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• Peer-reviewed research literature on
soil-erosion modelling was reviewed.

• 66 soil-erosion scientists from 25 coun-
tries contributed to this study.

• Overall, 8471 articles identified as po-
tentially relevant were reviewed.

• 1697 articles were reviewed in a com-
prehensive manner extracting 42 attri-
butes.

• A free and open-source database was
created.
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To gain a better understanding of the global application of soil erosion prediction models, we comprehensively
reviewed relevant peer-reviewed research literature on soil-erosion modelling published between 1994 and
2017. We aimed to identify (i) the processes and models most frequently addressed in the literature, (ii) the re-
gions within which models are primarily applied, (iii) the regions which remain unaddressed and why, and (iv)
how frequently studies are conducted to validate/evaluate model outcomes relative to measured data. To per-
form this task, we combined the collective knowledge of 67 soil-erosion scientists from 25 countries. The
resulting database, named ‘Global Applications of Soil ErosionModelling Tracker (GASEMT)’, includes 3030 indi-
vidual modelling records from 126 countries, encompassing all continents (except Antarctica). Out of the 8471
articles identified as potentially relevant, we reviewed 1697 appropriate articles and systematically evaluated
and transferred 42 relevant attributes into the database. This GASEMT database provides comprehensive insights
into the state-of-the-art of soil- erosionmodels andmodel applicationsworldwide. This database intends to sup-
port the upcoming country-based United Nations global soil-erosion assessment in addition to helping to inform
soil erosion research priorities by building a foundation for future targeted, in-depth analyses. GASEMT is an
open-source database available to the entire user-community to develop research, rectify errors, andmake future
expansions.

© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).
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1. Introduction

Humans affect natural erosion processes and have induced a rele-
vant and observable increase in soil erosion rates across landscapes
(Poesen, 2018). For over a century the scientific community has been
addressing the processes governing soil erosion, the occurrence of ac-
celerated soil erosion, and its negative associated socio-environmental
impacts (Bennett and Chapline, 1928; Smith, 1914). A body of research
on the mechanics of soil erosion and its geographical distribution has
benefited from the cognitive contributions of several adjoining disci-
plines, such as physical geography, soil science, engineering, hydrology,
biogeochemistry, human sciences, and economics.This interdisciplinary
nature is reflected in the numerous scientific approaches presented in
the literature to better understand soil erosion phenomena, each having
variable temporal and spatial scales, methodologies, and research goals
(Boardman and Poesen, 2006;Morgan, 2009). Qualitative and quantita-
tive descriptions of soil erosion have been performed through field ob-
servations andmeasurements (Toy et al., 2002), laboratory experiments
(Mutchler et al., 2017), aswell as through ameta-analysis of soil erosion
rates across the world (García-Ruiz et al., 2015). Summatively, the vast
and diversified scientific literature states that soil erosion includes a
broad spectrumof processes (Poesen, 2018), which comewith different
characteristics (form, intensity, and frequency) and encompass all con-
tinents (Oldeman, 1994; Wuepper et al., 2020).

With an increased abundance of observed data and the aim of map-
ping spatially distributed soil erosion rates with a better understanding
of their mechanics (Cook, 1937), scientists started to develop quantita-
tive soil-erosion prediction equations based on physical factors such as
climate, soil characteristics, vegetation type, and topography (Zingg,
1940). Since scientists proposed one of the earliest quantitative soil-
erosion prediction equations in the 1940s, several mathematical models
classified as empirical, conceptual, or process-oriented have been devel-
oped to predict soil erosion processes at different spatial and temporal
scales (Merritt et al., 2003; Morgan and Nearing, 2011; Nearing, 2013).
Batista et al. (2019) reported that today “there is no shortage of soil ero-
sion models, model applications, and model users' but there is still a
knowledge gap on the validity, quality, and reliability of the modelling
application results”. Despite the significant progress made in model de-
velopment and input parameterization, output uncertainties persist due
to the non-linear relationships and thresholds at play between driving
factors and the subsequent erosion processes, as well as the difficulties
of upscaling model findings from the local scale to larger ones (De
Vente and Poesen, 2005).

Part of the challenge to improve soil-erosion modelling is the devel-
opment of baseline information on how models are used. Essential
questions are: What do we know about soil-erosion model applications
worldwide? What processes and models are mainly addressed? What
3

are the regionswheremodels are mainly applied?What are the regions
that remain unaddressed?How frequently and howwell aremodel out-
comes validated? In short, we lack a clear picture of the worldwide
state-of-the-art of soil-erosion model applications.

Today, with the well-established use of geospatial technologies like
Geographic Information Systems (GIS), spatial interpolation techniques,
and the ever-growing range of environmental data; soil-erosionmodels
play an increasingly important role in the design and implementation of
soil management and conservation strategies (Panagos et al., 2015b).
The applications of soil erosion models are growing (Auerswald et al.,
2014), alongside the scale of their application (Borrelli et al., 2017a,
2017b; Naipal et al., 2018). These models play an important role as
tools to support decision-makers in policy evaluations (Olsson and
Barbosa, 2019). The Sixth Session of the Global Soil Partnership (GSP)
Plenary Assembly, under the solicitation of its Intergovernmental Tech-
nical Panel on Soils (ITPS), voted in favor of a resolution to put thedevel-
opment of a new country-driven global soil-erosion (GSER) assessment
(GSP, 2019) on the agenda for 2019–2021. Unlike previous United Na-
tions (UN) assessments that were based on expert judgments carried
out in the 1990's, such as the Global Assessment of Human-induced
Soil Degradation (GLASOD, Oldeman, 1994), the new UN Global Soil
Erosion map (GSERmap) will rely on modelling. These modelling activ-
ities will be supported and validated by field and remote observations
using satellite imagery and aerial photography. GSERmap will address
the three main soil erosion-driven processes, i.e., water erosion, wind
erosion, and redistribution due to the mechanization of agriculture (re-
ferred to as tillage erosion).

The new country-based UN global soil erosion assessment will in-
volve hundreds of soil erosion expertsworldwide (FAO, 2019). This rep-
resents an opportunity to enhance the understanding of global soil
erosion, identify soil-erosion hotspots, and gain momentum for new
policies at all levels. A UN project of this scale on soil erosion can also
strengthen the soil-erosion scientific community's collaborative efforts
to boost the development and applicability of models. However, the
achievement of these goals could be hindered by the lack of global
knowledge on soil erosion model usage. Improving such knowledge
would help pave the way for more structured modelling and allow the
further identification of needs to validate, measure, monitor, and map
soil-erosion processes.

In this study, we systematically reviewed soil-erosionmodelling ap-
plications worldwide and performed a statistical analysis with the aim
of addressing identified knowledge gaps and facilitating information ac-
quisition for the new country-based UN global soil erosion assessment.
The subsequent database presents the current state of knowledge on
soil-erosion modelling applications worldwide. We aimed to create
and share a comprehensive and unprecedented database on soil erosion
applications worldwide with an open science participatory approach.



Table 1
List of information collected for each entry in the GASEMT database (extended version in
Table S1).

Group Entry Types of data

i Entry info ID Open (numeric)
Reviewer ID Open (alphanumeric)
General ID Open (alphanumeric)

ii Bibliography Year of publication Open (numeric)
List of authors Open (alphanumeric)
Title Open (alphanumeric)
Journal Open (alphanumeric)
DOI Open (alphanumeric)

iii Modelling
exercise

Erosion agent Multiple choice
Modelling type Multiple choice
Gross/net estimatea Multiple choice
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Sixty-six scientists from 25 countries representing all continents
(except Antarctica) have contributed their findings, systematically
reviewed all available peer-reviewed literature, and merged their
knowledge. The database is available in Appendix A of this article. In
our study, we provide an evaluation of (i) the processes and models
most frequently addressed in the literature, (ii) the regions within
which models are primarily applied, (iii) the regions which remain un-
addressed and why and (iv) how frequently studies are conducted to
validate/evaluate model outcomes relative to measured data. This
approach provides insights into the worldwide state-of-the-art in soil-
erosion model applications and allows a synthesis of information on
whichprocesses,models, and regions have received themost evaluative
attention and which require increased focus in the future.
Quantitative/qualitative estimateb Multiple choice
Estimated soil erosion rate converted
to (Mg ha−1 yr−1)

Open (numeric)

Soil erosion rate (note) Open (alphanumeric)
Model name Open (alphanumeric)
Modelling aim Multiple choice
Modelled period Multiple choice

iv Study area Continent Multiple choice
Country Open (text)
Name of the study area Open (alphanumeric)
Latitude (decimal degrees) Open (numeric)
Longitude (decimal degrees) Open (numeric)
Area (km2) Open (numeric)

v Climate Data indicative period Open (numeric)
Type of data Multiple choice
Time resolution Multiple choice
Rainfall amount (mm) Open (numeric)
Rainfall (note) Open (alphanumeric)

vi Land
use/cover

Type of data source Multiple choice
Modelled area Multiple choice

vii Fieldwork
activities

Field activities Multiple choice
Type of activities Multiple choice

viii Soil info Soil sampling Multiple choice
Type of soil information Multiple choice

ix Topography DEM cell size (m) Open (numeric)
x Modelling

outcomes
Scalec Multiple choice
Cell size (m) Open (numeric)
Modelled years Open (numeric)
Modelled period Multiple choice
Validation/evaluation attempt of
model results

Multiple choice

Type of validation/evaluation Multiple choice
Model calibration Multiple choice

a Gross erosion is on-site soil erosion potential without considering re-deposition. Net
erosion is the difference between erosion and deposition processes at a given point.

b Qualitative refers to an assessment of temporal trends, spatial patterns and/or driving
factors, while quantitative refers to quantitative assessment of sediment detachment and
or transport.

c Definitions are provided in the Supporting Information (Table S2).
2. Methods

2.1. Data collection and GASEMT database

In this study, we report the results of an in-depth review of scien-
tific peer-reviewed literature on soil-erosion modelling published in
international journals between the 1st of January 1994 and the 31st
of December 2017 and present in Elsevier's Scopus bibliographic da-
tabase. We used the following criteria to identify articles potentially
relevant for our statistical analysis: keywords soil erosion and model
or name of the model (Box 1) in the title, abstract, or the keywords
of the Scopus indexed articles. All articles matching the selected key-
words have been downloaded and reviewed by one of the 67 soil
erosion experts involved in the study. The review phase started in
early 2018 and followed a participatory approach open to the entire
scientific community, without any restrictions. The authors are com-
posed of scientists who responded to an open call for expression of
interest published on ResearchGate and advertised through mailing
lists and word-of-mouth. Within the first data collection phase, all
authors paid close attention to the following criteria: (i) verifying
the relevance of the articles with respect to the objective of the re-
view study, (ii) recording the entries' information (hereinafter also
referred to as records), and (iii) extract all information listed in
Table 1 for each relevant article. As a second quality control phase,
P. Borrelli randomly inspected about 5% of the articles reviewed by
the authors and verifiedwhether the gathered informationwas com-
plete. P. Borrelli reviewed the database to identify and rectify the
most evident inconsistencies, misclassifications, and typos.

The database is named Global Applications of Soil ErosionModelling
Tracker (GASEMT). In the case of studies reporting multiple model
applications or numerous study sites, authors created multiple individ-
ual data entries in the GASEMT database. Each entry in the database
reports information on the 42 attributes listed above (unless the re-
viewers did not find the required details and therefore reported the
term ‘unknown’). The term ‘NA’ is used as the acronym of ‘not applica-
ble’. Notably, the database only considers and reports on studies
presenting soil-erosion modelling applications with spatially and tem-
porally defined boundary conditions. In thedatabase,we did not include
data from articles that exclusively reported technical descriptions of
models, refinement of individual model parameters, or methodological
Box 1
Scopus query and acronym list of the soil erosionmodels used for the literature search (in
the title, abstract, and the keywords of the Scopus indexed articles).

Scopus search
“soil erosion” AND “model” OR:
AGNPS, ANSWERS, APSIM, CREAMS, EGEM, EPIC, EROSION-3D, EUROSEM,
GeoWEPP, GLEAMS, GUEST, KINEROS, KINEROS2, LISEM, MIKE-11, MMF, MMMF,
MOSES, MUSLE, PERFECT, PESERA, RHEM, RillGrow, RUSLE, RUSLE2, RUSLE-3D,
RWEQ, SEDEM, SEDEM/WaTEM, SERAE, STREAM, SWAT, TMDL, USLE, USPED,
WATEM, WATEM/SEDEM, WEPP, WEPS, WEQ.

4

improvement without practical applications. We excluded all articles
not written in English from the analysis.

2.2. Statistical analysis

GASEMT's records allow a comprehensive meta-analysis of soil-
erosion model predictions, which cover a diverse range of time periods
and locations globally. A subset of GASEMT data with complete inputs
that included (i) modelled soil erosion rates (Mg ha−1 yr−1), (ii) geo-
graphical coordinates, and (iii) the size of the study area (km2), allowed
statistical insights to be gained into soil-erosion model prediction pat-
terns and trends through space and time. Excluding continental and
global scale studies from this analysis, 1586 of GASEMT's modelling es-
timates met all these requirements, compiled from 786 individual
publications.

Firstly, we approximated the global land surface (km2) covered by
the recorded modelling applications together with data on total soil
loss (billion Mg yr−1), the average (x ̃) area-specific soil erosion
(Mg ha−1 yr−1), and standard deviation (σ). Secondly, we analysed
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and subdivided modelling applications by categories of i) land cover/
use, ii) type of erosion agent, iii) the scale of application (listed in
Table 1).We used the non-parametric Kruskal–Wallis test to investigate
the difference between the categories of records, accompanied by
boxplots to display the distributions of predicted erosion rates among
land use/land cover anddifferentmodels (includingminimumandmax-
imum,first quartile,median, third quartile). Temporal trendswere iden-
tified by means of simple linear regression.

3. Results

A literature search in the Elsevier's Scopus bibliographic database
resulted in 8471 articles potentially reporting soil-erosion modelling
applications. The further review process revealed that 6042 articles
(71%) were not relevant for the study, as they did not report actual
soil-erosion modelling applications. The number of articles not in
English language or not accessible totalled 513 (6%) and 241 (3%), re-
spectively. The resulting number of suitable articles was 1697 (20%),
representing 3030 data entries in GASEMT, each equal to an individual
modelling application.

3.1. Geography of the modelling applications

Fig. 1 illustrates the geographical distribution of themodelling appli-
cations grouped using a hexagonal grid to optimally visualize the
density of the observations. The 3030 individual modelling records are
spread across 126 countries and all continents except Antarctica.
These records cluster spatially into well-defined and identifiable
geographical regions. Three areas of high application density could
be observed around North America, Central/Southern Europe and
Northeast/Far East Asia. In contrast, a lower application density can be
observed in clusters covering the eastern sectors of South America,
Africa and Oceania. Numerically, Asia (n = 976) and Europe (n =
929) show the highest number of modelling applications, followed by
North America (n = 613) and to a lesser extent Africa (n = 251),
South America (n = 123) and Oceania (n = 104). An inter-country
analysis based on their number of records in GASEMT shows that the
United States of America (537) and China (450) have the highest
Fig. 1. Geographical distribution of 1833 of the 3030 GASEMT database records for which the
grouped using a hexagonal grid with a Robinson projection to represent the density of observ
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number of records in the GASEMT database, followed by India (161).
Considering the European Union (EU-28, including the United
Kingdom) as a single geographical entity, it would show the highest
number of modelling applications, totalling 841 entries. In the EU, the
highest frequencies are observed in Mediterranean countries such as
Italy (n = 173), Spain (n = 125), and Greece (n = 84). In contrast,
few model applications are available for large sectors of South
America, Western and Central Africa, and North/Central Asia, with fur-
ther decreased coverage in non-desert continental interiors. Overall,
we noted a general tendency of the studies to be located within the
main global cropland districts, as corroborated by further observations
carried out and reported in the Discussion section.

3.2. Temporal trends

A total of 1697 articles applying soil-erosion models at local/
regional/national or larger scales were published within the 24 years
(1994–2017) covered by GASEMT, with an average publication rate of
70 articles per year. Splitting the database into 4-year timewindows re-
veals an increasing trend of publications (Fig. 2), except for the 4-year
period from 2010 to 2013. The last evaluated year (2017) recorded
the highest number of annual publications (158 articles, 340 modelling
applications). Studies on soil erosion by water dominate all 4-year time
windows. In the first distinguished period (1994–1997), all 55 model-
ling applications reported in the database addressed soil erosion by
water. During this period, 51 of these studies were performed within
the three distinguished major spatial clusters i.e., USA (n = 17) and
Canada (n= 6), India (n= 16), and European Union (n= 12). Models
weremostly applied at watershed (n=23) and plot scale (n=19), with
the median size of the investigated study areas being 0.43 km2.
Interestingly, during the pioneering stage of themid-nineties, soil erosion
modelling did not lack large-scale applications (>1000 km2), e.g., Sharma
and Singh (1995) in India and Pinheiro et al. (1995) in France. In this early
period, Batjes (1996) published thefirst global assessment of land vulner-
ability to water erosion using a simplified version of the USLE model
(Wischmeier and Smith, 1978). The most applied models during
1994–1997 belonged to the Universal Soil Loss Equation family (USLE/
RUSLE; (Renard et al., 1997;Wischmeier and Smith, 1978), Productivity,
study areas' geographical coordinates could be obtained. The modelling applications are
ations optimally.



Fig. 2. Number of publications catagorised by the simulated erosive agent in the GASEMT database through time (left panel, 4-year time windows) and overall 1994–2017 (right panel).
Both panels share the same legend.

Fig. 3. Distribution of the GASEMT database modelling applications according to spatial
scale (other includes continental, farm, and global scale).
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Erosion and Runoff Functions, to Evaluate Conservation Techniques
(PERFECT; Littleboy et al., 1989), Water Erosion Prediction Model
(WEPP; Flanagan and Nearing, 1995), the Limburg Soil Erosion
Model (LISEM; De Roo et al., 1996) and the Areal Nonpoint Source
Watershed Environment Response Simulation (ANSWERS; Beasley
et al., 1980).

In time windows post-1997, modelling applications investigating
wind, tillage (downslope sediment redistribution due to tillage activ-
ity), and harvest erosion (export of sediments with harvested plants
due to soil attaching to roots or machine parts) become apparent in
the GASEMT database. Inmost time periods, the number of applications
modelling this suite of processes are below ten. Only in 2006–2009 and
2014–2017 did tillage (n = 30) and wind erosion (n = 41) exceed ten
database entries, respectively. Within 2014–2017, wind erosionmodels
show an evident increase reaching a level of applications higher than
observed in the previous 20 years. Most study areas with wind erosion
modelling records are located in the USA (n=32) and China (n=18),
while applications are mostly regional (n = 34) and plot scale (n =
30). Large scale modelling applications include five national (Baade
and Rekolainen, 2006; Borrelli et al., 2015; Hansen, 2007; Hansen
et al., 2002; Mezosi et al., 2015), two continental (Borrelli et al.,
2016, 2017a, 2017b) and one global-scale application (Chappell
and Webb, 2016). The most commonly applied wind erosion models
are the Wind Erosion Equation ((R)WEQ; Fryrear et al., 2001;
Woodruff and Armbrust, 1968), the Single-event Wind Erosion
Evaluation Program (SWEEP; Wagner, 2013), and the Wind Erosion
Prediction System (WEPS; Wagner, 1996).

3.3. Erosion processes and type of predictions

The GASEMT database has a marked dominance of water-erosion
studies, constituting 94.6% of all entries. Roughly 0.9% of the data entries
reported combined estimates of water and wind erosion, while individ-
ual simulations of wind (2.3%), tillage (1.8%), and harvest erosion (0.4%)
also contributed small parts of the database (Fig. 2). The vastmajority of
the model applications estimate only sheet and rill erosion processes
(~54%), with a smaller proportion estimating sediment yields (~27%)
and sediment budgets (net erosion/deposition) (~10%). The remaining
10% of modelling applications can be classified as stream bank erosion
(1%), mass movement (0.6%), rill (0.5%) and gully (0.3%), or more gen-
erally as sensitivity mapping (2.8%), soil displacement due to wind ero-
sion (2.3%), and others (2.5%). Overall, the vast majority of modelling
applications yield quantitative estimates of erosion (water erosion
~95%; wind erosion ~85%), whereas qualitative assessments represent
~5% of the entries. The term qualitative refers to an assessment of tem-
poral trends, spatial patterns, or driving factors, while quantitative re-
fers to a quantified assessment of sediment detachment and/or
transport. Although around 95% of the entries report quantitative
soil-erosion predictions, soil-erosion rates (in Mg ha−1 yr−1) could be
retrieved only for one-third of the studies (n = 1890; 67% of the
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quantitative models). This is because the information was missing, not
found by the reviewer, or illustrated in a figure.

3.4. Spatial scale

Global-scale soil erosion modelling applications represent ~0.6%
(n = 20) of the total entries in GASEMT (Fig. 3). The vast majority of
these global studies performed water-erosion estimations (n = 18)
using (R)USLE family models (n = 17). Because the (R)USLE family is
limited to sheet and rill processes, most of the global applications are
limited to only these processes. The only non (R)USLE global water-
erosion modelling application in GASEMT estimates the delivery of flu-
vial sediments to the coastal ocean through the BQART model (Syvitski
and Milliman, 2014). The remaining two global modelling applications
quantitatively estimate soil displacement due to water and tillage oper-
ations (Quinton et al., 2010) and the land vulnerability to wind erosion
(Chappell and Webb, 2016).

Modelling applications at the continental scale represent 0.5% (n =
13) of the entries, eleven of which rest on quantitative estimates. Conti-
nental estimates have been made mostly in Europe (n = 11), followed
by Africa (n = 1) and Oceania (n = 1) and the diversity of models ap-
plied is higher than at the global scale. In addition to classic models
such as (R)USLE and (R)WEQ, eight other large-scalemodels estimating
soil erosion at the continental scale have been applied (Borrelli et al.,
2016, 2017a, 2017b; Bosco et al., 2015; Cerdan et al., 2010; Gericke,
2015; Hessel et al., 2014; Kirkby, 2006; Li et al., 2017; Van Oost et al.,
2009; Panagos et al., 2015a; Podmanicky et al., 2011; Symeonakis and



Table 2
Lists of the top 25most applied soil erosion predictionmodels according to the records re-
ported in the GASEMT database.

Model Records % References

RUSLE 507 17.1 (Renard et al., 1997)
USLE 412 13.9 (Wischmeier and Smith, 1978)
WEPP 191 6.4 (Laflen et al., 1991)
SWAT 185 6.2 (Arnold et al., 2012)
WaTEM/SEDEM 139 4.7 (Van Oost et al., 2000)
RUSLE-SDR 115 3.9 –
USLE-SDR 64 2.2 –
LISEM 57 1.9 (De Roo et al., 1996)
Customized approach 53 1.8 –
MUSLE 52 1.7 (Williams and Berndt, 1977)
MMF 48 1.6 (Morgan et al., 1984)
AnnAGNPS 47 1.6 (Young et al., 1989)
RHEM 44 1.5 (Nearing et al., 2011)
Unknown 36 1.2 –
Erosion 3D 29 1.0 (Schmidt, 1991)
EPIC 25 0.8 (Williams et al., 1983)
PESERA 23 0.8 (Govers et al., 2003)
USPED 22 0.7 (Mitasova et al., 1996)
GeoWEPP 20 0.7 (Renschler, 2003)
RUSLE2 20 0.7 (Foster et al., 2001)
EPM 19 0.6 (Gavrilovic, 1962)
STREAM 19 0.6 (Cerdan et al., 2002)
RUSLE/SEDD 16 0.5 (Ferro and Porto, 2000)
DSESYM 15 0.5 (Yuan et al., 2015)
EUROSEM 15 0.5 (Morgan et al., 1998)
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Drake, 2010; Teng et al., 2016). Eleven out of 13 modelling applications
rested on quantitative estimation of soil erosion.

We identified 67 (~2%) national-scale modelling applications,
mostly applied in Europe (n = 34), Asia (n = 12), and North America
(n = 9). Except for three wind erosion studies in the USA and Spain
(Baade and Rekolainen, 2006;Hansen et al., 2002), all other quantitative
(n=48) and qualitative (n=3) applications focus onwater erosion. Of
these, the USA (n = 6), Czech Republic (n = 4), and Hungary (n = 4)
are examples of countries with higher modelling applications.

About 14% (n = 418) of the recorded modelling exercises fall into
regional-scale applications (x̃ = 6131 km2). Although smaller in size,
the watershed-scale applications have the largest share of entries in
the database (~59%), also including some very large study areas (x̃ =
128.5 km2). The three remaining small-scale application categories are
hillslope (~10%; x ̃ = 1 km2), farm/landscape (~0.4%; x ̃ = 0.65 km2),
and plot scale (~12.8%; x̃ = 0.0018 km2).

3.5. Aims of the modelling application

In ~40% of the GASEMT modelling applications, the authors did not
describe their specific aim. In these cases, we classify the records as
‘general’ modelling exercises. They are to be considered as modelling
applications carried out to generically assess the risk or magnitude of
soil erosion without a specific aim. This contrasts to studies explicitly
aiming to address land-use change, climate change, or their combined
effects, which represent 20.4%, 3.5%, and 3% of the total, respectively.
Other aims include the simulation of the impact of topographic change
(3.7%), soil and water conservation (13.7%), ploughing impact (4.5%),
forest harvesting (1.7%), wildfire (1.4%) andmining (0.3%). Studies sim-
ulating soil erosion dynamics in the present (52.4%), past (26.7%), or
both (8.4%) representmost of the entries in thedatabase (i.e., 87.5%). Al-
though less common, studies providing either future or combined pres-
ent and future projections of soil erosion still cover a relevant share of
the entries with 3.8% and 5.9%, respectively. For the remaining entries
(~2.8%), the modelling application's temporal frame was not specified
(classified as ‘unknown’ in GASEMT).

More than half of the modelling applications estimate soil erosion
considering all types of land uses/land covers present in the investigated
area (n = 1575; ~54.4%). Agricultural areas in general, and exclusively
arable land, are modelled specifically in only about 13.6% and 9.3% of
the cases, respectively. The remaining modelling applications address
forests (5.1%), grassland/rangeland (4.7%) and to a lesser extent bare
soil (2.4%), pasturelands (1.4%), agroforestry (0.8%), riverbank (0.6%),
and mine soil (0.1%). For the remaining ~7.5% of entries it was not pos-
sible to retrieve land-use/cover information.

Concerning the procedures employed to describe land-use/cover
conditions, according to the studies that explicitly provided this infor-
mation (~79% of the total), most of the studies used existing land-use
maps (25.4%), created their maps through remote sensing (23.8%), or
combined the two (12.3%). A considerable number of studies (18.1%),
however, performed field mapping/observations. For the remaining
~20%, classification information was not available.

3.6. Models, input data and outcomes

Overall, 435 distinct models and model variants are listed in the
GASEMT database, although several cases indicated that different no-
menclature referred to the same modelling approaches. Table 2 lists
the 25 most applied models and offers an example of the issue related
to the heterogeneous model nomenclature (e.g., USLE, RUSLE and
USLE-SDR, RUSLE-SDR, SEDD). In their different forms and applications,
the models belonging to the (R)USLE-family are by far the most widely
applied soil erosion predictionmodels globally, with over 1200 applica-
tions (~41% of the total). These numbers would be higher if USLE-type
models such as WaTEM/SEDEM, EPIC, SWAT, and USPED were to be
counted as members of the (R)USLE group. Modelling approaches
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independent from the USLE such as the process-based WEPP (n =
224; 7.4%), LISEM (n = 58; 1.9%), EROSION-3D (n = 30; 1%), the Pan
European Soil Erosion Risk Assessment (PESERA, Kirkby et al., 2004)
(n = 24; 0.8%), and the European Soil Erosion Model (EUROSEM,
Morgan et al., 1998) (n=17; 0.6%) together cover ~12% of total models.
The next most common empirical models after (R)USLE are the Soil
and Water Assessment Tool (SWAT, Arnold et al., 1998) (n = 183;
6%), the Water and Tillage Erosion Model, the Sediment Delivery
Model (WaTEM/SEDEM, Van Oost et al., 2000) (n = 139; 4.6%), and
the Morgan-Morgan–Finney ((R)MMF, Morgan et al., 1984) n =
61; 2%).

The division into 4-year time windows (Fig. 4) indicates an evident
increasing trend of (R)USLE, SWAT, and WaTEM/SEDEM usage, and to
a lesser extent, WEPP, AGNPS, MMF, Erosion 3D, and LISEM. In contrast,
the use of EUROSEM shows a negative trend over time.

Concerning model spatial resolution, surprisingly, such information
was not reported in more than half of the modelling applications
(~56%). From the reported studies, very high (≤ 5 m cell size) and high
(> 5 m and ≤ 25 m cell size) spatial resolution modelling outputs re-
spectively represent about 7.2% and 11.9% of the total. In most cases,
these models are applied at the watershed, hillslope, and plot scales, al-
though there are also a few national-scale applications (n = 10) and a
pan-European one. Medium (> 25 m and ≤ 150 m) and moderate cell
size (> 150 m and ≤ 300 m) outcomes were used for about 19.8% and
1.6% of the records, respectively. The remaining model applications
(~3%) predicted soil-erosion rates with a coarse cell size between 330
and 60,000 m. Temporal analysis of the database shows a trend of de-
creasing cell sizes in modelled study areas at the watershed scale and
below. Affinities between model type and grid-scale were not present
except for in large-scale applications. These are mainly performed
using empirical models of the (R)USLE and (R)WEQ families for water
and wind erosion, respectively. Validation/evaluation of the modelling
results was performed in most cases (~58%) in the 1697 artcles thor-
oughly reviewed in GASEMT. Themost frequently used validation/eval-
uationmethod is the comparison of themodelling estimates against the
measured sediment yield (SY) values (~26%). Comparisons against
field-measured erosion rates, results of other models, and expert
knowledge formed a total of ~18, ~10, and ~ 3%, respectively. Linear re-
gression indicated that in the early period (1994–2000) of soil-erosion



Fig. 4. Number of publications according to models in the GASEMT database through time (left) (4-year time windows) and overall distribution (right).
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modelling the percentage of studies accompanied by validation/evalua-
tion was higher. Although not statistically significant, we observed a
slightly decreasing trend starting in 2015. The vast majority of non-
traditional models – those only applied around one to five times – pro-
vide a validation/evaluation of the results. Of the most applied models,
those with the highest share of validation/evaluation (>85%) are
ANSWERS, PERFECT, USLE-M, DSESYM, and EUROSEM. SWAT and
WaTEM/SEDEM both have values around 80%, while LISEM, WEPP,
and MMF total 72, 66, and 63.3%, respectively. Applications of USLE
and RUSLE models show reasonably high (63–69%) validation/evalua-
tion values when applied to simulate SY. However, these values drop
when validating/evaluating hillslope gross erosion estimates (RUSLE:
41%; USLE: 34%). Except for the modelling results validated/evaluated
throughmeasured SY and comparisons with results from other models,
different forms of validation/evaluation are not adequately detailed in
the current version of GASEMT. These were classified as ‘measured ero-
sion rates’ or ‘expert knowledge’. These two categories are too broad
and generic when considered a posteriori and should be better defined
in future versions of the database. An extensive set of techniques are in-
cluded in the validation/evaluation group, ranging from volumetric loss
measurement (e.g., pins, cross-sections, contour gauge, and terrestrial
laser scanning) to qualitative observations performed through field ob-
servations and remote sensing. About one-third of the entries reported
model calibration. Themodels with the highest shares of calibration are
SWAT, LISEM, WaTEM/SEDEM, and MMF. Specific information about
the calibration techniques was not collected, as these were found to
be highly variable and difficult to classify given the extensive range of
models considered.

Some level of field-based data collection exists in over half of the
modelling application cases. In-situ soil erosion measurements are the
most common field activity associated with modelling, followed by
field observation and soil sampling formodellingparametrization.Map-
ping of erosion features is relatively infrequent, totalling less than 3% of
the field activities.

3.7. Statistical analysis

Overall, the model area covers an approximated total surface of 48.3
million km2. This area covers about 32% of theWorld's land area assum-
ing (i) a total area of 149 million km2 and (ii) a marginal overlap be-
tween the modelled areas contributing to the GASEMT database. The
predicted annual soil erosion totals 80.4 billion Mg yr−1, with an aver-
age area-specific soil erosion rate of 16.6 Mg ha−1 yr−1 (x ̃ =
7.4 Mg ha−1 yr−1; σ = 39.8 Mg ha−1 yr−1). As expected, a significant
difference between median values of gross (x ̃ = 10 Mg ha−1 yr−1)
and net (x̃=5.4Mgha−1 yr−1) erosion is observed. In the gross erosion
category, all modelling applications that did not consider re-deposition
are included (e.g., traditional (R)USLE-based models)). In contrast, the
net erosion category includes modelling applications that predict
sediment yield from a plot, hillslope, or watershed. Models spatially
predicting explicit net soil erosion/deposition rates (named in GASEMT
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as sediment budget models, e.g., WaTEM/SEDEM) show a lower median
value equal to 4 Mg ha−1 yr−1 (x̄ = 14.1 Mg ha−1 yr−1).

An analysis of estimated soil-erosion rates suggests thatmoderate to
severe erosion is a common phenomenon under all climatic conditions
encompassing all continents (except Antarctica). Fig. 5a shows that the
vast majority of predicted soil-erosion rates refer to water erosion and
to a much lesser extent to tillage (n = 37) and wind (n = 18) erosion.
The predicted median values are 30.1 and 6.3 Mg ha−1 yr−1 for tillage
and wind erosion, respectively. In terms of geographical region, the
number of modelled occurrences of high and severe soil-erosion rates
in Asia and Europe exceeds that in Africa, South America, and North
America (Fig. 5b). Fig. 5c shows the categorical distribution of the pre-
dicted soil erosion rates scaled by intensity. Extremely high average
rates (greater than 100 Mg ha−1 yr−1) of soil erosion are reported in
57 studies (76 entries), of which most are predicted in watershed-
scale applications in Europe (~40%), Asia (~30%), and Africa (~17%). Sur-
prisingly, most of the applications with extremely high erosion rates
(73%) are so-called ‘generic modelling assessments’, which typically in-
dicates that a model has been applied to heterogeneous land cover/use
that includes natural and semi-natural vegetation (e.g., unmanaged
grassland, bushland). Therefore, these studies did not target specific
land disturbances such as wildfires, forest logging, or land-use changes
for which severe soil erosion can be associated. Approximately 18% of
the modelling applications reported in the GASEMT database aimed at
land use or climate changes as the modelling objective.

Comparing soil-erosion rates by land cover/use types (Fig. 6),we ob-
serve a substantial decline in soil-erosion rates (reported in mm yr−1

assuming an average bulk density of 1.35 g cm−3) from bare soil (x̃ =
1.2 mm yr−1) to agricultural areas (generic, x̃ = 0.3 mm yr−1; arable
land, x̃ = 0.5 mm yr−1; agroforestry, x̃ = 0.1 mm yr−1), forests (x̃ =
0.2 mm yr−1) and other forms of semi-natural vegetation (x ̃ =
0.2 mm yr−1). When all land uses are modelled, we obtain a median
value of 0.75 mm yr−1. This distribution of soil erosion rates among
the different land cover/use units fit those reported by Montgomery
(2007) and Borrelli et al. (2017a, 2017b) for values observed from
field measurements. However, the agreement is better for the values
predicted in agricultural areas than those predicted in the grass and for-
estland areas.

The non-parametric Kruskal-Wallis test confirmed the absence of a
statistically significant difference between measured soil erosion rates
and those measured in arable lands. Modelled grass and forestland
rates show a tendency to exceed their field measurement counterparts
with median values in the order of 0.2 mm yr−1, considerably higher
than those observed in field measurements which are placed at 0.001
and 0.01 mm yr−1 for forest and semi-natural vegetation, respectively.
The disagreement between modelling results and field measurements
could be partially explained by the fact that in more than 50% of the
modelling exercises considering forestland and grassland areas changes
in land cover/use or vegetation disturbances are reported. Cerdan et al.
(2010) hypothesized that field measurements in arable lands could be
biased towards areas known to be exposed to erosion processes.



Fig. 5.Distribution of the estimated soil-erosion rates (gross and net) categorized by erosion agent (panel a), continent (panel b), and spatial scale (panel c). Values in the cells and colour
legend represent the numbers of occurrences in the database.
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Similarly, our analysis results lead us to hypothesize that the modelling
applications explicitly addressing forestland and grasslands could be bi-
ased towards areas experiencing human-induced disturbances.

The boxplots in Fig. 7 illustrate the key descriptive statistics of the
soil-erosion estimates derived from the nine most commonly encoun-
tered models in the GASEMT database. Soil erosion rates predicted by
models classified within the ‘net erosion’ group (and thus evaluating
the budget between soil erosion and deposition either on plot scale or
as net sediment transfer to downslope locations), such as AnnAGNPS
(x̃ = 3.3 Mg ha−1 yr−1), LISEM (x̃ = 3.5 Mg ha−1 yr−1), SWAT (x̃ =
6.4 Mg ha−1 yr−1), WaTEM/SEDEM (x ̃ = 1.4 Mg ha−1 yr−1), and
WEPP (x̃ = 4.0 Mg ha−1 yr−1), show both a lower spread and median
values compared to the models classified within ‘gross erosion group’,
i.e., RUSLE (x̃ = 12.6 Mg ha−1 yr−1) and USLE (x̃ = 9.6 Mg ha−1 yr−1).
In GASEMT, USLE-typemodels adopting a sediment delivery ratio (SDR)
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to estimate sediment yields are classified as RUSLE-SDR (x ̃ =
8.3 Mg ha−1 yr−1) and USLE-SDR (x ̃ = 1.8 Mg ha−1 yr−1). Models
predicting net erosion (sediment yield) show average values lower
than those simulating only gross erosion (RUSLE and USLE). This condi-
tion is more evident for the USLE-SDR models than the RUSLE-SDR
models. A further observation of the boxplots shows that, except for
the most commonly applied RUSLE model (345 records or 32% of the
total), all othermodels have amedian value below the 10Mgha−1 yr−1.
Overall, models simulating gross erosion rates show higher values with
higher variability than models predicting net erosion, reflecting
(i) sediment deposition within the landscape, and (ii) the smoothing
of extreme values by incorporating topographic variability in the net
erosion models.

Fig. 8 shows the geographical distribution of themodelling estimates
from the subset of 1586 studies. The circle sizes are proportional to the



Fig. 6. Comparison ofmodelled erosion rates under different land covers. Note that the outliers >8mmyr−1 are excluded in the graphic. The boxplots display the interquartile range (grey
boxes), the median (horizontal bold black lines), the 10th and 90th percentile (horizontal black lines) and outliers (dots).
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size of the study area, while the chromatic scale symbolizes the magni-
tude of the predicted erosion rates. As illustrated, quantitative estimates
of soil erosion are available in all continents (except Antarctica) and
under all climatic conditions, although the distribution is highly non-
uniform. Aggregating estimates per general climatic zone reveals evi-
dent latitudinal trends, with the highest average values in the tropical
zones (x ̄ = 29.1; x ̃ = 11.2; σ = 51.3 Mg ha−1 yr−1; 20.5% of the
sites), steadily decreasing through subtropical zones (x ̄ = 29.5; x ̃ =
9.1; σ= 102.2 Mg ha−1 yr−1; 34.4% of the sites), temperate zones (x̄ =
16.1; x̃ = 4.1; σ = 33.7 Mg ha−1 yr−1; 44.2% of the sites), and polar
and subpolar zones (x̄ = 3.0; x̃ = 1.4; σ = 3.7 Mg ha−1 yr−1; 0.9% of
the sites). High predicted values (x̃ > 20 Mg ha−1 yr−1) could mainly
Fig. 7. Comparison of the predicted soil erosion rates of the ninemodels most commonly occurr
graphic. The boxplots display the interquartile range (grey boxes), the median (horizontal bol
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be observed in Africa (Rwanda, Mauritius, Burkina Faso, Ghana, Kenya,
Congo, Malawi, and Somalia), and to a lesser extent in Asia (Lebanon,
Tibet, and Jordan), Europe (Portugal, Italy, and Greece), Southeast Asia
(Malaysia and Indonesia), and South America (Nicaragua).

4. Discussion

The collaboration of 67 scientists from 25 countries representing all
continents (except Antarctica) allowed the creation of GASEMT. The da-
tabase is composed of 3030 individual modelling records (applied in
126 countries), retrieved from 1697 articles that were thoroughly
reviewed. The database contains information on most of the existing
ing in the GASEMT database. Note that the outliers >100Mg ha−1 yr−1 are excluded in the
d black lines), the 10th and 90th percentile (horizontal black bars), and outliers (dots).



Fig. 8.Geographical distribution of the 1586 quantitativemodelling estimates, including the study area's size (proportional to the size of circles) and predicted soil erosion rates (chromatic
scale). Robinson projection.
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peer-reviewed literature reporting spatially-explicit soil- erosion
modelling applications. Accordingly, studies reporting only theoretical
descriptions of models or enhancements of single models, components,
or parameters were not considered suitable for the analysis. Similarly,
studies reporting on measurements only, e.g., the analysis of fallout ra-
dionuclides as indicators of erosion processes (Lizaga et al., 2018; Mabit
et al., 2019), were not taken into account.

With a set of 42 different attributes retrieved fromeach reviewed ar-
ticle (depending on availability), GASEMT constitutes a source of pre-
structured literature information and references. The large number of
records of this databasemakes it a highly practical source of information
and a powerful tool for further research. Here, our attention and interest
mainly address the observation and description of the general aspects of
the soil-erosion modelling applications worldwide. However, we be-
lieve that GASEMT can be useful to comprehensively target a number
of further in-depth studies and observations. Further analysis could dis-
aggregate the information reported in GASEMT to address specific ero-
sion agents and processes, methodologies, or geographical regions. We
provided all details in the Supplementary Information (Appendix A) of
this study. Bezak et al. (2021) provide a practical example of the
GaSEM database's further use, investigating the relationship between
soil erosion modelling and bibliometric characteristics (applying a gen-
eralized boosted regression tree model).

In the following, we discuss the implications of our results linking
the findings obtained by the analysis of GASEMT to (i) evaluate which
processes and models are primarily addressed in the literature, (ii) in
which regionsmodels are mainly applied, (iii) what regions remain un-
addressed and (iv) how frequently validation/evaluation attempts of
the model outcomes were performed with measured data.

Evaluation of the processes and models primarily addressed in the liter-
ature. In a recent review study, Poesen (2018) addressed the need for
more research in understanding both natural and anthropogenic soil
erosion processes. Borrelli et al. (2017a, 2017b) noted a disparity in
the literature between wind and water erosion studies in Europe, in
terms of knowledge depth, number of peer-reviewed publications,
11
and the number of ongoing field experiments. Today, a search in Scopus
using the terms ‘erosion and water’ results in 52,730mentions in publi-
cations, ‘erosion and wind’ is found in ca. 9488, ‘erosion and gully’ in ca.
3896 publications. In contrast, ‘erosion and piping’ and ‘erosion and
harvest’ are found only in 1556 and 1037 documents, respectively
(Scopus, 21.02.2020). These numbers provide a primary indication
that over the last decades more attention has been dedicated to water
erosion, therefore presumably more research, process description, and
understanding. In contrast, other erosion processes seem to remain
local environmental threats and thus have attracted less interest
(Bernatek-Jakiel and Poesen, 2018; Panagos et al., 2019; Poesen, 2018;
Van Oost et al., 2004). Information on spatial modelling applications re-
ported in GASEMT confirms a lack of variety in the soil-erosion pro-
cesses addressed. Notably, around 95% of modelling applications
predicted water as the erosional agent, in contrast to few applications
dealing with wind (39), tillage (23), or harvest erosion (3) processes.
This means that ~85% of models and their varients developed so far
have addressed water erosion, and in particular the vast majority (esti-
mated between 50 and 80%) of these have focussed on the prediction of
sheet and rill processes. We argue that this disproportionate attention
dedicated to sheet and rill processes as erosion agents may poorly
reflect their importance in terms of spatial extent and magnitude
(Boardman and Poesen, 2006; Lal, 2007; Oldeman, 1994). Instead, the
marked focus on sheet and rill erosion may be due to i) the current
state-of-the-art in process understanding, ii) their established applica-
bility to agricultural decision making, iii) the availability of measure-
ment and modelling tools, and iiii) their successful coupling with GIS
interfaces. In addition, the lack of literature on soil-erosion modelling
from large regions where wind erosion is widespread, such as Asia
(e.g., Russia), may contribute to this inequality.

Water-erosion models have been increasingly coupled with GIS in-
terfaces during the last few decades, thus allowing the upscaling of
soil erosion assessments from field to watershed scale and above.
Upscaling has helped focus land-management decisions, e.g., allowing
for greater precision in identification of higher erosion risk areas. At
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the same time, quantitative attempts to integrate wind and tillage ero-
sion prediction models into GIS environments have been less straight-
forward, although quite a few applications have reached beyond the
field scale. For instance, the latest reference document of the UN (FAO
and ITPS, 2015) reports that a likely range of global soil erosion by
water is 20–30 Gt yr−1, while tillage erosion may amount to ca. 5 Gt
yr−1. These numbers, presumably based on the study of Quinton et al.
(2010) reported in GASEMT, suggest that tillage erosion could account
for up to 25% of water erosion globally. Modelling results reported by
Borrelli et al. (2017a, 2017b) indicated that wind erosionmight be a rel-
evant phenomenon for Europe, although this land-degradation process
has been overlooked until very recently. Their estimates suggest soil
erosion values can be particularly high for the arable land of Denmark
(~3 Mg ha−1 yr−1), the Netherlands (2.6 Mg ha−1 yr−1), and the
United Kingdom (~1 Mg ha−1 yr−1); indicating that wind erosion may
be a major agent of soil erosion in localised areas. Quantitative assess-
ments of wind erosion over large areas in China and Iran reported in
GASEMT show average soil-erosion values well above 10 Mg ha−1 yr−1

(Jabbar et al., 2006; Rezaei et al., 2016; Zhang andMcBean, 2016). In ad-
dition, the 37% of the GASEMT records reporting wind and tillage ero-
sion predicted high soil erosion rates (x ̃ = 10.2 Mg ha−1 yr−1) that
may locally represent a threat to agricultural productivity and the sus-
tainability of the Earth's natural resources.

Broad spatiotemporal trends inmodel applications are evident glob-
ally. In their different forms and applications, models belonging to the
(R)USLE-family are by far the most widely applied soil-erosion models
globally. They cover ~41% of the total records in the database. This
value could increase to ~55% if USLE-based models such as WaTEM/
SEDEM, EPIC, SWAT were included in the same category. In line with
the observation of Alewell et al. (2019), we also found a strong rising
trend (R2 0.82 significance level < 0.001) of (R)USLE-type applications
across all continents. Other models showing both rising trends and
worldwide applications are SWAT (R2 0.78 significance level < 0.001),
WEPP-type (R2 0.27 significance level < 0.01), WaTEM/SEDEM (R2

0.27 significance level < 0.01), and to a lesser extent RHEM (R2 0.21 sig-
nificance level < 0.02) which remains almost exclusively applied in the
United States of America. Other models had either no significant trend
(MMF-type, LISEM) or had slightly negative trends (EUROSEM). In
2017, the last year of our observations, RUSLE-type applications (n =
153)were usedmany timesmore frequently as themost commonly ap-
plied process-basedmodels, i.e.,WEPP (n=11), RHEM (n=6), PESERA
(n = 2), LISEM (n = 1), EUROSEM (n = 0).

Regions wheremodels are mainly applied. We analysed the spatial dis-
tribution of modelling applications using a subset of 1833 records for
which the spatial coordinates of their centroids could be gathered
(shown in Fig. 1). The worldwide increase in usage of models with low
input demand, such as (R)USLE-type, SWAT, andWaTEM/SEDEM, is ac-
companied by a significant rise in the size of themodelled areas (R2 0.41
significance level < 0.001). The geographical distribution of soil-erosion
modelling itself is clustered within well-defined geographical regions in
North America, Europe and Southeast Asia. We found six countries to
possess about 50% of the total modelling studies (i.e., United States of
America, China, Italy, India, Spain and Australia). A higher incidence of
modelled sites in temperate and subtropical zones can be also observed,
while theoccurrence in tropical regions is notably lower (~15%). This sit-
uation contrasts with a general understanding of the geography of soil-
erosion processes emerging from field observations, indicating that
tropical zones are more prone to erosion (Boardman, 2006). A phenom-
enon also confirmed by global expert-based qualitative assessments
such as (GLASOD; Oldeman, 1994) and quantitative modelling descrip-
tions of major soil-erosion drivers (Chappell and Webb, 2016; Panagos
et al., 2017), which indicate tropical regions as being highly susceptible
to erosion (Labrière et al., 2015). The GASEMT database demonstrates
the lower incidence of studies in the tropics and subtropical regions,
while latitudinal trends indicate higher soil erosion on average in the
tropics (Fig. 8). The gradually increasing erosion rates from the subpolar
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zones to the temperate, the subtropical, andfinally the tropics are paired
with decreasing investigation intensity and thus a noticeable lack of
knowledge. This situation indicates that the urgency of environmental
impact assessment does not necessarily drive erosion modelling, but
more the spatial occurrence and frequency of studies in the countries
publishing the most science articles in peer-reviewed journals (Forbes,
2020). García-Ruiz et al. (2015) observed in a similar study evaluating
measured soil erosion rates that their spatial occurrence does not neces-
sarily reflect the regional relevance of soil erosion processes, but rather
the spatial concomitance of soil-erosion processes with scientific groups
interested in this topic and publishing their research outcomes in inter-
national literature. The overall volume of research on soil erosion
modelling may be considerably larger, as suggested by the 419,000 re-
sults obtained searching for ‘soil erosion modelling’ in Google Scholar.

A comparison of the spatial patterns of the soil erosion ratemeasure-
ments collected by García-Ruiz et al. (2015) (Fig. 9) and the modelling
applications gathered in this study (Fig. 8) indicates that model applica-
tions have amore even distribution globally. Although a significant spa-
tial agreement between the two datasets can be observed in North and
South America, Western Europe, and Eastern Africa, models appear to
be more applied in regions that rarely report field measurements such
as India, China, and Southeast Asia. While it is generally agreed in the
scientific world that models should be validated/evaluated with mea-
sured data, erosion measurements are often as uncertain as modelling
(Batista et al., 2019; Alewell et al., 2019), and are not in existence in
many areas of the world. As such, modelling endeavours must be seen
as hypotheses on temporal trends, spatial patterns, driving factors,
and triggering processes.

Regions unaddressed by modelling. Without considering global and
continental-scale studies, plot- to national-scale modelling applications
would jointly cover a surface of approximately 48 million km2, equal to
32% of theworld's land. This estimate assumesmarginal overlap between
the modelled areas within the GASEMT records. Further analysis/refine-
ment of the data, excluding the most apparent spatial overlaps, results
in about 35 million km2 of modelled land, or a realistic range between
25 and 35 million km2. Of this 35 million km2, about 66% is due to
national-scale studies in the USA (~28.4%), China (~27.7%), and India
(~9.5%). As expected from model application frequency, soil erosion by
water dominatedmost of themodelled area, leavingwind and tillage ero-
sion with values at approximately 2.5 and 0.12 million km2, respectively.

We noted a general tendency of studies to be located around the
main global cropland areas. These insights are corroborated by
Fig. 10a, which overlaps the hexagonal pixels of modelled areas to
global croplands (Hurtt et al., 2020; Stehfest et al., 2014). Based on the
available peer-reviewed English-language journals, large areas
exploited for crop production in Russia and East Europe, Central Asia,
throughoutmost of Africa, and SouthAmerica seem to be poorly studied
through soil-erosion modelling. However, this can also be the result of
more publishing in the local language or technical reports.

Fig. 10b presents the average annual rainfall for the period
1960–1990 (www.worldclim.org). Comparing rainfall patterns in
Fig. 10b with the soil-erosion modelling applications indicates that
areas characterized by low to medium rainfall values have been more
intensely studied compared to regions in wet climates covered or for-
merly covered by tropical rainforest. These conditions are particularly
noticeable along areas characterized by high rainfall erosivity in
South-Eastern Asia (Cambodia, Indonesia, Malaysia, the Philippines,
and Bangladesh), Central Africa (Congo and Cameroon), South
America (Brazil, Colombia, and Peru), Central America, and the Carib-
bean (Panagos et al., 2017). Some of the regions poorly represented by
soil-erosionmodelling studies have experienced, andwill probably con-
tinue to experience (Global Change AssessmentModel (GCAM) RCP 6.0,
Hurtt et al., 2020) (Fig. 10c), increasing trends of forest logging and
cropland expansion (Hansen et al., 2013). This vulnerability could also
be accompanied by a trend towards increasing rainfall intensities in
these regions, as predicted by several future projections (Hijmans

http://www.worldclim.org


Fig. 10.Geographical distribution (Robinsonprojection) of 1833Global Applications of Soil ErosionModelling Tracker (GASEMT), grouped using a hexagonal grid, superimposed on (panel
a) the global cropland according to the IMAGE model year 2015 (Hurtt et al., 2020; Stehfest et al., 2014), (panel b) global annual rainfall (Hijmans et al., 2005), (panel c) global yearly
changes in the agricultural area between the reference period 2015 and 2070 projections (Global Change Assessment Model (GCAM) RCP 6.0, Hurtt et al., 2020), and the water and
wind erosion severity according to the Global Assessment of Soil Degradation (GLASOD) (panel d). The degree of damage is indicated from low (1) to severe (4). This figure is
available at high-resolution in the Supplementary Information (Fig. S3).

Fig. 9. Spatial distribution (Robinson projection) of the sites reported in García-Ruiz et al. (2015) database on soil erosion field measurements.
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et al., 2005). Modelling projections suggest that tropical countries such
as Peru, Brazil, several countries inWestern Africa, Cameroon, Ethiopia,
Somalia, Kenya, Yemen, Southern Pakistan, India, Myanmar, Southeast
China, Philippines, and Indonesia may be significantly affected by in-
creased soil erosion (Borrelli et al., 2020). In addition, roughly two and
a half billion people currently live in these countries and their popula-
tions show signs of significant expansion (Bongaarts, 2016). Fig. 10d
shows a strong spatial agreement between soil-erosion modelling
study areas and the areas reported to be affected by water and wind
erosion by the expert-based GLASOD, promoted by United Nations
Environmental Programme. GLASODwas developed from the combina-
tion of data provided bymore than 300 scientists from several countries.
Although qualitative in nature, and potentially affected by the different
perceptions of the contributing scientists, the GLASOD is still based on
extensive field observations. The comparison between the patterns of
the application of soil-erosion modelling and the independent GLASOD
map provides insights into where modelling is being applied compared
to its perceived needs. It should be noted that GLASOD refers to observa-
tions made during the 1980s and important global land-use changes
have occurred in the following decades, which GLASOD does not reflect.

Frequency of model validation/evaluation attempts of modelling
outcomes against measured data. Validation/evaluation of modelling re-
sults was applied in most of the cases in GASEMT (~58%). Plot-scale
modelling (13% of the total records) shows higher levels of validation/
evaluation (~68%) and calibration (~38%), mostly performed through
volumetric measured erosion rates (37.8%) and collecting sediment
yield (25%). Rising trends in studies reporting validation/evaluation
(R2 0.77 significance level < 0.001) and calibration (R2 0.92 significance
level < 0.001) procedures could also be observed, with recent higher
values related to sediment-delivery models such as SWAT, WaTEM/
SEDEM, and LISEM. However, as a proportion of total annual modelling
applications, the trend in the number of models validated/evaluated
and calibrated is negative. For example, a transition is observable from
80 to 90% of studies validated/evaluated in 1995–2000 to 60–70% in
2015–2017. The aforementioned trendmight partly be due to the recent
increase in modelling studies from countries and regions with a low
measurement density (Figs. 8 and 9).

Validation/evaluation procedures based on the comparison of ob-
served versus simulated sediment loads at the outlet cover the largest
record share (n = 798 GASEMT records). While the application of this
type of validation/evaluation seems most logical for prediction at plot
scale (n = 102) (Nearing, 2000), outlet-based validations/evaluations
applied at the watershed scale (n = 605) leaves room for concern
regarding the effectiveness of the validation/evaluation procedure
(Borrelli et al., 2014; De Vente and Poesen, 2005). As derived from our
analysis, most of the models validated/evaluated through outlet-based
procedures (SWAT, WaTEM/SEDEM, and (R)USLE-SDR, among others)
provide estimates of soil erosion only due to sheet and rill processes.
Most models cannot directly or indirectly account for the soil displace-
ment due to gully and tillage erosion processes. Most do not model
other geomorphic processes such as landslides, riverbank erosion, and
riverbed and floodplain deposition. Other validation/evaluationmethods
more commonly encountered in GASEMT records are based on mea-
sured erosion rates (n = 536). Unexpectedly, a substantial proportion
evaluated model performances come through comparisons with other
model simulations (n = 305).

Published studies profusely described the lack of data and knowl-
edge which currently limits the capacity to perform validations sensu
strictu (Auerswald et al., 2003) of modelling results beyond plot and
hillslope scales (Alewell et al., 2019; Auerswald et al., 2003; De Vente
et al., 2013; De Vente and Poesen, 2005). Knowledge gained from our
analysis indicates that many soil-erosion models are applied determin-
istically (without validation/evaluation of the results). However, both
small- (plot and hillslope) and large-scale applications (watershed
and regional) show rather high levels of validation/evaluation attempts
(understood here as a comparison of modelled to observed data or
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modelled to a second independent modelled data set) of the results
(above 45% in all cases). Nevertheless, while the comparisons versus
in situ measured erosion rates result in appropriate validation/evalua-
tion procedures for plot and hillslope scale predictions, the lack of
long-term observations andmeasurements at thewatershed to regional
scale poses serious limits to models applied at such scales.

As pointed out by this review study, a large number of models have
been developed over the last three decades. They range from simplistic
expressions to highly articulated and complexmodels able to consider a
large number of interacting factors and physical relationships. Models
listed in GASEMT can be classified into three modelling categories: em-
pirical, semi-empirical, and physically-based (or process-oriented). Ac-
cording to GASEMT records (Table 2), the ten most applied soil erosion
models include all these three categories. USLE-type models dominate
both, empirical (USLE, RUSLE, and AnnAGNPS) and semi-empirical
(SWAT, WaTEM/SEDEM, MUSLE) models. The remaining four models
are either semi-physically based models, like MMF, which has charac-
teristics of both physically based and empirical models, or physically-
based ones such as WEPP, LISEM, and RHEM.

The threemost applied empiricalmodels are characterized by differ-
ent evolutional stages of USLE equations. USLE had its roots in the 1930s
when the US government passed the Soil Conservation Act. During the
same period, President Franklin D. Roosevelt stated: “The history of
every Nation is eventually written in the way in which it cares for its
soil.” USLE is a result of statistical analysis of more than 10,000 plot-
years of basic runoff and soil loss, using plots with less than or equal
to 122mand a slope of 3 to 18%. The relationship between soil loss, rain-
fall erosivity and soil type is corrected using information on slope steep-
ness, slope length, crop cover, and anti-erosive measures management.
As with all empirical methods, Alewell et al. (2019) observed that the
model concept is not based on process descriptions and simulations.
Rather it rests on understanding the processes, capturing the confound-
ingmeasureable parameters, and delineating a mathematical algorithm
from the relationship between these parameters and themeasured out-
put, i.e., measured eroded sediments. Based on statistical relationships,
the model's empirical nature influences the required computational
processes, which makes it relatively simple and keeps data require-
ments affordable. USLE-type models predict long-term annual averages
of soil loss. They belong to the detachment limited model type. This
means that although the overland flow may theoretically transport an
infinite sediment amount, the quantity of sediment available to be
moved is limited by the soil detachment capacity defined by the
rainfall's erosivity. Annual soil loss per unit area and time (Mg ha−1-

yr−1) is given by a multiplicative equation of six factors: driving force
(erosivity of the climate, R), a resistance term (erodibility of the soil,
K), as well as other factors representing farming choices, i.e., the topo-
graphical conformation of the field (LS), cropping system (C) and soil
conservation practices (P). A set of six primary factors and less than
20 sub-factors are generally needed to predict soil loss in a given phys-
iographic unit (slope, watershed, and region). The main limitation of
empirical models for predicting soil erosion is their inability to be ap-
plied outside the geographical conditions where their statistical rela-
tionships were derived from. Despite plot measurements of 49 US
locations in a large variety of landscape conditions, Wischmeier and
Smith (1978) noted that insufficientmeasureddata exist to rigorously de-
termine the single factors for all needed situations and scenarios. Nearing
(2004) observed that USLE-type models also have limitations in their
structure, allowing only for limited interactions and inter-relationships
between its basic multiplicative factors. Considering current modelling
applications and needs, another major limitation of USLE-type models is
the absence of algorithms predicting deposition and sediment yields.

Semi-empirical models (i.e., MUSLE, WaTEM/SEDEM, SWAT) listed
inGASEMT are a combination of empirical andphysically-basedmodels,
where the empirical component is the dominant component. Themajor
advance compared to the traditional USLE applications is the integration
of equations to describe (simplistically) erosion and sediment transport
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processes in order to predict sediment yields. MUSLE and SWAT share
the samemodelling schemewith aminimal difference. They implement
USLE replacing climate R factor with the total event runoff (m3) and the
event peak discharge (m3 s−1), while all other USLE factors (K, LS, C, and
P) remain unchanged. This modification allows the equation to be ap-
plied to individual stormevents (Arnold et al., 1998). A partial drawback
of such models is their semi-distributed nature, which only allows esti-
mating the amounts of sediment produced at watershed outlets, with-
out providing spatially explicit results. In this regard, WaTEM/SEDEM
represents a substantial difference. It is a spatially distributed sediment
delivery model capable to represent erosion and deposition areas for
single raster cells (and river sediment yields). Unlike SWAT and
MUSLE, WaTEM/SEDEM is not a continuous-time model and can only
estimate long-term average rates of annual soil loss and deposition.
The soil loss is computed with the very same multi-parameter scheme
generally used by USLE-type models. Subsequently, the model routes
sediments downslope across each pixel from hillslopes to the riverine
systems, using a transport capacity coefficient computed based on to-
pography and land cover. A further improvement of models such as
MUSLE, WaTEM/SEDEM, SWAT is the calibration of some input pa-
rameters against observed data, e.g., water discharge and sediment
concentration.

Physically-based models, or process-oriented, result from more re-
cent efforts to more comprehensively represent the complexity of soil
erosion, transport, and deposition processes. They consist of algorithms
derived from theoretical principles that aim to explain and predict Earth
system's dynamic behavior as a whole. These models have advantages
compared to empirical and semi-empirical models. For example, their
ability to better represent spatiotemporal distributions of soil loss and
land conditions or their transferability to a more extensive set of envi-
ronments. The MMF includes aspects of both physically based and em-
pirical models to predict annual soil loss. Like USLE-type models, MMF
retains a certain level of simplicity but can also better represent the ero-
sion process incorporating some recent developments in knowledge.
The erosion process is divided into two distinct phases. First, a sediment
phase which determines soil loss due to raindrop impact and runoff
detachment, and a water phase that reflects the transport of soil parti-
cles by runoff. A soil erodibility factormainly influences the detachment
rate. Simultaneously, the runoff's annual transport capacity is a function
of water volume, slope steepness, and a crop cover factor. WEPP is
the most applied and comprehensive physically-based model listed
in GASEMT. It has been structured to be applicable for an extensive
range of geographic, land-use, and land-management conditions.
WEPP can be applied at parcel, hillslope, road, andwatershed-scale pro-
viding event or daily sediment yield, runoff, and subsurface flow. Daily
rainfall conditions are described using a stochastic weather generation
sub-module. The other model sub-modules describe infiltration and
overland flow, erosion mechanics of sheet and rill processes, soil prop-
erties, soil tillage, and residue management, soil consolidation, and the
effect of the different stages of plant growth. It uses a steady-state sed-
iment continuity equation to describe the three steps of soil erosion (de-
tachment, transportation, and deposition) and provides net erosion
estimates. The LISEMmodelwas oneof thefirst physically-basedmodels
to use raster input data and a GIS environment to better account for the
spatial variability of runoff and soil erosion processes within a water-
shed. Like WEPP, LISEM can estimate soil detachment and deposition
for single events or on a continuous basis using sub-daily rainfall data
to reproduce single rain events' intensity and duration. Besides describ-
ing the rainfall event, themodel requires an additional set of ca. 30 input
parameters to parametrizewatershed conditions such as soil properties,
soil surface roughness, soil moisture, saturated hydraulic conductivity
vegetation cover, morphological conditions of the vegetations, among
others. The RHEM model needs thirteen input parameters to represent
rainfall, soils, and slope profile conditions. It was designed for rangeland
application and can predict both runoff and erosion rates based on infil-
tration, hydrology, plant science, hydraulics, and erosion mechanics.
15
The insights gained in this analysis suggest that the research com-
munity is contemporaneously working on improving the application
of complex process-orientedmodels while updating the existing empir-
ical approaches such as the USLE, which remains attractive from a prac-
tical point of view. It also emerges that, in most cases, the selection of
the soil erosionmodel applied is not related to the necessaty to calculate
exact erosion rates for a particular situation but rather to obtain a risk
estimate and compare different land conditions. These are necessities
that make simple and time cost-effective soil erosion models still by
far themost commonly used approaches. A development towards an in-
creased use of physically-based models in the future remains desirable,
however.

5. GASEMT database: data availability and limitations

All data supporting the findings of this study can be extracted from
the Supplementary Information file (Appendix A: GASEMT database).

Our evaluation of the GASEMT database revealed some shortcom-
ings. First, some missing data (reported as unknown in the database)
are due to the unavailability of information in the reviewed publica-
tions. Although this affects only some attributes, key information such
as predicted soil-erosion rates, coordinates of the study area, and the
study area's size can be missing. A meta-regression analysis using
GASEMT data could not be performed due to restrictions imposed by
the heterogeneity of the records and, more importantly, due to a lack
of detailed georeferenced information about the study areas. Due to ca-
pacity bottlenecks (our project relied on a volunteer participatory ap-
proach without funding), the scientific team refrained from defining
the shape and perimeter for each study area. This situation limited the
possibility of compiling variables for the modelled sites and investigat-
ing relationships between predicted erosion rates and environmental
factors (e.g., climate data, slope, vegetation cover) through exploratory
analysis. A further shortcoming relates to potential inconsistencies in
the database. Although a harmonization procedure has been carried
out to identify and rectify most inconsistencies and misclassifications
among experts, some of these may still affect some records in this
publication's final database. The limited number of studies compiled
dealing with spatial modelling of gully, and other erosion processes
(e.g., harvest erosion, tillage erosion, piping)may also have been dimin-
ished by the Scopus search criteria. Our decision to consider only re-
search work validated/evaluated through peer-review excluded all
grey literature from GASEMT, such as scientific reports, government
publications, proceedings, conference abstracts, and national associa-
tions journals. We recognize that this decision could be influenced by
scientific communication practices and ‘epistemic cultures’ (Cetina,
1991) that are more oriented towards peer-reviewed journals.

The exclusion of grey and non-English peer-reviewed literature in
GASEMTmay have affected the geographical representation of some re-
gions in the database where publishing in local and national language/
literature is more frequent. However, in light of the 419,000 results ob-
tained searching for ‘soil erosionmodelling’ via Google Scholar, we recog-
nize that this large amount of literature would have been an unrealistic
amount to evaluate without aids such as artificial intelligence. An inter-
nal debate among the authors also highlighted whether the use of
Elsevier's Scopus bibliographic database, instead of Thomson Reuters'
Web of Science (WoF), or both,may have contributed to bias in the geo-
graphical distribution of the GASEMT records. The decision to use
Scopus in this analysis was based on the information available in the lit-
erature, indicating that Scopus may have a greater coverage of specific
subjects in Earth and Atmospheric Sciences and a larger match with
compared to WoF (Barnett and Lascar, 2012; Mongeon and Paul-Hus,
2016). A recent Scopus andWoS query (17.03.2020) searching `soil ero-
sion models` in the title, abstract, and keywords resulted in 13,474 and
12,972 articles potentially reporting applications of soil erosion model-
ling, respectively. Limiting the query to 1994–2017 returned similar
results with 10,010 (Scopus) and 10,187 (WoS) documents. This
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document the similarity of Scopus and WoS and further supports the
validity of our choice.

6. Conclusions

This systematic literature review to compile theGASEMTdatabase and
it's posterior analysis have allowed data-driven insights into the global
state-of-the-art in soil erosionmodelling for the first time. Statistical anal-
ysis of GASEMT showed that models tend to predict erosion rates that
peak in the tropics and decrease towards higher latitudes. The frequency
of model applications inversely relates to this erosion severity pattern,
with greater numbers of studies in temperate and Mediterranean zones.
The results of this analysis suggest that industrialised and highly
developed countries, generally in temperate latitudes with lower erosion
rates, show a higher incidence of studies. The database reports fewer
studies in less-developed, tropical, and subtropical countries, where
modelling findings suggest greater exposure to erosive processes.

Unlike previously reported work, our findings suggest that unsus-
tainable soil-erosion rates not only occur due to a lack of policy gover-
nance (Alewell et al., 2019) but in many regions of the world may also
result from a lack of knowledge. Detailed information on soil erosion,
through both modelling and measurement, is lacking for large parts of
the world. This condition is particularly true for regions most suscepti-
ble to high levels of soil erosion. For many of these regions we only
have information from global modelling applications, which may not
adequately represent local causes and drivers of soil erosion nor provide
a basis for policy solutions.

Our findings indicate that (R)USLE-type models have been exten-
sively used and modified during the last two decades and remain the
most employed modelling tool today. Based on the dominance of
these model types, most of our current knowledge on the spatial distri-
bution of soil-erosion and it's temporal trends are derived through (R)
USLE-type approaches. This, in turn, means that our understanding of
spatial soil erosion mostly relies on empirical models dealing with
water as the erosion agent and focusing on sheet and rill processes as
the dominant ones. Although some models such as WEPP, RHEM, and
LISEM show increasing trends of use, applications of process-based
physical models appear far more constrained. Nevertheless, the scale
of applications of the process-based physical models (x̃= ~1 km2) sug-
gests that the required input data are lacking for large-scale applications.

While soil erosion measurements have numerous drawbacks (eg
high uncertainty, high work/time inputs, restrictions to small spatial
and temporal scales), many modelling studies lack validation attempts.
As such, many soil erosionmodelling applications should be considered
as indications of the best hypotheses currently available rather than
predictive models. Unvalidated models are useful in time periods and/
or locations where soil erosion measurements and monitoring data
are not (yet) available. The drawbacks of unvalidated model applica-
tions means that, although numerous in the literature, they should re-
main transitory until better methods exist. The ease at which one can
use off-the-shelf soil-erosion models using remotely sensed data and
GIS has created an inflated number of models that lack field activities
and validation/evaluation of the results. True knowledge gain can only
be achieved by a scientific community that accepts the challenge of re-
thinking its approach towards modelling applications. This challenge is
reflected in the UNGSERmap, which represents an opportunity to over-
come some of these shortcomings by introducing new region and
country-based modelling assessments supported by well-defined
field-based data collection to validate/evaluate the results.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.scitotenv.2021.146494.
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