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Abstract

Allele substitution effects at quantitative trait loci (QTL) are part of the basis of quantitative genetics theory and applications such as associ-
ation analysis and genomic prediction. In the presence of nonadditive functional gene action, substitution effects are not constant across
populations. We develop an original approach to model the difference in substitution effects across populations as a first order Taylor se-
ries expansion from a “focal” population. This expansion involves the difference in allele frequencies and second-order statistical effects
(additive by additive and dominance). The change in allele frequencies is a function of relationships (or genetic distances) across popula-
tions. As a result, it is possible to estimate the correlation of substitution effects across two populations using three elements: magnitudes
of additive, dominance, and additive by additive variances; relationships (Nei’s minimum distances or Fst indexes); and assumed hetero-
zygosities. Similarly, the theory applies as well to distinct generations in a population, in which case the distance across generations is a
function of increase of inbreeding. Simulation results confirmed our derivations. Slight biases were observed, depending on the nonaddi-
tive mechanism and the reference allele. Our derivations are useful to understand and forecast the possibility of prediction across popula-
tions and the similarity of GWAS effects.

Keywords: QTL; substitution effects; epistasis; dominance; genetic distance

Introduction
One of the aims of quantitative genetics is to provide methods for
prediction, for instance genomic prediction (prediction of live-
stock breeding values or of crop performance) or polygenic risk
score (risk of a disease in humans). These predictions would ide-
ally work across a range of populations (different breeds and fu-
ture generations). Ideally, the prediction goes through a process
of identifying causal genes, estimating their effects in some pop-
ulation, and transposing these effects to newly genotyped indi-
viduals (Lande and Thompson 1990; Meuwissen et al. 2001).
These “gene effects” are substitution effects—the regression of
the own phenotype (for polygenic risk scores) or expected prog-
eny phenotypes (for estimated breeding values) on gene content
at the locus. Being able to use substitution effects at causal genes
across populations and generations is a goal of genomic predic-
tion, QTL detection, and also of causal mutation finding (Grisart
et al. 2002).

There are several obstacles for these aims. Finding and vali-
dating causal genes and understanding their functional mecha-
nism is extremely difficult (Grobet et al. 1997; Bonifati et al. 2003;
Rupp et al. 2015). In practice, predictions are done using SNP

markers using statistical genetics techniques. In livestock, use of
markers results in very good predictions within populations, but
mediocre (at best) predictions across populations, even with very
sophisticated techniques (Hayes et al. 2009; Karoui et al. 2012;
Porto-Neto et al. 2015; MacLeod et al. 2016). Indeed, livestock and
human genetics empirical results show decreasing predictive
ability with increasing genetic distance across distinct popula-
tions or generations (Liu et al. 2016; Martin et al. 2019). In humans,
there is a strong correlation between GWAS effect estimates
across human populations, with typical values around 0.82
(Marigorta and Navarro 2013; Shi et al. 2021). The lack of perfect
linkage disequilibrium (LD) across markers and genes has been
claimed to be a reason for this decrease in accuracy. Adding extra
information (more dense maps and biological prior information)
should result in a better choice of markers close to causal genes,
and therefore in a boost in predictive abilities across populations
(Roos et al. 2009; MacLeod et al. 2016). However, in practice, the in-
crease in predictive ability across populations is small at best
(MacLeod et al. 2016; Moghaddar et al. 2019). This is against results
from simulations (Roos et al. 2009; MacLeod et al. 2016)—but a
problem in simulations is that typically gene effects are assumed
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to be biologically additive and therefore constant across popula-
tions.

We argue that, although imperfect LD is a likely cause for not
being able to predict across populations, it is not the only one. In
fact, substitution (statistical) additive gene action is not homoge-
neous across populations, even for exactly the same causal mu-
tation. Examples in livestock genetics include myostatin gene
(Aiello et al. 2018) or DGAT1 (Gautier et al. 2007). For instance, in
the latter, the “K” allele had rather different substitution effects
across breeds: �611, �142, and �351 kg of milk for the respective
breeds Montbéliarde, Normande, and Holstein, for a trait with a
genetic standard deviation of �600 kg. Although part of these dif-
ferences may be due to genotype-by-environment interactions, it
is also plausible that this is due to epistasis or dominance; for in-
stance this is the case in DGAT1 (Streit et al. 2011). For instance,
in the 5-loci epistatic network in Carlborg et al. (2006) some
substitution effects at genes switch signs depending on
genetic background. In Drosophila, estimated substitution effects
of P-element insertions switched signs depending on the genetic
background (Magwire et al. 2010; Mackay 2015).

There is indeed widespread evidence of biological epistasis
(Mackay 2014). Whereas biological epistasis does not impede (on
the contrary) large additive variation (Hill et al. 2008; Mackay
2014; Mäki-Tanila and Hill 2014), it does imply that substitution
effects do vary across genetic backgrounds. Thus, in the presence
of functional dominance and epistasis, there is no stability of
substitution effects across different genetic backgrounds. Even if
in all of these populations, additive variation accounts for most
genetic variation, and additive substitution effects are sizable
(Hill et al. 2008), substitution effects may differ across popula-
tions.

Recent simulations (Dai et al. 2020; Duenk et al. 2020) showed
that the difference in substitution effects across populations may
be quite large under nonadditive biological gene action and
increases with divergence of populations. It is relatively easy to
derive algebraic expressions for substitution effects a assuming a
specific hypothesis of biological gene action. For instance, assum-
ing biological additive and dominance effects only (Falconer and
Mackay 1996) results in a ¼ aþ q� pð Þd, whereas assuming addi-
tive, dominance and additive by additive biological gene effects
results, assuming linkage equilibrium (LE), in a1 ¼ a1 þ
q1 � p1ð Þd1 þ p2 � q2ð Þ aa½ �12 (Fuerst et al. 1997). Both of the

approaches (simulation or analytical) are limited because the hy-
potheses of specific biological gene actions (e.g., 2-loci interaction
but not 3-loci interaction) are too restrictive. Classically, these
hypotheses are bypassed in quantitative genetics by working on
statistical effects (Falconer and Mackay 1996; Lynch and Walsh
1998; Mäki-Tanila and Hill 2014).

The key parameter to describe the resemblance of statistical
effects across populations is the correlation of substitution
effects across populations. Under certain assumptions (indepen-
dence of allele frequencies and substitution effects, appropriate
coding; Wientjes et al. 2017), this correlation can be estimated
from SNP markers and data of two populations (Karoui et al. 2012;
Wientjes et al. 2017), and can easily be accommodated into geno-
mic prediction models (Karoui et al. 2012; Xiang et al. 2017). In hu-
man studies, the correlation is estimated through the meta-
analysis of GWAS statistics (Marigorta and Navarro 2013; Shi
et al. 2021). However, in addition to empirical results, some theo-
ries to describe the resemblance of substitution effects across dif-
ferent populations would be helpful to (1) better understand and
quantify the change in true substitution effects (i.e., if true genes
instead of markers were being used), (2) give upper bounds for

genomic prediction across populations/generations, and (3) allow
a priori planning of genomic predictions i.e., to include or not dif-
ferent subpopulations.

This study aims to develop a theory to understand and predict,
under a neutral scenario, the extent of change of substitution
effects across space (breeds and lines) and across time (genera-
tions), without invoking or assuming specific modes of biological
gene action. As a result, we obtain explicit estimators that are
functions of additive, dominance, and additive by additive var-
iances, genetic distances across populations, and distributions of
allele frequencies. We check and illustrate our theory using pub-
lished results and simulations considering dominance and epis-
tasis (additive by additive and complementary) from 5-loci
interactions. The main factors affecting the correlation of substi-
tution effects across populations are their genetic distance and
the extent of additive-by-additive variation, which is rarely large.

Theory
Analytical results
General theory
Here, we model difference of substitution effects across two pop-
ulations as Taylor expansions around one of them, the “focal”
population. Using Kojima’s method (Kojima 1959, 1961), we put
additive substitution effects as a function of differences in allele
frequencies across populations, “focal” additive substitution
effects, and second-order (dominance, additive by additive epis-
tasis) statistical effects. From here, we show that the correlation
of substitution effects across populations is (approximately) a
function of their differentiation (or genetic distance), the additive,
dominant and additive by additive genetic variances, the average
heterozygosities, and average squared heterozygosities. All these
parameters can be estimated in real populations. In the follow-
ing, we try to stick to Mäki-Tanila and Hill (2014) notation. Many
details are given as Supplementary File S1. Main notation is pre-
sented in Table 1.

Note that our procedure is general—it does not invoke any
particular mechanism for epistasis or dominance, nor knowledge
of individual QTL effects and locations. We assume that the pop-
ulation mean is a (possibly complex) function of QTL allele fre-
quencies p and QTL functional or biological effects. The latter,
albeit unknown, are assumed to be constant across popula-
tions—we, therefore, do not consider genotype by environment
interactions.

Consider the correlation r ab
i ; a

b0
i

� �
of substitution effects ab and

ab 0 across respective populations (breeds, heterotic groups, lines,
or generations) b and b0. For simplicity, the allele to which a refers
is random—it can be either the wild or the mutant allele. In this
manner, the average value of a is 0, even in presence of deleteri-
ous mutations. It is known that, in presence of dominant and epi-
static biological interactions, the value of a depends on the allele
frequencies and biological effects; for instance, a1 ¼ a1 þ
q1 � p1ð Þd1 þ p2 � q2ð Þ aa½ �12 for 2-loci epistasis (Fuerst et al. 1997),

for p1 ¼ 1� q1 and p2 ¼ 1� q2 frequencies at loci 1 and 2, respec-
tively. Inspired by this, we want to write the correlation r ab

i ; a
b0
i

� �
for a locus i as a function of vectors of respective allele frequen-
cies, pb and pb0 , but in a general manner, without defining a par-
ticular functional or biological gene action. We use a first order
Taylor series expansion to approximate additive substitution
effects in a population b0, as a function of effects in another
“focal” population b and their distance. By doing this, it can be
shown that the difference of substitution effects between two
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populations is (approximately) a function of the genetic distance
of the two populations, and the magnitude of dominance and
second order epistatic variances in the focal population b.

To derive additive substitution effects a as function of allelic
frequencies p, we use Kojima’s definition of statistical effects as
first, second. . . derivatives of the mean of the population (l) as a
function of p. We do not invoke any explicit function—we just
presume that there is one, in other words, change in allele fre-
quencies of the population implies change in the total average
genotypic value. Using Kojima’s method, the additive substitu-
tion effect at the i-th locus is the first derivative (Kojima 1959,

1961):

ai ¼
1
2
@l
@pi

Higher order statistical effects implying locus i (i.e., dominance
deviations and epistatic interactions) can be represented by
higher order partial derivatives of l or equivalently as derivatives
of ai. The dominance deviation at the i-th locus (that we denote
as d� to distinguish from the biological or functional effect d,
Falconer and Mackay 1996) is:

d�i ¼ �
1
4
@2l

@p2
i

¼ � 1
2
@ai

@pi

The negative sign comes because the dominance deviation is
usually understood as a feature of heterozygosity, in other words,
it is of opposite sign than the increase of homozygosity in @p2

i .
Last, the epistatic pairwise deviation of locus i with j is

ðaaÞi j ¼
1
4
@2l
@pi@pj

¼ 1
2
@ai

@pj

This is positive because it is the effect of increasing both
pi and pj. Note that interaction of order k implies k-th order deriv-
ative with scaling factor 1=2k.

Kojima’s method shows, therefore, that higher order effects of
one locus are derivatives of lower order effects. With these ele-
ments, we can make a Taylor order expansion of ai around fre-
quencies in the “focal” population, pb, so that pb0 ¼ pb þ �, such

that from values of a in b and changes in allele frequencies
� ¼ pb0 � pb we create a function ab0

i � f ab
i ; �

� �
. In the

Supplementary File S1 (Section 1.1), we show that the Taylor lin-
ear approximation of the substitution effects of population b0: ab0

i ,
from effects from populations b; ab

i , d�bi , ðaaÞbi is:

ab0
i � ab

i þ 2�ið�d�bi Þ þ 2�0ðaaÞbi (1)

where we use differences in allele frequencies �; d�bi is the statisti-
cal dominance deviation at the locus i and ðaaÞbi is a vector con-
taining epistatic substitution effects of locus i with the rest of
loci. By convention we assign aað Þbii ¼ 0.

From Equation (1), the covariance across two populations b
and b0 of the two substitution effects ab

i and ab0
i of the locus i is:

Covðab
i ; a

b0
i Þ � Cov

�
ab

i ; a
b
i þ 2�ið�d�i Þ þ 2�0ðaaÞbi

�
¼ Varðab

i Þ (2)

The equality holds because terms Cov ab
i ; 2�i �d�bi

� �� �
and

Cov
�
ab

i ; 2�
0ðaaÞbi

�
are null, given that the different statistical

effects (ab
i , d�bi and ðaaÞbi ) are mutually orthogonal by

construction.

Thus r ab
i ; a

b0
i

� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var ab

ið Þ
Var ab

ið ÞVar ab0
ið Þ

r
, and now we need the variance

of ab0
i as a function of effects in population b, this is (see the

Supplementary File S1, Section 1.2 for details):

Varðab0
i Þ � Var

�
ab

i þ 2�ið�d�bi Þ

þ 2�0ðaaÞbi
�
¼ Varðab

i Þ þ 4Varð�iÞ
�

Varðd�bi Þ þ E2ðd�bi Þ
�

þ4tr
�

Varð�0ÞVarððaaÞbi Þ
�

This expression is unsymmetric and seems to imply that by
construction Var ab0

i

� �
> Var ab

i

� �
; the reason for this is that for

the “focal” population b the variance (or at least its estimators) is
better known than for the “approximated” population b0. In statis-
tical terms, population b has Var

�
ab

i jr2
A; r

2
D; r

2
AA; ld;b;Hb;H2

b

�
all of

them known for population b, and population b0 has
Var

�
ab0

i jr2
A; r

2
D; r

2
AA; ld;b;Hb;H2

b

�
where variances and

Table 1 Notation

ab
i ; ab

0

i Substitution effect of locus i in
population b, in population b

0
r2

a;b Variance of substitution effects
in population b

d�bi Dominance deviation at locus i
in population b

r2
d;b;ld;b Variance and mean of domi-

nance deviations in population
b

aað Þbij Additive by additive effect of loci
i; j at population b

r2
aa;bð Þ Variance of additive-by-additive

effects in population b
ðaaÞbi Vector of additive-by-additive effects of locus i with all other loci in population b
pb

i ; pb0
i Allele frequency of locus i in population b, in population b

0

pb;pb0 Vectors of allele frequencies in population b, in population b
0

Hb Average heterozygosity at population b, Hb ¼ E 2pb
i 1� pb

i

� �� �
H2

b Average squared heterozygosity at population b, H2
b ¼ E 2pb

i 1� pb
i

� �� �2
� �

HHb Average product of heterozygosities at population b, HHb ¼ Ei>j 4pb
i 1� pb

i

� �
pb

j 1� pb
j

� �� �

�i Difference in allele frequencies
at locus i, �i ¼ pb0

i � pb
i

r2
� Variance of the difference in al-

lele frequencies across all loci
Db;b0 Nei’s minimum genetic distance
r2

A; r
2
D; r

2
AA Additive, Dominance and Additive by Additive variances (in population b)

A. Legarra et al. | 3

D
ow

nloaded from
 https://academ

ic.oup.com
/genetics/article/219/4/iyab138/6358725 by IN

R
A AVIG

N
O

N
 user on 20 April 2022

https://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyab138#supplementary-data
https://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyab138#supplementary-data


heterozygosities are still from population b (and not from b0 itself).
So, [3] is Varðab

i jinformation on bÞ versus Varðab0
i jinformation on bÞ.

The higher variance of ab
i than of ab0

i is due to this extra incertitude.
An alternative derivation in the Supplementary File S1

(Section 1.4) shows that, if the “focal” population is a third one (f)
a set of expressions analogous to Equations (2) and (3) is:

Varðab0
i Þ � Varðaf

i Þ þ 4Varð�ðb
0 Þ

i d�fi Þ þ 4Varð�ðb0 Þ
0
ðaaÞfi Þ

Varðab
i Þ � Varðaf

i Þ þ 4Varð�ðbÞi d�fi Þ þ 4Varð�ðbÞ
0
ðaaÞfi Þ

Covðab0
i ; a

b
i Þ � Varðaf

i Þ þ Covð�ðb
0 Þ

i ; �
ðbÞ
i Þ
�

Varðd�bi Þ þ E2ðd�bi Þ
�

þCovð�ðb
0 Þ0 ðaaÞfi ; �

ðbÞ0 ðaaÞfi Þ

Where � b0ð Þ
i ¼ pb0

i � pf
i and � bð Þ

i ¼ pb
i � pf

i : From these expressions,
we obtain Equations (2) and (3) as a particular case if the focal
population is b.

In the expression (3), Var �0ð Þ and Var
�
ðaaÞbi

�
are matrices. The

first one describes the variability of differences in allele frequen-
cies:

Varð�0Þ ¼

Varð�1Þ Covð�1; �2Þ Covð�1; �nÞ
Covð�2; �1Þ Varð�2Þ Covð�2; �nÞ

. . .
Covð�n; �1Þ Varð�nÞ

0
BB@

1
CCA

A locus that may diverge a lot (for instance because it is highly
polymorphic) has high Var �ð Þ; two loci in strong linkage will show
nonzero Cov �1; �2ð Þ. The second matrix contains (co)variances of
the epistatic effects across all pairs marker i—other markers:

Var
�
ðaaÞbi

�
¼

Var
�
ðaaÞb1

�
Cov

�
ðaaÞb1; ðaaÞb2

�
Cov

�
ðaaÞb1; ðaaÞbn

�
Cov

�
ðaaÞb2; ðaaÞb1

�
Var

�
ðaaÞb2

�
Cov

�
ðaaÞb2; ðaaÞbn

�
. . .

Cov
�
ðaaÞbn; ðaaÞb1

�
Var

�
ðaaÞbn

�

0
BBBBB@

1
CCCCCA

For instance, Var aað Þb1
� �

contains the variance of the epi-
static effect of marker i with marker 1, and so on. We assume
Var aað Þbi

� �
¼ I r2

aa;bð Þ, i.e., epistatic terms ðaaÞbi can be either
positive or negative, with a variance r2

aa;bð Þ and are a priori
uncorrelated to each other. Assuming null off-diagonals for
Var aað Þbi

� �
results that, in the previous product

tr Var �ÞVar aað Þbi
� �� ��

, off-diagonal elements of Var �0Þ
�

disap-
pear from the result (even if they are not null). Thus, assuming
that all diagonal elements of Var �0Þ

�
have the same common

variance r2
� , this results in 4tr Varð�ÞVar aað Þbi

� �
Þ ¼ 4nr2

� r
2
aa;bð Þ

�
.

Note that assuming that all diagonal elements of Var �ð Þ are
equal is an approximation—for instance more polymorphic
loci vary more.

The expression Var �id�bi

� �
¼ Var �ið Þ Var d�bi

� �
þ E2 d�bi

� �� �
is de-

tailed in the Supplementary File S1 (Section 1.2), and it shows
that both the variability of dominance deviations
Var d�bi

� �
¼ r2

d;b and its mean E d�bi

� �
¼ ld;b which, if not zero, can

be understood as the basis of inbreeding depression, enter into
the expression. Also, we assume � (change in allele frequencies,
but not the allele frequencies themselves) and the different non-
additive effects d�bi and ðaaÞbi to be independent (uncorrelated).
This makes sense as loci may be selected for additive effects but
not for nonadditive effects.

Our next goal is to relate these results in Equation (3) to quan-
tities that are measured empirically. In particular, we need the

variances of the different genetic effects and the variance of
changes in allele frequencies. We address these two terms in
turn.

We factorize the variance of statistical additive, dominant and
additive by additive effects as follows (Mäki-Tanila and Hill 2014;
Vitezica et al. 2017):

Varðab
i Þ ¼ r2

a;b ¼
r2

A

nHb

Varðd�bi Þ þ E2ðd�bi Þ ¼ r2
d;b þ l2

d;b ¼
r2

D

nH2
b

(the latter is shown in the Supplementary File S1, Section 1.5)
and

VarððaaÞbi;j;j>iÞ ¼ r2
ðaa;bÞ ¼

r2
AA

nðn� 1ÞHbHb
� 2

r2
AA

n2Hb Hb

for n the number of QTL loci and using functions of heterozygosi-
ties (more details in the Supplementary File S1, Section 1.6):

Hb ¼ E
�

2pb
i ð1� pb

i Þ
�

H2
b ¼ E

�
4pb

i ð1� pb
i Þpb

i ð1� pb
i Þ
�

HHb ¼ Ei>j

�
2pb

i ð1� pb
i Þ2pb

j ð1� pb
j Þ
�
� 1

2
Hb Hb

Here, we have assumed independence of QTL allele frequen-
cies and QTL effects. All variances and effects, as well as heter-
ozygosities Hb, refer to the focal population b with allele
frequencies pb and effects ab. Note that we assume HWE and
LE within both b and b0. Of course, we do not know allele
frequencies or even numbers of true causal genes, but the first
can be prudently guessed and the latter cancel out in the fol-
lowing.

Consider the scalar r2
� ; the variance of differences of allele fre-

quency. In fact, r2
� ¼ Var pb0 � pb

� �
¼ E pb0 � pb

� �2
� �

� E pb0 � pb
� �2 ¼

E pb0 � pb
� �2
� �

because E pb0 � pb
� �

¼ 0 when averaged across loci.

Therefore, r2
� ¼ E pb0 � pb

� �2
� �

which corresponds to Nei’s
“minimum genetic distance” (Nei 1987; Caballero and Toro 2002),
and, accordingly, will be called Db;b0 ¼ r2

� . The value of Db;b0 can be

estimated from marker data as D̂b;b0 ¼ 1
n

P
pb0

i � pb
i

� �2
, although it

is sensitive to the spectra of polymorphisms (e.g., SNP chips vs se-

quencing). In addition, Db;b0 is also the numerator of the FST fixation

index, e.g., Hudson’s (1992) FST ¼
E pb0

i �pb
i

� �2
� �

E pb0
i

1�pb
ið Þþpb

i
1�pb0

ið Þ
� � with an estima-

tor F̂ST ¼
1
n

P
i

pb0
i �pb

i

� �2
� �

1
n

P
i

pb0
i

1�pb
ið Þþpb

i
1�pb0

ið Þ
� � (Hudson et al. 1992; Bhatia et al.

2013). In principle, Db;b0 and FST can be estimated from markers, but

also from evolutionary distances and effective population size, or
both (Weir and Hill 2002; Bonhomme et al. 2010). Now we can re-
write the last term of Equation (3) as

4tr
�

Varð�0ÞVarððaaÞbi Þ
�
¼ 4nðr2

� r
2
ðaa;bÞÞ ¼ 4nDb;b0

2r2
AA

n2 Hb Hb

Combining expressions above, Equation (3) becomes
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Varðab0

i Þ ¼
r2

A

nHb
þ 4Db;b0

r2
D

nH2
b

þ 4nDb;b0 2
r2

AA

n2Hb Hb

¼ 1
n

r2
A

Hb
þ 4Db;b0

r2
D

H2
b

þ 8Db;b0
r2

AA

Hb Hb

 !
(4)

From here the correlation of a across populations is (factoriz-
ing out 1

n)

rðab
i ; a

b0
i Þ �

Covðab
i ; a

b0
i Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�

Varðab
i Þ
��

Varðab0
i Þ
�r

¼
Varðab

i Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
Varðab

i Þ
��

Varðab0
i Þ
�r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Varðab

i Þ
q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Varðab0

i Þ
q

¼

ffiffiffiffiffiffi
r2

A

Hb

s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

A

Hb
þ 4Db;b0

r2
D

H2
b

þ 8Db;b0
r2

AA

Hb Hb

s

(5)

Expression (5) can also be obtained if we start the Taylor ex-
pansion from a third focal population that is neither b nor b0, as
shown in the Supplementary File S1, Section 1.4. Factorizing out
Hb we arrive to the slightly clearer expression

rðab
i ; a

b0
i Þ �

ffiffiffiffiffiffi
r2

A

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

A þ Db;b0 4 Hb

H2
b

r2
D þ 8 1

Hb
r2

AA

� �s (6)

which shows well that the correlation is a function of distance
across populations Db;b0

� �
and weights of additive vs nonadditive

variances. Note that Db;b0 is always positive, which implies that
0 < r ab

i ; a
b0
i

� �
< 1 as expected.

The quantities involved in Equation (6) are (1) Nei’s “minimum
genetic distance” Db;b0 , which describes the similarity of populations
b and b0, (2) the variance of statistical additive, dominant and addi-
tive by additive effects at the individual level r2

A, r2
D, r2

AA in popula-
tion b (3) first and second moments of heterozygosities Hb , H2

b . All
these values can be, in principle, estimated from data or “prudently
guessed.” For the particular case of heterozygosities, SNP markers
are a poor choice and it is likely better to use a guess based on se-
quence or evolutionary processes (coalescence).

From the definition of FST and assuming Hb � Hb0 , Db;b0 � FST
1�FST

Hb

(detailed in the Supplementary File S1, Section 1.7), leading to

rðab
i ; a

b0
i Þ �

ffiffiffiffiffiffi
r2

A

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

A þ
FST

1�FST
4 ðHbÞ2

H2
b

r2
D þ 8r2

AA

� �s (7)

The advantage of the FST is that it is more robust to the spectra
of allele frequencies used to estimate it (Bhatia et al. 2013). If we
further assume that dominance variance r2

D is negligible, we can
write a neat expression of the correlation in terms of FST:

rðab
i ; a

b0
i Þ �

ffiffiffiffiffiffi
r2

A

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

A þ
8FST

1�FST
r2

AA

q �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 8FST

1� FST

r2
AA

r2
A

s
(8)

The second approximation involving 1
1þx � 1� x. This expres-

sion (8) plainly tells that the squared correlation of gene substitu-
tion effects across two populations is (to a few degrees of

approximation) a linear function of the similarity of populations
and the additive-by-additive variance. To our knowledge, these
results showing the importance of the different factors on the dif-
ference between substitution effects had been shown before only
through simulations.

Thus, the algorithm to estimate a priori the correlation of a

across populations b and b0, r ab
i ; a

b0
i

� �
, is:

1) Estimate in population b
a) additive, dominance, and additive by additive variances
b) average heterozygosity Hb and average squared hetero-

zygosity H2
b

2) Estimate Nei’s distance Db;b0 and/or FST of the two popula-
tions

3) Apply equation (6) or (7).

Consideration of directionality of substitution effects
In Plant and Animal Breeding the origin of the allele is often over-
looked, as a mutation may be evolutionary harmful but of inter-
est for farming, and also because many traits selected for do not
have a close relationship to fitness in the wild. However, in
Evolutionary Genetics it is reasonable to think that most muta-
tions are deleterious, thus with a negative effect of the mutant al-
lele. In Medical Genetics reports of estimated substitution effects
are also often done in terms of “susceptible” alleles. In both cases
E að Þ 6¼ 0 or even a > 0 for all loci. In both cases a is “oriented” and
has no zero mean. In the theory, above we have considered that a

is the effect of a randomly drawn allele, which leads to E að Þ ¼ 0
and enormously simplifies the algebra. In order to consider ori-
ented a, we propose to transform the estimate of r ab

i ; a
b0
i

� �
into

r jab
i j; jab0

i j
� �

, the correlation of the absolute values. Assuming that
a follows a normal distribution, jaj follows a so-called folded nor-
mal distribution. From here, r jab

i j; jab0
i j

� �
is obtained from

r ab
i ; a

b0
i

� �
using expressions (not detailed here) in Kan and Robotti

(2017), conveniently programmed in the R package MomTrunc
(Galarza et al. 2020). The specific R function is in the
Supplementary File S1, Section 1.8, and we will call it r2rabs().

Covariance across generations within one population
The definition above of two populations is general enough that
we can consider any two populations, e.g., two breeds (Angus and
Hereford), two strains (New Zealand Holstein and US Holstein) or
two generations or time frames (e.g., animals born in 2000 vs ani-
mals born in 2005, or animals born in 2000 vs their descendants).
There is evidence that across-generations genetic correlation
decreases with (many) generations to values as low as 0.6
(Tsuruta et al. 2004; Haile-Mariam and Pryce 2015). Part of this is
likely due to genotype by environment interactions. Anyway, part
of the across-generation genetic correlation could be due to
changes in the allele frequency due to drift, and therefore it can
be accounted for by our model, based on the evolution of average
coancestry in the breed. We develop this next.

We will talk about “generations” but ideas apply to pedigrees
with overlapping generations as well. Consider that what we pre-
viously called populations b and b

0
are animals born at time t1

and t2, with t2 > t1. Equation (7) becomes

r at1
i ; a

t2
i

� �
�

ffiffiffiffi
r2

A

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

Aþ
FST

1�FST
4

Ht1ð Þ
2

H2
t1

r2
Dþ8r2

AA

 !vuut
. In pedigree-based context,

the FST is simply half the increase in average relationship from t1

to t2 (Powell et al. 2010) which is approximately equal to the in-
crease in inbreeding from t1 þ 1 to t2 þ 1, which in turn is
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approximately t2 � t1ð ÞDF for small values of DF and steady in-

crease of inbreeding. Thus, FST � t2�t1ð ÞDF
2 to obtain

rðat1
i ; a

t2
i Þ �

ffiffiffiffiffiffi
r2

A

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

A þ
ðt2�t1 ÞDF

2

1�ðt2�t1 ÞDF
2

4
ðHt1 Þ

2

H2
t1

r2
D þ 8r2

AA

� �s (9)

Assuming, like in Equation (8), small values of dominance var-
iance and of FST, we obtain

rðat1
i ; a

t2
i Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4ðt2 � t1ÞDF

r2
AA

r2
A

s

Thus, the correlation of substitution effects decreases when
there is large drift, reflected in high values of DF. This is the case
for instance if parents of the next generation are very highly se-
lected without restrictions in future inbreeding, resulting in a
considerable change in allele frequencies over the generations.

This agrees with classical theory (Falconer and Mackay 1996):
the variance in change of allele frequencies from one generation
to the next is simply DF. Typical values of DF in livestock (rabbits,
pigs, cattle or sheep) are at most 0.01 per generation (Welsh et al.
2010; Garcı́a-Ruiz et al. 2016; Fernández et al. 2017; Rodrı́guez-
Ramilo et al. 2019), although this is potentially changing with ge-
nomic selection.

Simulations
Description of the simulations
The objective of the simulation is to verify our results considering
different kinds of nonadditive biological gene action, and not to
infer the values of the correlation of substitution effects across
populations as this requires realistic presumptions of the forms
and magnitudes of epistatic interactions, something that is
largely unknown.

We used macs (Chen et al. 2009) to simulate a “cattle” scenario
of two domestic cattle breeds which diverged from a common an-
cestral population, in the lines of (Pérez-Enciso 2014; Pérez-
Enciso et al. 2015), where a large population had a 10-fold reduc-
tion bottleneck (domestication) 2000 generations ago and a split
into two populations t generations ago, where we made t oscillate
between 0 and 100 by steps of 10. Parameters in the simulation
were tailored (Pérez-Enciso 2014; Pérez-Enciso et al. 2015) to
mimic observed levels of diversity in cattle (Gibbs et al. 2009) and
lead to FST values between 0 and 0.15. We considered 100 DNA
stretches of 300 Kb each. We simulated 200 individuals per popu-
lation, from which we obtained allele frequencies per population.
Details are provided in the Supplementary File S1, Section 1.9.
This provided �400,000 segregating loci with realistic allele fre-
quencies (L-shaped distribution of allele frequencies).

To simulate nonadditive biological gene action, we considered
three scenarios. All of them involved 5000 single marker poly-
morphisms drawn at random from the simulated ones with no
particular restriction. First scenario was Complete Dominance
(within locus); second one was 1000 networks of 5 loci in
Complementary Epistasis, and the third one 1000 networks of 5
loci with Multiplicative Epistasis (additive by additive). We also
simulated networks of 2 and of 10 loci with similar results (not
shown). These scenarios are similar to Hill et al. (2008) but instead
of considering 2 loci we consider 5. We use these forms of epista-
sis, as the first two ones may be interpreted as biologically mean-
ingful gene actions, and the third one is an extreme case for the

change in substitution effect across populations. In addition, all
three scenarios are analytically tractable. Complete dominance
has the genotypic value of the heterozygote equal to one of the
homozygotes, e.g., the presence of a single copy of the “good” al-
lele is enough to, say, avoid the disease. Complementary epistasis
can be seen as a multi-loci dominance, e.g., disease happens
when there is a recessive deleterious genotype at any of the loci.
Additive by additive epistasis can be understood as a pure multi-
plication of gene contents and has no good biological interpreta-
tion. Networks contribute additively to the total phenotype. Note
that, by definition, functional gene action is the same across all
populations. From the description of the nonadditive gene action
and some algebra in the Supplementary File S1, we are able to de-
rive analytically the values of a, d� and aað Þ in each population
and variances r2

A, r2
D, and r2

AA. Details are given in the
Supplementary File S1, Section 1.10. For each value of t, we made
10 replicates and averaged the results.

From the true substitution effects ab and ab0derived above, we
obtained the true value r ab; ab0

� �
. Note that because of the coales-

cent simulation, all reference alleles (i.e., with frequency p) are
“mutant” ones, and due to assumed dominance and epistatic
actions, a are negative by construction (i.e., the mutant allele is
deleterious). To conciliate this fact with our derivations, that as-
sume that a refers to a random allele and has null means, we did
two things: (1) compute a “random allele” version of ab; ab0 in
which a was changed sign for “odd” loci, and (2) estimate r ab; ab0

� �
using the transformation of normal distribution into folded nor-
mal (Kan and Robotti 2017), i.e., the r2rabs() function men-
tioned above. Thus, we have two estimands, the correlation for
the “mutant allele” effect rmutant ab; ab0

� �
(which corresponds e.g.,

to typical use in Evolutionary and Medical Genetics) and the cor-
relation for the “random allele” effect rrandom ab; ab0

� �
(which corre-

sponds, e.g., to genomic selection and some GWAS). We observed
that rmutant ab; ab0

� �
< rrandom ab; ab0

� �
: For instance, in one of the

scenarios rmutant ab; ab0
� �

¼ 0:67 and rrandom ab; ab0
� �

¼ 0:85.
Now we describe the estimators. We considered either the use

of “all” polymorphisms, or of a “SNP” selection in which
MAF> 0.01 across both populations simultaneously (roughly
40,000 polymorphisms), as this corresponds to typical SNP panels
in genetic improvement. Then we used the Equation (6) either for
“all” or for “SNP,” using their frequencies to obtain Db;b0 , Hb, and
H2

b . In “all,” the spectra of allele frequencies of polymorphisms
and of QTL is the same, but not in “SNP.” As “SNP” tends to be bi-
ased, we also considered the Equation (7) using FST estimated
from SNPs and Hb ¼ 0:107, and H2

b ¼ 0:018 from a U-shaped dis-
tribution (Hill et al. 2008) detailed later. Note that FST is more ro-
bust to the spectra of allele frequencies used to estimate it. Thus,
we obtained three estimators for “random allele” rrandom ab; ab0

� �
:

r̂all, r̂SNP, and r̂SNPFst, and also the three corresponding estimators
for “mutant allele” rmutant ab; ab0

� �
applying function r2rabs() to r̂all,

r̂SNP, and r̂SNPFst.

Results of the simulations
Simulated variance components are shown in Table 2. All sce-
narios yield high additive genetic variances, as expected.

True simulated values of correlation across substitution
effects rrandom ab; ab0

� �
and their estimates r̂all, r̂SNP, and r̂SNPFst, are

presented in Figure 1 (for a defined for random alleles) and
Figure 2 (for a defined for mutant alleles). Generally speaking,
Figure 1 applies to nonfitness related traits (for “random”) and
Figure 2 to fitness-related traits (for “mutant”). As predicted by
our derivations, there is a clear and almost linear decrease of
r ab; ab0
� �

with increasing values of FST.
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In Figure 1 (for a defined for random alleles) it can be observed
that our expressions (equations 6 and 7) tend to slightly over-
estimate rrandom ab; ab0

� �
for Complete Dominance, and

Complementary Epistasis. The estimates are quite good for
Multiplicative Epistasis. Estimators using SNP markers are
slightly less accurate than using the complete polymorphism
spectra, and using FST from SNP markers, coupled with a guess of
heterozygosities, is similar to using SNP alone to infer both dis-
tances and heterozygosities.

Figure 2 (for a defined for mutant alleles) presents values of
rmutant ab; ab0

� �
and estimates r̂all, r̂SNP, and r̂SNPFst. Estimating

rmutant ab; ab0
� �

is more difficult than estimating rrandom ab; ab0
� �

:
depending on the scenario there is more over- or under-
estimation that for rrandom ab; ab0

� �
. In this case the effect of using

all polymorphisms or SNP is more marked. However, overall, we
find that our estimators explain well the decay in r ab; ab0

� �
. The

imperfect disagreement (both in Figures 1 and 2) is probably due
to several wrong assumptions; we comment some of them in the
Discussion section.

Empirical examples
Estimates of correlation across populations using
literature values
Literature values used and assumptions
From values of the literature, the previous expressions,
Equations (6) and (7) were applied to obtain guesses of the corre-
lation of substitution effects across different populations and
generations within population. Estimates of statistical
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Figure 1 Simulated (straight black line) and estimated (points) correlation across QTL substitution effects of random alleles across two populations as a
function of their FST differentiation coefficient. rHatAll: estimates with all polymorphism. rHatSNP: estimates using SNP-like loci. rHatSNPFst: estimates
using SNP-like loci with a correction for heterozygosity. Results of 10 replicates per point with s.e. <0.01.

Table 2 Additive, dominance and additive by additive variances
in the simulated population 1

Additive Dominance Additive by
additive

Complete dominance 252 113 0
Complementary epistasis 130 53 12
Multiplicative 219 0 122
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nonadditive variation are scarce, as are estimates of distances
across populations in terms of covariance of allele frequencies.
The differentiation FST of Jersey and Holstein breeds of cattle
obtained from VanRaden et al. (2011) is 0.06, and among Landrace
and Yorkshire is 0.16 (Xiang et al. 2017).

Table 3 includes literature estimates for additive, dominance
and epistatic variation. We used estimates for milk yield in
Simmental cattle (Fuerst and Sölkner 1994) as if it was Holstein,
and for litter size in a commercial pig line (Vitezica et al. 2018) as
if it was Landrace, because we could not find estimates in the
same populations. These estimates (as most estimates of nonad-
ditive variances) are inaccurate and are presented here only as
examples. In the particular case of cattle, the estimated value of
r2

AA is higher than usually expected a priori (Hill et al. 2008), so we
take it as an example of an extreme, but not impossible, case.

Then, we assumed three distributions for QTL allele frequen-
cies, following Hill et al. (2008): a uniform distribution
(“Uniform”), and a U-shaped distributions with f pð Þ / p�1 1� pð Þ�1

with effective population size of Ne ¼ 50 (“Hill”), bounded at
1

2Ne ; 1� 1
2Ne

h i
. We also assumed a Beta(0.04, 0.04) distribution,

which is an extreme U-shaped distribution (“Extreme”) in which
roughly 80% of the QTLs have minor allele frequency lower than
0.01. This results in respective values of Hb ¼ 0:333; 0:107; 0:037ð Þ
and H2

b ¼ 0:133; 0:018; 0:013ð Þ. Using the values described above,
we estimated the correlation of QTL substitution effects across
breeds, r ab

i ; a
b0
i

� �
, using Equation (7).
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Figure 2 Simulated (straight black line) and estimated (points) correlation across QTL substitution effects of mutant alleles across two populations as a
function of their FST differentiation coefficient. rHatAll: estimates with all polymorphism. rHatSNP: estimates using SNP-like loci. rHatSNPFst: estimates
using SNP-like loci with a correction for heterozygosity. Results of 10 replicates per point with s.e. <0.01.

Table 3 Variance component estimates, as ratio from phenotypic
variance, from literature

Species r2
A r2

D r2
AA

Cattle 0.20 0.09 0.15
Pigs 0.092 0.020 0.016

Estimates for milk yield in cattle (Fuerst and Sölkner 1994) and litter size in
pigs (Vitezica et al. 2018).
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Similarly, the correlation of QTL substitution effects a certain
number of generations away, r at2

i ; a
t1
i

� �
, was obtained applying

Equation (9). An increase DF ¼ 0:01 per generation was assumed,
for the same assumed variances and allele frequency distribu-
tions.

Estimates of correlation across populations using literature
values
The results for reasonable guesses of the distribution of allele fre-
quencies at QTL are in Table 4. The correlation of QTL substitu-
tion effects across breeds was roughly 0.85 across both species
(pigs and cattle) and all assumed distributions of gene frequen-
cies. These numbers are higher than scarce estimates of genetic
correlations in the literature: 0.4–0.8 for production traits (Karoui
et al. 2012), 0.3–0.5 for milk yield (Legarra et al. 2014) and 0.6 for
body condition (Porto-Neto et al. 2015), and we consider that this
is because across-breeds genetic correlations also include geno-
type by environment interactions. It may be argued that these
studies used SNPs instead of true QTLs; however, Wientjes et al.
(2017) in a simulation study obtained unbiased estimates of cor-
relation across QTLs using SNP markers for a true correlation of
0.5, and (Cuyabano et al. 2018) showed analytically that when
SNP markers yield correct estimates of true relationships at QTL,
estimates of genetic parameters are unbiased.

Concerning decrease of correlations across generations,
results (Table 5) show a slow decrease, and this decrease is,
again, not sensitive to the assumed distribution of allelic frequen-
cies. Values in Table 5, quite close to 1, somehow disagree with
few existing estimates of across-generation genetic correlations,
clearly lower than 1 (Tsuruta et al. 2004; Haile-Mariam and Pryce
2015). Again, part of the literature estimates of correlation much
lower than 1 is probably due to nonadditive gene action, and part
due to genotype by environment interactions.

Discussion
The fact that most genetic variation is statistically additive is
well known. However, this does not imply equality of statistical
additive effects across populations, something that is possibly
reflected in the difficulty of predicting breeding values or disease
risks across (distinct) populations, either in animal or human ge-
netics. Only recently has nonadditive biological gene action been
identified as playing a role in determining the degree to which
prediction across populations is successful (Dai et al. 2020; Duenk
et al. 2020). These authors presented result of simulations, where
the problem is that the results are scenario specific and do not al-
low a good appraisal of the different factors. Having a theory
allows to derive more general expressions and understanding
factors influencing across-population differences in substitution
effects.

In this study, we present a general, formal framework that
does not depend on specific hypothesis regarding gene action or
order of the epistatic interactions. In our derivation, we

approached high-order functional epistasis by Taylor expansions,
leading to expressions that involve only low-order statistical addi-
tive epistasis (actually pairwise). Including one extra term in our
Taylor expansion would include three-loci statistical epistasis and
so on, but extra terms would lead to more difficult expressions
(covariance of allele frequencies across loci and populations),
and it is expected that the magnitude of the statistical effects is
smaller and smaller with higher orders of interactions (Mäki-
Tanila and Hill 2014). We find reasonable agreement with our
simulation and also with values from literature. However, our
simulations may not be particularly realistic, something that
would require considerable thinking on how to simulate biologi-
cally meaningful epistasis mechanisms for a variety of traits. We
see them as building blocks of nonadditive architecture. At any
rate, the three scenarios generated sizeable nonadditive variation
which is a challenging case for our expressions.

Three main factors influence the correlation of substitution
effects between populations r ab; ab0

� �
: the genetic similarity of the

two populations, the magnitudes of additive, dominance and ad-
ditive by additive variances, and the distribution of allele fre-
quencies at QTL. We consider that showing explicitly these three
factors is an achievement, as their role is implicit, yet not explic-
itly shown, in previous works in simulated and real data (Martin
et al. 2019; Dai et al. 2020; Duenk et al. 2020). Now we discuss these
three factors.

The distance across populations is summarized by Nei’s mini-
mum genetic distances Db;b0 or Fst indexes. Under pure drift sce-
narios, these depend on divergence times and effective
population sizes (Weir and Hill 2002; Bonhomme et al. 2010;
Walsh and Lynch 2018).

The factors Hb

H2
b

and 1
Hb

are weighting factors on dominance and

additive by additive variances. If the allele frequencies are mod-
elled using symmetric Beta a; að Þ distributions (see Supplementary

File S1, Section 1.11), these become Hb

H2
b

¼ 1
2aþ1

a 1þ aþ2
2aþ2

aþ3
2aþ3�2ð Þð Þ and

1
Hb
¼ 2þ 1

a. The first is bounded between 3 (for U-shaped distribu-

tions) and 2 (for peaked distributions), so that dominance varia-
tion does not play a big role in the difference between
substitution effects across populations unless dominance varia-
tion is much larger that additive variation, something that seems
unlikely based on theory and estimates. However, the second
weight, due to epistasis, is not bounded and is large for small val-
ues of a (e.g., 27 for Beta[0.04,0.04]), and in this case functional
epistasis plays a strong role in additive variation for U-shaped
distributions (Hill et al. 2008). The spectra of allele frequencies of
causal mutations is subject to large debate but there seems to be

Table 4 Estimates of correlations of QTL effects across breeds
based on values from Table 3 and Equation 7, for different
distributions of QTL frequencies

Species Uniform Hilla Extremeb

Cattle 0.83 0.82 0.84
Pigs 0.87 0.85 0.88

aU-shaped distribution with effective population size of 50.
bBeta(0.04, 0.04) distribution.

Table 5 Correlation of QTL effects within breed across time,
based on values from Table 3 and Equation 7, for different
distributions of QTL frequencies

Species Distance in generations Uniform Hilla Extremeb

Cattle 1 0.98 0.97 0.98
2 0.97 0.94 0.97
5 0.93 0.87 0.93

10 0.86 0.78 0.87
Pigs 1 1.00 0.99 1.00

2 0.99 0.98 0.99
5 0.98 0.96 0.97

10 0.96 0.93 0.93

aU-shaped distribution with effective population size of 50.
bBeta (0.04, 0.04) distribution.
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a consensus that low frequency mutations make non-negligible
contributions to genetic variance (Eyre-Walker 2010; Gibson

2012). It is unknown if this leads to extreme values of 1
Hb

.

The particular case of purifying selection deserves some atten-
tion. For a mutant recessive deleterious allele with fitness 1� s,
the substitution effect is a ¼ �ps so, in principle, a changes across
populations—this is similar to our simulated scenario of
Complete Dominance. However, if the locus is truly at equilib-
rium in all populations, then p �

ffiffi
u
s

p
(Crow and Kimura 1970,

Chapter 6). Provided that s and u are identical across populations,
the allele frequency p and the substitution effect a should be iden-
tical across populations. However, s is not necessarily homoge-
neous across populations, likely depending on the environment.

The previous result ( 1
Hb

needs to be large for biological domi-
nance to play a role) clarifies the findings of Duenk et al. (2020)
and Dai et al. (2020) that it is mainly biological epistasis that gen-
erates changes in additive substitution effects across popula-
tions. For instance, when one population drifts, the additive by
additive statistical variation enters into additive variation (Hill
et al. 2006; Walsh and Lynch 2018).

Thus, r ab
i ; a

b0
i

� �
will be very low only if (1) populations are dis-

tinct, (2) there is statistical additive by additive variation and (3)
QTL allele frequency distributions are U- or L-shaped.

As for the magnitudes of nonadditive variance, in most con-
ceivable cases r2

AA and r2
D are of magnitudes at most like additive

variances, but more often less than half (Fuerst and Sölkner
1994; Palucci et al. 2007; Hill et al. 2008; Mäki-Tanila and Hill 2014;
Vitezica et al. 2018), so in practice the most limiting factor is dis-
tance across breeds. Indeed, there are very few accurate esti-
mates of nonadditive variation although more are becoming
available. We argue that then, and based also in our results, it
will be possible to make theory and data-based choices on the
possibilities of using predictions and GWAS results across popu-
lations.

Then, for reasonable assumptions about allele frequency dis-
tribution of QTLs, we have shown that the correlation of substitu-
tion effects across populations is typically around 0.8 or higher,
which is higher than scarce estimates of genetic correlations
across populations available in the literature, which range from
0.3 to 0.8 (Karoui et al. 2012; Legarra et al. 2014; Porto-Neto et al.
2015; Xiang et al. 2017) the difference being due, probably, to ge-
notype by environment interaction. Our results seem rather ro-
bust to different distributions of allele frequencies. These values
are high but not 1, which raises the question of how to conceive
optimal strategies for across populations predictions (e.g., more
data within breed or finer locations of causal variants across
breed). This is of practical relevance, e.g., for genomic predictions
in livestock improvement, but also in human genetics e.g., for the
use of European-based Polygenic Risk Scores in individuals from
other ancestries (Martin et al. 2019).

Similar results apply to the same populations across genera-
tions, in which case the correlation of substitution effects across
generations goes from 0.99 (next 1–2 generations) to 0.80 (10 gen-
erations). This illustrates that, even if genomic predictions would
use QTLs or markers in very tight LD with QTLs, there would still
be, in the long run, a need for a continuous system of data col-
lecting and re-estimation of effects.

In the simulations, we confirmed that our estimates are rea-
sonably good although not perfect. They are, depending on the
scenario and target (random allele or mutant allele), almost unbi-
ased, slightly biased upwards, or biased downward. There are
several reasons for the disagreement. The most obvious one is

the inherent approximation of the Taylor series expansion.
Second, splitting variances such as Var �id�bi

� �
or Var �0 aaÞbi

� ��
into

basic components implies either a strong assumption of multi-
variate normality and independence or a less strong one of
“expectation and variance-independence” (Bohrnstedt and
Goldberger 1969). For instance, it is assumed that the variance of
d�bi is not related to the magnitude of the difference of allele fre-
quencies �i, but this is not necessarily true. Third, it is further as-
sumed, in the factorization of genetic variances, that QTL effects
and allele frequencies are independent. We have also ignored
that the change � is proportional to heterozygosity and therefore
small at extremes values of allele frequencies.

Another factor that we did not consider is the empirical evi-
dence of an inverse relationship between heterozygosity and ab-
solute effect at the locus (Park et al. 2011). It is unclear how this
would affect our findings. A (rather extreme) functional gene ac-
tion that generates larger a at extreme frequencies is overdomi-
nance, which is similar to our “dominance” scenario.

As for our estimators of the correlation across “negative”
alleles rmutant ab; ab0

� �
, they are less robust that the estimators for

a “random” allele rrandom ab; ab0
� �

. The reason for this is that
obtaining rmutant ab; ab0

� �
from rrandom ab; ab0

� �
involves a further ap-

proximation, the normality of a.

Conclusions
We presented a coherent, approximate theory, that does not in-
voke any particular mechanism of gene action, to explain and ap-
praise the change in magnitude of (additive) QTL substitution
effects across populations and generations. The theory gives
good approximate estimates of this correlation, that needs to be
otherwise explicitly estimated. More importantly, the theory
shows that the main sources for the change of effects are rela-
tionships across populations, magnitudes of additive and first-
order nonadditive variances (dominance and additive by addi-
tive), and spectra of allele frequencies. These findings provide
better understanding of the properties of genomic prediction
methods and of quantitative genetics in general.

Data availability
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https://doi.org/10.25386/genetics.13168952. Code and files for
simulations can also be found in https://figshare.com/articles/
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duced using equations and figures from the text.
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