasiveness of recent and presumably recurrent admixture events among the different
es populations, but rather to identify key regional event that occurred at early time of the invasion history of the
e7  species. From our extensive analyses (Supplementary Vignette V2), we were in fine able to build and estimate
es the parameters of two admixture graphs represented in Figure 2B and C. The first admixture graph described the
e9 somewhat complex and so far non-investigated relationships among the populations of the native area (including
&0 the early invasive population established in Hawaii since 1980) with a very good fit since the Z-score of the
e residuals for the worst fitted f-statistics was 1.06 (Figure 2B). In agreement with previous findings (and geographic

ez proximity), the Hawaiian population was found more closely related to the Japanese population JP-Sap than to the
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es other Chinese populations but it experienced a strong differentiation from their common ancestor (named JP in
e« Figure 2B) with an estimated branch length of 0.255 drift units (241\,('). Yet, it was not possible from our data to
es definitively conclude that US-Haw originates from a Japanese population since we have no element to claim that
e the (ancestral) node population JP was located in Japan. To that end additional sampling of Japanese populations
ez would be required. The inferred graph also confirmed above f;-based test results of an admixed origins of JP-Tok
e between a population closely related to JP-Sap (the main contributor) and a second source likely of Chinese origin
e although the same caution as for JP are needed regarding the geographic origins of this internal node populations.
e0 Similarly, CN-Lia was found admixed with a contributing source of Chinese ancestry related to CN-Shi largely
e1  predominant (estimated contribution @¢ = 96.0%; 95% CI, [95.7;96.3]), and a second (minor) contributing source
ez Of presumably Japanese origin (related to JP-Sap). This may explain why the corresponding f3-based test was
ea  only barely significant (Table 6). Interestingly, the graph topology also allowed estimating the Chinese ancestry of
s« CN-Lia based on Fy-ratio resulting in consistent but larger 95% CI (¢ = 95.6; 95% CI, [94.4;96.8]) as expected
es from above simulation study. CN-Nin, the remaining population from the native area, could not be positioned with
es reasonable accuracy onto the admixture graph of Figure 2B, the resulting worst fitted f-statistics associated to the
e7  best fitting graph having a Z-score=3.43. However, both its genetic proximity with CN-Lia and the best fitting
es admixture graph resulting from its positioning onto the scaffold tree including US-Haw, JP-Sap, CN-Bei and CN-
eo  Shi suggested a small amount of Japanese introgression (see Supplementary Vignette V2 for more details).

650 The second admixture graph represented in Figure 2C allowed providing insights into the history of intro-
et duction of D. suzukii into the American continent. It related the three continental American population, US-Sok,
ez US-Wat and BR-Pal to a scaffold including the four unadmixed populations US-Haw, JP-Sap, CN-Shi and CN-Bei
ess  with a good fit (the worst fitted f-statistics had a Z-score=-1.83). The underlying scenario suggested that continen-
es« tal American populations originated from at least two major and successive admixture events. The first admixture
ess event lead to the internal node population named Am1 and occured in balanced proportions between two sources,
ess a Japanese one closely related to JP-Sap and a Hawaiian one relatively distantly related to US-Haw (according to
es7 the estimated branch lengths). The US-Sok population was the sampled continental American population the clos-
ess  est to Aml and may thus be assumed the most closely related to the first invading population (in agreement with
eso f3-based test results). Yet US-Sok remained separated by about 0.0816 drift units from Am1 which may explain
e0 Why no significantly negative f3 were found for triplets with US-Sok as a target.

661 The second major admixture events occurred between the internal node population named Am2 and a Chinese

ez population closely related to the common ancestor of CN-Bei and CN-Shi, with CN-Shi contributing slightly
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ess  more (58.5% against 41.5% for the other Aml related ancestor). Interestingly, the closest Am2 representatives
e« among the sampled populations were BR-Pal and US-Sdi (also in agreement with f3-based tests) suggesting a
ess more Southern geographical origin for Am2. We found that some additional ancestry from a ghost population or
es recurrent admixture events (e.g., related to Hawaiian populations) may also have contributed to US-Sdi, but this
67 lead to a poor fit (worst fitted f-statistics Z-score=-5.87 for the best fitting graph resulting from the positioning
es Oof US-Sdi onto the graph, see Supplementary Vignette V2). Therefore, US-Sdi is not represented in Figure 2C.
eo  Although geographically distant, the Brazilian population BR-Pal thus appeared as the best proxy for Am2 thereby
o0 suggesting a rapid spread of D. suzukii in South America from this population without any subsequent admixture
o1 events. Additional (and preferably ancient) sample from South-American populations would help refining this
ez scenario. Finally, according to the inferred graph, US-Wat was found to originate from a recent admixture between
e7a  a population very closely related to US-Sok (and thus Aml) and a population deriving from Am?2 with similar
o7« contributions of both.

675 In agreement with f3-based admixture tests that suggested complex admixture histories among the closely
ers  related US-Col, US-Wis and US-Nca populations, no satisfactory admixture graph could be found when trying to
e77  position each of these onto the Figure 2C graph. Nevertheless, their resulting best fitted graphs all suggested a
e7s  high contribution of the Am2 admixed source, a second contributing source being related to Japanese populations

e (Supplementary Vignette V2).

« 4 Discussion

« 4.1 A new version of poolfstat for f-statistics estimation and associated inference from

682 both Pool-Seq and allele count data

ea  The R package poolfstat was originally developed by Hivert e al (2018) to implement an unbiased estimator
e of Fgp for PoolSeq data and provide utilities to facilitate manipulation of such data. We here proposed a sub-
ess  stantially improved version that implements unbiased estimators of F5, F3 and F, parameters together with their
e scaled versions (i.e., pairwise Fsr, F} and D respectively). Although we primarily focused on the analysis of
e7 Pool-Seq data, we extended the package to analyze standard allele count (as obtained from individual genotyping
ess  Or sequencing data) and to implement unbiased estimators equivalent to those available in the AdmixTools suite

eo  (Patterson ef al, 2012) allowing us in turn to validate our estimation procedure. Recently, the admixr package was
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e developed to interface most of the AdmixTools programs with R for the estimation of f-statistics (only from allele
et count data), with the noticeable exception of the admixture graph fitting program gpGraph (Petr et al, 2019). We
ez implemented in poolfstat our own functions for fitting, building, visualizing and quality assessment of admix-
ees ture graphs based on the estimated f-statistics. The underlying procedures shared strong similarities with those
e« implemented in qpGraph (Patterson et al, 2012) resulting on the same fitting on some examples (e.g., Supple-
es mentary Vignette V1) or also MixMapper (Lipson et al, 2013, 2014) programs. As recognized by the developers
es themselves, the latter program specifically developed for admixture inference from allele count data was written
67 in C++ and MATLAB making it ‘cumbersome to use’ for users, as ourselves, with no MATLAB license. More-
es over, to facilitate local exploration of the admixture graphs space, we also implemented in poolfstat efficient
eo  semi-automated building utilities (add.leaf and graph.builder functions). It should be noticed that although
700 it does not include functions for the estimation of f-statistics, the admixturegraph R package (Leppild et al,
700 2017) also provides several alternative valuable utilities for the fitting (based on a slightly different approach), the
72 manipulation, and the visualization of admixture graphs together with utilities for the plotting of the statistics with
703 their confidence intervals or the symbolic derivation f-statistics (as poolfstat). Overall, our effort of developing
74 with poolfstat a self-contained, efficient and user-friendly R package capable of performing the entire workflow
70s for f-statistics based demographic inference from both standard allele count and Pool-Seq read count data will

76 hopefully make such a powerful framework accessible to a wider range of researchers and biological models.

w 4.2 A unified definition of the F' parameters in terms of probability of gene identities

708 To derive our unbiased estimators, we proposed to recapitulate and unify the different definitions of the F and D
709 parameters in terms of probability of gene identity within population (Q)) or between pairs of populations (Q) as
710 summarized in equation 1. This formulation offers a complementary perspective to the original description of these
711 parameters in terms of covariance of allele frequencies (Patterson et al, 2012). In practice, a little algebra shows
712 that the unbiased estimators derived from these two alternative formulations are strictly equivalent (i.e., when com-
713 paring eq. 6 for allele count data with Appendix A in Patterson et a/, 2012). Formally, the Q; and Q, probabilities
714 can be viewed as expected identity (in state) of genes across independent replicates of the (stochastic) evolutionary
715 process (Rousset, 2007) that may themselves be expressed as a function of other demo-genetic population parame-
76 ters. Hence, the obtained expressions for F», F3 and F4 in terms of Q| and O, probabilities can be directly related
717 to those by Peter (2016) in terms of coalescent times which allowed him to provide an in-depth exploration of their

7e  theoretical properties under a wide range of demographic models other than admixture graphs (see e.g., Figure 7 in
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ne  Peter, 2016). More precisely, under an infinite-site mutation model with constant per-generation mutation rate u,

7220 the probability that two genes are identical in state is Q = Y. C;(1—u)* = 1 =2uE [T]+0(u?), where C, is the prob-
=1

721 ability that the two genes coalesced ¢ generations in the past and E [T] = %1 tC; is the expected coalescence time
722 of two genes (see Slatkin, 1991; Rousset, 2007, pp.58-59). Using Q(l') =1 t—_Z/AE [T1,] and Q(lz) =1-2uE[Ty] as
723 the IIS probabilities within populations 1 and 2 respectively and Q, = 1 —2uE [T,] as the IIS probability between
722 1 and 2 allows recovering equations 16 (after fixing a typo into it), 20c and 24 by Peter (2016) for F,, F3 and
72s 4 respectively. Likewise, the estimators derived from (unbiased) estimators of Q; and O, are equivalent to those
726 expressed in terms of average pairwise differences between and within populations which are natural estimators
727 for 2uE [T] terms as proposed by Peter (2016, eq. 17) for F, estimator based on allele count data (e.g., noting that
s g = 1-— é}, fip =1 - QAf and 1, = 1 — Q2 following his notations). For Pool-Seq data, replacing the latter
729 estimators of nucleotide diversities by the unbiased estimators described in Ferretti ef al (2013, eqs. 3 and 10)
720 would also result in the same estimator for F, (and other parameters) as those defined in our equation 6.

731 In practice, estimators are obtained by averaging over (a high) number of SNPs which amounts assuming that
722 each represent an independent outcome of a common demographic processes that shaped the genome-wide patterns
73 of genetic diversity. This generally allows to provide accurate estimations and LD between markers (i.e., violation
74 of the marker independence assumption) can be accounted for with block-jackknife estimation of standard errors
75 (Patterson et al, 2012). Importantly, as originally noticed by Patterson et al (2012), expressions of F,, F3 and Fy
76 in terms of coalescent times (Peter, 2016) show explicitly that they both depend on the demography (via E [T])
77 and the marker mutation rate (u). In the scaled versions of F, and F3 (Fsr and F ; respectively), the parameter
ns  u cancels out making them presumably more comparable across different datasets. It should however be noticed,
79 that for demographic inference purposes, scaling of the f-statistics is not needed. Indeed, the three-population test
70 of admixture is informed by the sign of f; which is not affected by the denominator of F7¥. Similarly, the four-
741 population test evaluates departure of f; (i.e., the numerator of D) from a null value expected under the hypothesis
22 of treeness. Patterson et al (2012) also showed both analytically and using simulations that 3 and F4 estimates
723 remained mostly robust to various realistic SNP ascertainment scheme. It is finally worth stressing that admixture

74 graph inference only requires additivity of F, (Patterson et al, 2012), a feature not fulfilled by Fgr (or F ; and D).

« 4.3 Estimation of f-statistics and inference from Pool-Seq data

76 Our simulation study showed that accurate estimates of F and D parameters could be obtained from Pool-Seq data

77 from the unbiased estimators we developed, thereby extending our findings for the Pool-Seq Fs7 estimator (Hivert
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ns et al, 2018). With no sequencing error, this remained true even at a read coverage as low as 30X which was here
79 lower than our simulated haploid sample size of 50. Increasing the coverage only provided marginal gain. When
750 introducing sequencing errors, the performance of the estimators tended to decrease for the lowest investigated read
751 coverages (up to 50X) and MAF filtering threshold. This was however essentially due to the presence of spurious
72 SNPs that were not completely filtered out when considering too loose criteria. As a result, simply increasing the
73 threshold on the overall MAF (computed from read counts over all the pool samples) to 5% allowed to remove all
74 the spurious SNPs and recover accurate estimates of the parameters at the lowest read coverages. In agreement
75 with original observations made for allele count data (Patterson ef al, 2012), all the f—statistics based analyses (i.e.,
76 three-population test of admixture, four-population test of treeness, F4-ratio estimation of admixture proportions or
757 admixture graph fitting) remained remarkably robust to a MAF-based ascertainment process. From our simulation
78 study, discarding lowly polymorphic SNPs was only found to increase the bias of the drift-scaled length estimates
79 of internal branch in admixture graph. In practice, cost-effective designs consisting of sequencing pools of 30 to
760 50 individuals at a 50-100X coverage and applying MAF threshold of 5% to filter the called SNPs are expected to
761 provide good performance for all the different f—statistics based inference methods we presented here.

762 For Pool-Seq data, all the above conclusions were nevertheless only valid for the analyses based on the unbiased
763 estimator that accounts for the additional level of variation introduced by the sampling of the DNA of pooled
764 individuals (non identifiable) at the sequencing step. We found that improperly analyzing Pool-Seq read counts as
765 standard allele counts had high detrimental consequence on the estimation of all the F' parameters that involved
766 ()1 probabilities (within population probability of identity) in their definition, i.e., F», Fs7 (as previously observed
77 by Hivert et al, 2018, see also Figure S5), F3 and F} leading to a complete loss of power of the associated three-
768 population test in our simulation. When processing admixture graph fitting, this also resulted in a strong upward
760 bias in the estimation of branch lengths, including the external ones that were accurately estimated when relying on
770 unbiased estimators. Loosely speaking, not accounting for the extra-variance introduced by the sampling of reads
771 has the same effect of adding a (substantial) amount of extra drift explaining the two aforementioned observations.
722 Although not investigated here (and of little interest since we should definitely rely on unbiased estimators), the
773 amount of extra variance may be inversely proportional to the pool haploid sample size (i.e., bias may decrease
772 with increasing pool sample size). Conversely, analyzing Pool-Seq read counts as standard allele counts did not
775 affect the performance of the f;- (and D) based test of treeness or the estimation of admixture proportion from Fy-
776 ratio. This was expected from the properties of the underlying parameters that only depends on the Q, probabilities

777 across the different pairs of population involved in the quadruplet of interest (eq. 3) resulting in the same estimators
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778 (see eqns. 4 and 5) for both allele count and Pool-Seq data. More generally, analyzing Pool-Seq read count data
779 with popular programs that were developed for standard allele count data such as those from the AdmixTools
70 (Patterson et al, 2012) or TreeMix (Pickrell & Pritchard, 2012) suites should definitely be avoided and, if not,

71 results should be carefully interpreted.

» 4.4 Insights into the history of the invasive species D. suzukii from Pool-Seq data analysis

7s  To illustrate both the power and limitations of f—statistics based methods for historical and demographic inference
7« as implemented in poolfstat, we analyzed Pool-Seq data available for 14 populations of the invasive species
785 D. suzukii (Olazcuaga et al, 2020). These population samples were representative of both the Asian native area
76 and the recently invaded American area. Most of them consisted of individuals originating from the same sites as
77 those genotyped in Fraimout et al (2017) at microsatellite markers and analyzed under an ABC-RF framework.
76 The results remained consistent between the two studies, both of them pointing to complex invasion pathways
7s  including multiple introductions leading to admixed origins of the continental American populations. The main
790 source contributions were from Hawaii, where D. suzukii was described about 30 years earlier and the native
791 area (China and Japan). However, some inferred scenarios appeared somewhat conflicting. First, for the Hawaiian
72 population that played a key role in American invasion route, both poolfstat and Fraimout et al (2017) suggested
703 a Japanese origin. However, we here found that the sample the closest to the source (internal node population JP in
704 Figure 2) was JP-Sap (sampled in Sapporo) while Fraimout et al (2017) rather concluded it was JP-Tok (sampled
75 in Tokyo) which was not found to be directly contributing to US-Haw in poolfstat analyses and was even found
76 to be admixed by native populations from Japan and China. In the ABC-RF treatments by Fraimout et al (2017),
707 all populations from the native area were assumed to be non-admixed and no “ghost” (i.e., unsampled) populations
7¢  were included in the model whereas such populations are present in admixture graphs through internal nodes.
759 Moreover, the samples from Hawaii and Tokyo both differed in their exact location and collection date (2013 and
a0 2016 for Hawaii, 2014 and 2016 for Tokyo) between the two studies, which may further explain the observed
so1 discrepancies and more generally promotes the sequencing of additional samples in this area to better resolve the
sz origin of the Hawaiian population(s).

803 Interestingly, poolfstat results challenged the initial view about the pioneering origin of the Californian pop-
g4 ulation US-Wat in the invasion of continental America (as suggested by historical records) suggesting it rather
a5 originates from an admixture between two already established but unsampled continental American populations,

as one presumably Northern (related to Am1 and here represented by US-Sok) and the other presumably more South-
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so7 ern (related to Am2 and here represented by BR-Pal from Brazil and US-Sdi from South-California). This dis-
a8 crepancy between Fraimout et al (2017) and poolfstat results points to three key issues. First, a too strong
a0 reliance on the reported date of first observation of the species in the invasive area when formalizing the scenario
a0 to be compared in ABC modeling may actually mislead inference and this especially since D. suzukii was first
a1 observed at very close dates in the US-Wat, US-Sdi and US-Sok sampled locations (i.e., 2008, 2009 and 2009,
sz respectively). As a matter of fact, Fraimout e al (2017) only considered scenarios in which US-Wat was the first
s1s  population introduced in continental America. Second, in ABC, scenarios are defined by hand justifying the use
a1a  of dates of first observation to minimize their number (Estoup & Guillemaud, 2010). The functions implemented
a5 in poolfstat circumvent this constraint by facilitating a quick and automatic exploration of the admixture graph
s1s  space to identify key historical events relating the populations of interest. Third, our finding reinforces the concern
a7 that the formalization of invasion scenarios including the possibility of unsampled populations is crucial. This
sie  possibility is by construction included in admixture graph construction but is also possible in ABC modeling (e.g.
sto  Guillemaud et al, 2010). Similarly, Fraimout e al (2017) argued for an admixed origin of the Brazilian BR-Pal
s20  population (first observed in 2013) between undefined North-Western and North-Eastern American sources, while
e21  we here found that this population was the best proxy for the ancestral “ghost” American population Am?2 (Fig-
g2 ure 2C) which may be viewed as one of the main contributor of all the sampled North-American populations (but
ea  US-Sok). Again, this results underline advantages of not relying on historical dates as for poolfstat analyses,
s24 and promotes the sequencing of additional samples in South and North-Western America areas to more thoroughly
a5 decipher the invasion routes followed by continental American populations.

826 If Pool-Seq data analyzed with poolfstat allowed to refine historical and demographic scenarios in both the
s27 native and invasive areas, the D. suzukii Pool-Seq data analysis also illustrated some inherent constraints imposed
a8 to the modeled demographic history when fitting admixture graph. In particular, more complex histories involving
s20 recurrent admixture events turned out to be difficult or even impossible to fit unless a number of source key samples
a0 are included, as observed here for the North-Eastern American populations. In real-life applications involving a
sa1 large number of invasive populations characterized by numerous and recurrent introduction events, summarizing
sz precisely and with a good fit the history of all surveyed populations with a comprehensive admixture graph may
ss  remain elusive. However, as previously underlined (Patterson et al, 2012; Lipson & Reich, 2017; Lipson, 2020),
s in addition to providing robust formal tests of admixture or treeness, a decisive advantage of f—based inference
ss  methods is to allow straightforward assessment of the fitted admixture graph by carefully inspecting and reporting

s Z-score of the residuals of the fitted statistics, an option not available in other related methods such as TreeMix
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s7  (Pickrell & Pritchard, 2012). Beyond modeling the history of populations as admixture graphs (via formal tests of
a8 admixture of treeness or graph fitting), Peter (2016) provided valuable theoretical insights to interpret the estimated
a9 f—statistics under alternative demographic models such as island, stepping-stone or serial founder models. This
a0 suggests in turn that these statistics should be informative to estimate the parameters of demographic scenarios

a1 more complex than admixture graphs (e.g., under an ABC framework as in Collin et al, 2021).
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