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Dissecting genetic trends to understand 
breeding practices in livestock: a maternal pig 
line example
Rostam Abdollahi‑Arpanahi1* , Daniela Lourenco1, Andres Legarra2 and Ignacy Misztal1 

Abstract 

Background: Understanding whether genomic selection has been effective in livestock and when the results of 
genomic selection became visible are essential questions which we have addressed in this paper. Three criteria were 
used to identify practices of breeding programs over time: (1) the point of divergence of estimated genetic trends 
based on pedigree‑based best linear unbiased prediction (BLUP) versus single‑step genomic BLUP (ssGBLUP), (2) the 
point of divergence of realized Mendelian sampling (RMS) trends based on BLUP and ssGBLUP, and (3) the partition of 
genetic trends into that contributed by genotyped and non‑genotyped individuals and by males and females.

Methods: We used data on 282,035 animals from a commercial maternal line of pigs, of which 32,856 were geno‑
typed for 36,612 single nucleotide polymorphisms (SNPs) after quality control. Phenotypic data included 228,427, 
101,225, and 11,444 records for birth weight, average daily gain in the nursery, and feed intake, respectively. Breeding 
values were predicted in a multiple‑trait framework using BLUP and ssGBLUP.

Results: The points of divergence of the genetic and RMS trends estimated by BLUP and ssGBLUP indicated that genomic 
selection effectively started in 2019. Partitioning the overall genetic trends into that for genotyped and non‑genotyped 
individuals revealed that the contribution of genotyped animals to the overall genetic trend increased rapidly from ~ 74% 
in 2016 to 90% in 2019. The contribution of the female pathway to the genetic trend also increased since genomic selec‑
tion was implemented in this pig population, which reflects the changes in the genotyping strategy in recent years.

Conclusions: Our results show that an assessment of breeding program practices can be done based on the point 
of divergence of genetic and RMS trends between BLUP and ssGBLUP and based on the partitioning of the genetic 
trend into contributions from different selection pathways. However, it should be noted that genetic trends can 
diverge before the onset of genomic selection if superior animals are genotyped retroactively. For the pig population 
example, the results showed that genomic selection was effective in this population.

© The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco 
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Background
Genomic selection has revolutionized the livestock 
breeding industry and has doubled genetic gain in 
some species, such as dairy cattle [1, 2]. Other livestock 

breeding industries, such as for pigs, broilers, beef, etc. 
have also heavily invested in this technology [3]. Hence, 
understanding whether implementation of genomic 
selection has been effective in these species and when the 
results of genomic selection became visible, are essential 
questions which need to be addressed.

The genetic progress of a population is a combination 
of the progress in different selection pathways [4], which 
are under different selection pressures and that have 
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different accuracies of selection. The impact of the imple-
mentation of genomic selection on different selection 
pathways can be measured by the decomposition of the 
overall genetic trend into that contributed by each path-
way over the course of selection [5].

When a population is under genomic selection, genetic 
evaluation based on the conventional pedigree-based 
method i.e., pedigree-based best linear unbiased pre-
diction (PBLUP), is biased because it neither considers 
genomic information nor takes genomic preselection 
into account [6–8]. Genomic preselection occurs when 
only animals that are selected based on genomic esti-
mated breeding values (GEBV), and therefore on posi-
tive Mendelian sampling terms, are phenotyped [9, 10]. 
In this case, the breeding values predicted by PBLUP for 
these animals are, on average, underestimated [11], while 
single-step genomic BLUP (ssGBLUP) is expected to pro-
vide unbiased genetic trends [12, 13] because it combines 
all the information that has been used for selection deci-
sions (pedigree, genomic data, and phenotypic records). 
Therefore, the point when estimated genetic trends based 
on PBLUP and ssGBLUP diverge indicates the starting 
date of effective genomic selection [13]. This is the time-
point when young animals are selected based on estimates 
of their Mendelian sampling terms based on genomics, in 
addition to parent average and, perhaps, own information. 
If all genotyped individuals are phenotyped, then the dif-
ference between genetic trends by PBLUP and ssGBLUP 
depends on the corresponding prediction accuracy. In 
principle, GEBV are more accurate than EBV and result in 
better genetic progress. However, if multiple-trait selec-
tion is practiced, it is important that the genetic trends are 
estimated using a multiple-trait model.

The average genetic merit of an individual can be 
decomposed as the sum of the parent average and a 
Mendelian sampling term that represents the devia-
tion of an animal’s breeding value from the average of its 
parents. Thus, the superiority of the selected candidates 
over the mean of their parents represents the extra gain 
compared to the previous generation, by capturing the 
Mendelian sampling terms. Realized Mendelian sam-
pling (RMS) terms have zero expectation when all ani-
mals are genotyped or when genotyping is at random. 
When animals (e.g., young boars that are kept till they 
reach sexual maturity and reproduce) are selected based 
on estimated parent average, their RMS is also 0. How-
ever, the average RMS will not be 0 when the genotyped 
animals are selected based on own phenotype or prog-
eny performance, i.e. with selective genotyping. Moreo-
ver, with selective genotyping, the average RMS will be 
greater with ssGBLUP than with BLUP because the lat-
ter does not account for genomic information and prese-
lection. Consequently, a deviation of the average RMS 

from 0 would show selective genotyping, and a divergent 
trend in average estimates of RMS between ssGBLUP 
and BLUP would display the starting date of genomic 
selection.

García-Cortés et  al. [14] introduced a procedure for 
partitioning the genetic gain into contributions from par-
ent averages and RMS and for allocating these contribu-
tions into pre-defined “paths” (e.g., by country, gender, 
line, etc.),  summarizing path-specific terms to quan-
tify the contributions of different sources to the overall 
genetic trend. This procedure has been used to quan-
tify the contribution of different countries to the overall 
genetic trend in Brown Swiss bulls [15] and to explore the 
impact of national selection and importation in Landrace 
and Large-White pigs in Croatia [16].

Partitioning the total genetic trend into contributions 
from genotyped and non-genotyped animals or into con-
tributions from males and females can be used to deter-
mine the impact of different selection pathways over 
time. For instance, if genotyped animals have a greater 
contribution to genetic gain than non-genotyped indi-
viduals, it can indicate selective genotyping (elite animals 
are genotyped) or that genomic selection is effective and 
most of the parents are selected from the genotyped can-
didates. In species such as pigs, the number of progeny 
is smaller per male and larger per female than in dairy 
cattle. Therefore, the impact of female paths on genetic 
progress is potentially higher than that of male paths [17] 
and it is worth studying this in different species.

In general, PBLUP and ssGBLUP are expected to esti-
mate similar genetic trends before the starting date of 
genomic selection. However, when the elite animals are 
genotyped retroactively or genotyping is done after selec-
tion, PBLUP and ssGBLUP can estimate different trends. 
The pig population that was used here has experienced 
both situations for some of the traits. Thus, we used three 
approaches to identify and investigate changes in breed-
ing practices over time, in particular the use of genomic 
selection, namely: (1) based on differences in genetic 
trends estimated using PBLUP versus ssGBLUP, (2) based 
on differences in trends in RMS estimated using PBLUP 
versus ssGBLUP, and (3) based on partitioning the esti-
mated genetic trends into different selection pathways as 
in [14]. These approaches were applied to a real dataset 
from a purebred maternal pig line.

Methods
Data structure
The phenotypes of the Landrace pigs used in this study 
were collected from 2012 to 2021 and included 228,427 
records for birth weight (BW), 101,225 records for aver-
age daily gain from birth to the end of the nursery period 
(ADG) at 11 weeks of age, and 11,444 records for average 
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daily feed intake during the finishing period (FEED) at 
23  weeks of age. FEED was measured on males only. 
Descriptive statistics for each trait are in Table  1. Pedi-
gree information was available for 282,035 animals, of 
which 32,856 were genotyped for 36,612 single nucleotide 
polymorphisms (SNPs) after quality control. The animals 
in the pedigree were the progeny of 809 sires and 14,674 
dams. The number of pigs that had either both or one par-
ent unknown was 2011 and 835, respectively. The ratio of 
genotyped pigs to all pigs born in each year ranged from 
4% in 2015 to 18% in 2019. Of the genotyped pigs, 92% 
had own records and 32% of those had offspring.

Statistical analysis
Analysis of the data was based on a multi-trait mixed 
linear model of the three traits considered, with the sta-
tistical model for each trait described in the following 
and with fixed effects denoted in uppercase and random 
effects in lowercase letters.

For BW, the model was:

where yijokqn denotes the BW record of animal n , Si is the 
effect of the i-th sex ( i = 1 or 2), Pj is the effect of the j-th 
parity ( j = 1, …,9), YHMo is the effect of the o-th herd-
year-month ( o = 1,…, 173), b is the linear regression of 
BW on total number of piglets born ( tnbk ), lq is the ran-
dom litter effect of sow q ( q = 1,…, 18,394), an is the ran-
dom direct genetic effect of animal n ( n = 1, …, 282,035), 
mn is the maternal genetic effect associated with dam 
of animal n , and eijkoqn is the residual effect for the BW 
record.

(1)
yijokqn = Si + Pj + YHMo + b(tnbk)+ lq + an +mn + eijkoqn,

For ADG, the model was:

where yijqn denotes the ADG record of animal n , Si , is the 
effect of the i-th sex ( i = 1 or 2), YHWj is the effect of 
the j-th year-herd-week ( j = 1,…, 1059), lq is the random 
litter effect of sow q ( q = 1,…, 18,394), an is the random 
direct genetic effect of animal n ( n = 1, …, 282,035), and 
eijqn is the residual effect for the ADG record.

For FEED, the model was:

where yikqon denotes the FEED record of animal n , Bi 
is the fixed effect of barn i ( i = 1,…, 512), b is the lin-
ear regression of FEED on age of weighing ( Agek ), lq is 
the random litter effect of sow q ( q = 1,…, 18,394), po is 
the random pen effect ( o = 1,…, 4197), an is the random 
direct genetic effect of animal n ( n = 1, …, 282,035), and 
eijkoqn is the residual effect for the FEED record.

In matrix notation, the general model for each trait can 
be written as:

 where yt is the vector of observations for trait t ; t refers 
to BW, ADG, and FEED; bt is the vector of fixed effects; 
lt , pet , at , and mt are the vectors of random effects for 
litter, pen, direct additive genetic, and maternal genetic 
effects, respectively; et is the vector of residuals; and X , 
W1 , W2 , W3 , and W4 are design matrices for the effects 
in lt , pet , at , and mt , respectively.

The assumed (co)variance structure of random effects 
for the multiple-trait analysis was as follows:

(2)yijqn = Si + YHWj + lq + an + eijqn,

(3)yikqon = Bi + b
(
Agek

)
+ lq + po + an + eikqon,

(4)
yt = Xbt +W1lt +W2pet +W3at +W4mt + et ,

(5)Var
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R ⊗ I





,

Table 1 Descriptive statistics of the Landrace pig breed dataset

BW Birth weight, ADG average daily gain through the end of the nursery, FEED feed intake

Trait (unit) Number of records Mean SD h2 Minimum Maximum

BW (g) 228,427 1281.6 327.8 0.05 45 3992

ADG (g) 101,255 343.5 61.5 0.22 200 600

FEED (g) 11,444 1917.8 301.9 0.26 827 3872
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 where σ 2
i  is the variance of the i-th random effect; σij 

denotes the covariance components of the i-th effect for 
the j-th combination of traits, and R = 3 × 3 matrix with 
(co)variance between traits; A is the numerator relation-
ship matrix constructed based on pedigree information 
for PBLUP, and I is an identity matrix. For the ssGBLUP 
analysis, A was replaced by H , with H−1 computed as in 
Aguilar et al. [8]:

where G−1 is the inverse of the genomic relationship 
matrix and A−1

22  is the inverse of the pedigree relationship 
matrix for genotyped individuals. The genomic relation-
ship matrix ( G ) was constructed using the first method of 
VanRaden [18]:

where Z is a matrix of genotypes coded as 0, 1, and 2 for 
AA, AB, and BB, respectively, and then centered by sub-
tracting twice the frequency of the major allele of SNP i 
(pi ) ( i = 1, …, 36,612). To avoid singularity problems, G 
was blended with A22 as G = 0.95 G + 0.05 A22.

Solutions for the multi-trait PBLUP and ssGBLUP 
were obtained using the preconditioned conjugate gra-
dient algorithm with iteration on data, as implemented 
in the BLUP90IOD2 program [19]. The (co)variance 
components were the most recent estimates derived 
using PBLUP. The GEBV from ssGBLUP were set to 
the same base (i.e., year 2015) as the mean EBV from 
PBLUP. To facilitate comparisons between traits, G(EBV) 
were divided by the square root of the additive genetic 
variance.

Criteria to dissect genetic trends
Divergence of genetic trends
The point of divergence of the genetic trends obtained 
by ssGBLUP and PBLUP was used to identify the onset 
of genomic selection. Details on the theory of predicting 
breeding values by PBLUP and ssGBLUP, are in Abdol-
lahi-Arpanahi et  al. [13]. To estimate the genetic trends 
using PBLUP and ssGBLUP, the (G)EBV for a given trait 
were averaged by year of birth for animals with both phe-
notypes and genotypes. The reason for using only ani-
mals with genotypes and phenotypes to estimate genetic 
trends is that young animals without genotypes and phe-
notypes (own and progeny) do not contribute informa-
tion to the evaluation and their average EBV is equal to 
the parent average.

H−1
= A−1

+

[
0 0

0 G−1
− A−1

22

]
,

G =
ZZ′

2
∑

pi(1− pi)
,

Realized Mendelian sampling terms
The RMS for individual i for a given trait was estimated 
as:

where PA is the parent average (average (G)EBV of the 
parents) and (G)EBV i denotes the (genomic) estimated 
breeding value of individual i . More theoretical details 
about the RMS can be found in Abdollahi-Arpanahi et al. 
[13].

When animals are randomly sampled for genotyping at 
a young age before any source of information (not even 
genomics) is available, RMS is 0 on average. However, if 
the “best” animals based on progeny testing or own per-
formance are genotyped (i.e. selective genotyping), then 
the RMS of the genotyped animals will be nonzero, (i.e. 
positive if they selected for a higher value and negative if 
they are selected for a lower value). Since genomic prese-
lection has taken place in most of the livestock popula-
tions, the divergence in RMS trends obtained based on 
EBV and GEBV of genotyped animals can also indicate 
the starting point of genomic selection. The same animals 
as used to estimate genetic trends were also used to esti-
mate RMS trends.

Partitioning of genetic trends
Predictions of breeding values can be partitioned to 
quantify the contribution of genotyped versus non-geno-
typed or males versus females as follows:

where m̂i is the estimate of the RMS and â is the (G)EBV; 
subscripts s and d refer to the sire and dam of animal i , 
respectively. for founder animals âi = m̂i . For the whole 
population Eq. (7) can be written as:

where T is a triangular matrix that relates each animal to 
its parents [20]. Following Eq.  (8) and considering that 
m̂ = T−1â , the vector of (G)EBV for the entire popula-
tion (Eq.  (8)) can be partitioned into contributions of 
defined selection pathways [14] as:

where Pi is a diagonal matrix of 1s and 0s to select the 
corresponding columns of T and is used to allocate the 
RMS of males versus females or of genotyped versus non-
genotyped individuals to the i-th partition of â.

(6)RMSi = (G)EBV i − PAi,

(7)âi =
1

2
âs(i) +

1

2
âd(i) + m̂i,

(8)â = Tm̂,

(9)â = TP1T
−1â + TP2T

−1â = â1 + â2,
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This procedure was implemented using the R package 
AlphaPart 0.8.1. [21], using the GEBV obtained using 
ssGBLUP for all animals (i.e., genotyped and non-geno-
typed) as the input. The contribution of each pathway for 
each birth year was expressed as a percentage by dividing 
the average GEBV of a partition by the average GEBV of 
the whole population.

Results
Genetic trends
Estimated genetic trends for genotyped individuals, in 
genetic standard deviation units, based on PBLUP and 
ssGBLUP are presented in Fig.  1. The genetic trends 
were favorable for all traits, with a faster improvement 
in recent years. The changes in average EBV from 2015 
to 2020 for BW, ADG, and FEED were 0.66, 0.72, and 
0.20, respectively based on PBLUP and 0.65, 1.03, and 

0.31 based on ssGBLUP. For ADG and FEED, the genetic 
trends estimated using PBLUP and ssGBLUP started to 
diverge in 2018, but for BW, which is not under direct 
selection, there was no evidence of divergence. In the 
last year of data (i.e., 2020), the difference between aver-
age EBV based on ssGBLUP and PBLUP were −  0.01, 
0.31, and 0.11 SD for BW, ADG, and FEED, respectively. 
The positive genetic trend for BW is due to its indirect 
response to selection for increasing the maternal effect 
on BW and for other correlated traits in the selection 
index.

Mendelian sampling trends
The RMS trends for genotyped individuals, in genetic 
standard deviation units, estimated using PBLUP and 
ssGBLUP are shown in Fig. 2. The pattern of changes in 
RMS trends was the same for the three traits and started 
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Fig. 1 Genetic trends for birth weight (BW), average daily gain through the end of the nursery (ADG), and feed intake (FEED) for genotyped 
Landrace pigs. Genetic trends are presented on the additive genetic standard deviation scale and the genetic base was adjusted to the 2015 birth 
year
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to diverge in 2019. In the last year of data (i.e., 2020), the 
difference between average estimates of RMS based on 
PBLUP and ssGBLUP was 0.10, 0.05, and 0.06 SD for BW, 
ADG, and FEED, respectively. The positive estimated 
trend in RMS and the considerable difference of RMS 
from 0 from 2015 to 2017 are due to the genotyping in 
2018 of elite culled or active boars that were born before 
2018 and were retrieved from stored tissue samples.

Contributions of genotyped versus non‑genotyped 
individuals to genetic trends
The decomposition of genetic trends into Mendelian 
sampling contributions from genotyped and non-gen-
otyped individuals is shown in Fig. 3. The percentage of 
individuals born from 2015 to 2020 that were genotyped 
ranged from 5 to 21%. All genetic gain in BW was due 

to non-genotyped individuals before 2016, but from 2016 
onwards, genotyped individuals were responsible for the 
genetic gain. For ADG, non-genotyped individuals had a 
greater contribution to the genetic trend than genotyped 
animals until 2016, but from 2017 onwards, the contri-
bution of genotyped individuals to genetic gain increased 
from 74% in 2016 to 94% in 2020. For feed intake, in 
2015, all the genetic gain was driven by non-genotyped 
pigs, but the contribution of genotyped pigs increased 
rapidly after that, from 76% in 2016 to 97% in 2020.

Contributions of females versus males to genetic trends
Figure 4 shows the decomposition of genetic trends into 
contributions from males and females for all traits. For 
BW, most of the genetic gain was driven by females from 
2019 onwards. For ADG, males and females had similar 
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Fig. 2 Mendelian sampling trends for birth weight (BW), average daily gain through the end of the nursery (ADG), and feed intake (FEED) for 
genotyped Landrace pigs. Mendelian sampling trends are presented on the additive genetic standard deviation scale. The solid black lines 
represent the zero‑base and the dotted green vertical lines shows the start date of genomic selection
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contributions to the genetic trend up to 2017, but from 
2018 onwards, the contribution of females was greater 
than that of males. The pattern of genetic trend for feed 
intake was similar to that of males, while the contribu-
tion of females to the genetic trend for feed intake was in 
the undesirable direction. For BW and ADG, the impact 
of the female pathway increased after implementation of 
genomic selection.

Discussion
Genetic trends
We used the divergence of genetic and RMS trends 
obtained by PBLUP versus ssGBLUP to determine 
the effectiveness of genomic selection. We also parti-
tioned genetic trends into contributions from geno-
typed versus non-genotyped animals and from males 

versus females. Quantifying the contribution of geno-
typed individuals to the genetic trends revealed the 
presence of selective genotyping (only elite animals 
were genotyped) and the impact of genomic selection 
(faster genetic improvement) in this breeding program. 
Decomposition of genetic trends into contributions 
from males versus females allowed the monitoring of 
the contribution of males versus females to genetic 
trends after the implementation of genomic selection.

The effective starting point of genomic selection was 
found to be in 2019 in the offspring of the first animals 
selected based on GEBV in 2018. This finding agrees with 
the history of genomic selection in this pig population. 
Genotyping started in late 2016, for pigs born between 
2015 and 2017 that were active boars or culled boars with 
stored tissue samples. Consequently, the higher genetic 
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trends estimated from 2015 to 2018 for ADG using 
ssGBLUP than using PBLUP can be the result of selec-
tive genotyping. The decline in genetic trend for ADG 
estimated by PBLUP after 2018 is due to genomic prese-
lection bias. When only genotyped animals receive phe-
notype records, PBLUP do not account for the positive 
RMS of those young animals. Similar results are reported 
in the literature [12, 13, 22]. Masuda et  al. [12] com-
pared genetic trends estimated using PBLUP and ssGB-
LUP for milk production traits in US Holstein cattle and 
found that after the implementation of genomic selec-
tion, the genetic trend based on PBLUP was underesti-
mated because of genomic preselection. In a simulation 
study, Jibrila et  al. [22] showed that genomic preselec-
tion caused bias in estimates of genetic gain based on 
PBLUB, while the bias was smaller when based on ssG-
BLUP. According to Abdollahi-Arpanahi et al. [13], after 
implementing genomic selection in pig, broiler, and beef 

cattle populations, the genetic trends obtained by ssG-
BLUP accelerated and those estimated using PBLUP 
decelerated.

In the pig population under study, genotyping was 
done retroactively, which means that for the genotyped 
animals born from 2015 to 2017 the selection decisions 
were practiced by another method such as PBLUP, thus 
even if ssGBLUP during this period results in higher 
accuracy than PBLUP, we do not expect a higher genetic 
trend for ssGBLUP. In fact, the accuracy of ssGBLUP 
will be greater than the accuracy of PBLUP at any point 
when a sufficient number of animals is genotyped. How-
ever, the prediction accuracy at the time of selection is 
what is reflected in the genetic trend. The reason is that 
if the company/breeder invested in genotyping but has 
not used the genomic information in selection decisions, 
the higher accuracy of evaluation by ssGBLUP compared 
to PBLUP using accumulated data does not necessarily 
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translate into the genetic trend. Overall, the changes 
of prediction accuracies over time may not follow the 
genetic trends estimated by PBLUP or ssGBLUP.

Although investigating the fluctuations in the genetic 
trend across time for each trait is beyond the scope of this 
study, the changes in genetic trends observed are consist-
ent with the breeding practices and the periodic modifi-
cations of weights in the selection index and the genetic 
correlations between traits under selection. One example 
is the estimated increase of 0.6 and 0.7 SD in BW from 
2015 to 2020 based on ssGBLUP and PBLUP, respec-
tively. Although the direct genetic value of BW has not 
been selected for in this population, the maternal genetic 
value for BW has. The genetic correlation between direct 
and maternal genetic values is about 0.1. However, the 
genetic correlations of direct BW with growth rate in the 
nursery, finisher average daily gain, and finisher average 
daily feed intake are positive and high, e.g., 0.42, 0.31 and 
0.25, respectively. Therefore, we believe that the observed 
genetic trend for BW is due to the correlated responses 
to selection.

Mendelian sampling trends
The RMS trends revealed signatures of selective genotyp-
ing for the three traits. All males born from 2017 to 2020 
were genotyped, but only a subset of females selected 
based on phenotypes were genotyped during this period. 
Hence, the deviations of RMS from 0 for birth years after 
2018 are due to the strong selective genotyping of females 
rather than of males. Moreover, inferior males, e.g., those 
with a small BW, may be removed from the tested popu-
lation before genotyping, which can result in positive 
RMS. As genotyping becomes less expensive, genotyping 
more young animals becomes economically justified and 
we expect a convergence of the RMS trends estimated 
using PBLUP versus ssGBLUP if phenotypic records are 
available for all animals.

The advantages of ssGBLUP in reducing prediction 
bias increase when animals have been preselected based 
on GEBV. Genetic evaluation using PBLUP assumes that 
RMS average 0, but when genotyped animals with posi-
tive or negative RMS receive phenotypes or progeny, the 
average RMS is no longer 0 [7, 9]. In this regard, a simula-
tion study showed that the RMS for bulls clearly deviated 
from 0 after genomic preselection was implemented in a 
dairy cattle population [10].

Decomposition of genetic trends
To quantify the contribution of genotyped individuals 
to genetic trends, we partitioned the genetic trends into 
the genetic gain derived by genotyped individuals and 
that achieved by non-genotyped individuals. Regardless 
of the trait, in recent years, genotyped individuals had a 

greater contribution to genetic gain than non-genotyped 
individuals. The greater contribution of genotyped indi-
viduals to genetic trends does not necessarily depict the 
effectiveness of genomic selection. For instance, if geno-
typed animals are preselected based on PBLUP EBV, we 
expect genetic trends to be higher for genotyped than for 
non-genotyped animals, which is the case for the period 
from 2015 to 2018 before genomic selection started.

A greater impact of females on genetic trends would 
be because selection decisions in a maternal line are 
placed more on females than males, and in pigs, each 
selected female has a larger contribution because it pro-
duces more progeny. However, the pig breed analyzed 
here is a maternal line and 40% of the traits under selec-
tion are only measured in females, which results in the 
females being the main drivers of changes in these traits. 
Thus, it is expected that females contribute more to the 
next generation than males in a pig breeding program, 
although the selection intensity for males is higher than 
for females. We found that the contribution of females to 
the genetic trends for BW and ADG was greater than that 
of males after the implementation of genomic selection.

For FEED, while a flat to slightly positive genetic trend 
was observed for males, the trend for females was posi-
tive and unfavorable. Feed intake has a negative eco-
nomic value, while ADG has a positive value in the index. 
Therefore, the breeding objective is to achieve a positive 
response in growth rate and a flat or slightly positive 
response in FEED, which, in turn, improves feed effi-
ciency. Few studies investigated the contribution of dif-
ferent selection paths to genetic trends. For example, 
García-Ruiz et  al. [2] demonstrated that 73 to 90% of 
the selection differential for milk production traits in US 
Holstein cattle is due to the sire of the bull and sire of the 
cow pathways.

Conclusions
Divergence of genetic trends for genotyped animals esti-
mated using PBLUP versus ssGBLUP indicates the pres-
ence of genomic selection. This divergence may occur 
before the onset of genomic selection if superior ani-
mals are genotyped retroactively. Presence of nonzero 
average RMS by ssGBLUP or PBLUP indicates selective 
genotyping. Selective genotyping can be deliberate, e.g., 
genotyping of animals with superior genotypes, or inci-
dental due to removal of weak/sick/dead animals. Under 
genomic selection, trends for RMS are higher when esti-
mated using ssGBLUP than using PBLUP, with the point 
of divergence indicating the effective onset of genomic 
selection. Partitioning of genetic trends into contribu-
tions by various classes of animals such as genotyped 
versus ungenotyped or males versus females allows the 
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determination of the relative impact of genotyping for 
different groups of animals. In particular, the observation 
that nearly all the genetic progress is contributed by gen-
otyped animals confirms the increasing interest in geno-
typing animals, and the observation that a large fraction 
of the genetic progress is contributed by females validates 
the importance of the females in the genetic progress of a 
pig population. In summary, post-processing of EBV and 
GEBV can help to investigate the effectiveness of genomic 
selection and assess breeding program practices.
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