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Abstract

Background Eusocial insects play a central role in many ecosystems, and par-

ticularly the important pollinator honeybee (Apis mellifera). One approach to

facilitate their study in molecular genetics, is to consider whole colonies as single

individuals by combining DNA of multiple individuals in a single pool sequencing

experiment. Such a technique comes with the drawback of producing data requiring

dedicated analytical methods to be fully exploited. Despite this limitation, pool se-

quencing data has been shown to be informative and cost-effective when working on

random mating populations. Here, we present new statistical methods for exploit-

ing pool sequencing data of eusocial colonies in order to reconstruct the genotype

of the colony founder, the queen. This leverages the possibility to monitor genetic

diversity, perform genomic-based studies or implement selective breeding. Results

Using simulations and honeybee real data, we show that the methods allow for a

fast and accurate estimation of the genetic ancestry, with correlations of 0.9 with

that obtained from individual genotyping, and for an accurate reconstruction of the

queen genotype, with 2% genotyping error. We further validate the inference using

experimental data on colonies with both pool sequencing and individual genotyping

of drones. Conclusion In this study we present statistical models to accurately

estimate the genetic ancestry and reconstruct the genotype of the queen from pool

sequencing data from workers of an eusocial colony. Such information allows to

exploit pool sequencing for traditional population genetics, association studies and

selective breeding. While validated in Apis mellifera, these methods are applicable

to other eusocial hymenoptera species.

pool sequencing; eusocial insects; Apis mellifera; genotype
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Introduction1

Eusocial organisms such as bees, ants or wasps live in large colonies produced by a single2

individual (the queen) and have a specific mating system in which the queen is mated3

to a cohort of males. In the case of the honeybee, Apis mellifera, a colony is typically4

composed of a single queen, a large number (up to tenths of thousands) of workers and5

a few males. The queen is usually the only reproducing individual and all individuals6

present in the colony are its offspring. In the wild, after mating with a cohort of 10 to 207

males the virgin queen will return to the colony and maintain its population, throughout8

her life, by continuously laying eggs. Fertilised eggs will produce diploid worker females,9

while unfertilised eggs will produce haploid males. Males are therefore a direct sample10

of the queen genome and can be considered as flying gametes. The mosaic composition11

of a colony makes standard genomics analysis complex especially when making breeding12

decisions (Brascamp and Bijma, 2014; Uzunov, Brascamp, and Büchler, 2017). In eu-13

social populations, each worker performs individual tasks participating in the collective14

phenotype of the colony. However, although the phenotype of the colony is collective, the15

queen contributes to more than half of the genetics of the colony (through diploid female16

and haploid male offspring) that will be passed on to next generations. Thus, the queen’s17

genotype itself is an essential piece of information for genetic analysis aimed at studying18

the evolution of populations or performing selective breeding. Even though the field of19

insect genomics has boomed in the past decades there still is a need to expand traditional20

approaches of population genetics for this specific kind of organisms (Toth and Zayed,21

2021). However, contrary to large animal species, sampling the queen for genotyping is22

impossible without threatening its integrity and is therefore rarely performed in routine23

beekeeping practices. One possible approach to overcome these problems is to perform24

individual or pool genotyping (Petersen et al., 2020) of a set of males. However this im-25

plies an increased manipulation effort to sample the individual males or sequencing cost26

as multiple genotyping experiments are required to infer the genotype of a single queen.27

Advances in sequencing technologies have brought new opportunities to develop tools28
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for genomics and genetics. Amongst these, parallel sequencing allows for counting of se-29

quencing reads at all positions on the genome which thus permitted the development of30

pool sequencing for allele frequencies estimations (Schlotterer, Tobler, Kofler, and Nolte,31

2014). By combining DNA from multiple individuals into a unique sequencing experiment,32

pool sequencing allows for cheap and fast data acquisition, especially for non-model or-33

ganisms for which resources are limited. However pool sequencing outcomes, allele counts34

in the pool instead of genotypes, are more difficult to use in practice and require specific35

programs and software to perform SNP calling, mainstream population genetics analysis,36

association testing (Kofler, Pandey, and Schlötterer, 2011; Bansal, 2010; Purcell et al.,37

2007; Chang et al., 2015; Zhou and Stephens, 2012; Speed, Holmes, and Balding, 2020)38

and more. Additionally traditional pool sequencing is performed on a group of unre-39

lated individuals representing a population often linked by an environmental factor (e.g40

a population in a specific location, a genetic type ...).41

In this study, we propose a new application of pool sequencing to multiple individuals42

from a single colony in the context of eusocial insects. Hence, contrastingly to standard43

pool experiment, representing a population of individuals, pool experiment on colonies can44

be seen as sequencing of a meta-individual. Using this specificity we introduce dedicated45

statistical methods to estimate the genetic ancestry of the queen and reconstruct its46

genotype from pool sequencing of workers. The acquisition of genotype data will on the47

one hand provide information on the queen that can further benefit breeding decisions48

and will on the other hand allow the use of standard programs and software for population49

genetics analysis such as admixture or association studies. Two models are proposed and50

evaluated: the first model estimates the genetic ancestry of the queen, based on single51

colony data but assuming information on the allele frequencies of markers in reference52

populations and the second model exploits information available across multiple colonies53

to reconstruct the queen genotype. Performances of the models are evaluated through54

simulations including some based on real data from a diversity panel in Apis mellifera55

(Wragg et al., 2021). Using these simulations we show that the genetic ancestry of the56
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queen estimated from the pool sequencing data matches results from standard population57

genetics methods results on genotype data and that the genotype of the queen can be58

reconstructed with an error rate limited to a few percent. To evaluate the interest of pool59

sequencing compared to individual genotyping, we applied our genotype reconstruction60

models to real data in this species from a field experiment where both pool sequences of61

workers and individual sequences of male offspring from the same colony were available.62

We showed that inference of the genetic ancestry and the genotype of the queen based on63

pool sequencing data matches results obtained from individual data on male offspring.64

Models introduced in this study can be used sequentially to first estimate the genetic65

ancestries of a population of colonies, then use this information to cluster the dataset66

into homogeneous populations and finally infer genotypes of colonies by considering them67

jointly within these homogeneous clusters. Finally we discuss the interpretation of the68

results obtained with the models proposed, their applicability and possible extensions.69

Materials and Methods70

For the sake of understanding statistical models are presented here from the most simple71

to the most complex even though they can be used independly in the rest of the paper.72

Models73

We consider data coming from colony pool sequencing experiments. For each colony,74

whole genome sequencing is assumed to be performed on DNA extracted from the mix of75

a large number of worker bees. For a colony c, the raw data consist of the reference allele76

counts and sequencing depths at a fixed set of L biallelic loci. At a locus l, with observed77

reference allele count xc
l and sequencing depth dcl , we have:78

xc
l |dcl , f c

l , g
c
l ∼ Binomial(f

c
l + gcl
2

, dcl ) (1)

where gcl is the (unknown) queen genotype expressed as the frequency of the reference79
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allele (i.e. 0, 0.5 or 1) and f c
l is the (unknown) reference allele frequency in the males that80

mated with the queen. We are interested in reconstructing information on the possible81

genotypes of the queen gcl ∀l ∈ [1..L]. As f c
l and gcl both contribute to the allele counts in82

the pool, it is clear that these parameters are unidentifiable without more information.83

To separate them, we thus need external information on f c
l and/or gcl . We now discuss84

two possibilities to incorporate such information and the associated inferences that can85

be drawn.86

Homogeneous Population Model In this approach, we add to model (1) the hypoth-87

esis that queens and males of all colonies come from the same random mating population.88

Under this hypothesis, (i) the allele frequency at a given locus is the same for all colonies89

and (ii) genotypes at a locus are sampled according to this frequency, so we have for a90

locus l :91

∀c, f c
l = fl

gcl |fl ∼
1

2
Binomial(fl, 2) i.e.


P (gcl = 0) = (1− fl)

2

P (gcl = 0.5) = 2fl(1− fl)

P (gcl = 1) = f 2
l

(2)

This new model has only one parameter per locus (fl) and the likelihood is:92

P (xc
l |dcl , fl) =

∑
G∈{0,0.5,1}

P (xc
l |dcl , fl, gcl )P (gcl = G|fl)

L(fl;xl,dl) =
∏
c

P (xc
l |dcl , fl)

(3)

where xl is the vector of reference allele counts in all colonies and dl the correspond-93

ing vector of sequencing depths. The likelihood (3) is maximized numerically for fl94

on [0, 1]. The maximizing value (called the Maximum Likelihood Estimate, MLE) f̂l95

can be used for inference on gl based on the posterior distribution P (gl|xl,dl, f̂l) ∝96

P (xl|dl, gl, f̂l)P (gl|f̂l).97
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This homogeneous population model (HP) should only be applied when the set of98

colonies have a similar genetic background. We therefore developed another approach,99

the admixture model, aimed at estimating the genetic ancestry of a single colony from100

pool sequencing data.101

Admixture Model The objective of this model is to describe the “genetic background”,102

the subspecies, of a colony. To do so, we will adopt the widely used modeling framework in-103

troduced by Pritchard, Stephens, and Donnelly (2000) and define the genetic background104

of a colony as the proportions of the queen genome that come from a set of pre-defined105

reference populations (in our applications below, the reference populations considered are106

Apis mellifera mellifera, Apis mellifera ligustica & carnica and Apis mellifera causasia, the107

three main populations found in Western Europe (Wragg et al., 2021)). We will do that108

in a supervised manner so we will assume that we are provided with allele frequencies in109

a set of K reference populations at the L loci : this takes the form of an L×K matrix F110

where Flk is the frequency of the reference allele at locus l in population k. Here we are111

interested in inferring q, the K-vector of admixture proportions for the queen: qk is the112

proportion of alleles over all loci that come from population k. Dropping the c index as113

the model is fitted for each colony independently, the likelihood for q is:114

P (xl|dl,Fl, q) =
∑
g

∫ 1

0

P (xl|dl, gl, fl)P (gl|q,F )P (fl|F )dfl

L(q;x,d) =
∏
l

P (xl|dl,F , q)

(4)

In order to compute likelihood (4), we need to specify P (gl|q,F ), the prior distribution115

on gl given the admixture proportions, and P (fl|F ) the prior on the allele frequency at116

locus l. To perform inference we need to devise a way of maximizing the likelihood (4).117

We now explain how we addressed these two issues.118

Priors To specify the prior P (gl|q,F ), we use the classical approach of introducing119

latent variables Zl = (z1l , z
2
l ) at each locus l that denotes the origins (in terms of reference120
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populations) of the two alleles carried by the queen. Then we can write:121

P (gl|q,F ) =
∑
Zl

P (gl|Zl,F )P (Zl|q) (5)

where P (gl|Zl,F ) is the probability of the queen genotype given the origins of the two122

alleles, which is a function of the allele frequencies in the K reference populations (e.g.123

P (gl = 0.5|Zl = (2, 2),F ) = 2F2l(1− F2l) ), and P (Zl|q) is the probability of the pair of124

origins that depends on the admixture proportions q (e.g. P (Zl = (0, 0)) = q20).125

For P (fl|F ) , the prior on the allele frequency in males mated to the queen, we use126

an informative prior based on the allele frequencies in the reference populations:127

log(
fl

1− fl
) = logit(fl) ∼ N (logit(Fl), V ar(logit(Fl)) (6)

This prior is informative if all reference populations have similar allele frequencies128

and more diffuse if allele frequencies in reference populations differ greatly. Finally, the129

estimation of the vector q is performed using an EM algorithm. Note that this is similar130

to the supervised version of the estimation procedure of the Pritchard et al. (2000) model131

as the matrix of allele frequencies F is considered known a priori.132

Simulations133

To evaluate the performance of the two models, we simulated data as obtained from a134

pool sequencing experiment. We assume these data come in the form of the reference135

allele counts xc
l and sequencing depths dcl at each locus l, knowing the queen genotypes gcl136

and allele frequencies in the inseminating drones f c
l . To further condition our simulations137

on what can be expected from real data, we exploited information available in a reference138

population of Apis mellifera (Wragg et al., 2021). This data consists of 628 European sam-139

ples of haploid drones (Supplementary Table ST2) with genotypes available at 6,914,704140

Single Nucleotide Polymorphisms (SNPs). Wragg et al. (2021) showed that this panel is141

structured into three main genetic background for which unadmixed (reference) individ-142
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uals can be identified, with a threshold of 99% of their genetic background being from a143

unique type: the M background (Apis mellifera mellifera) with 85 reference individuals,144

the L background (Apis mellifera ligustica & carnica) with 44 reference individuals and145

the C background (Apis mellifera caucasia) with 16 reference individuals (Supplementary146

Table ST3). In the simulations described below, the reference panel information used was147

either the allele frequencies in the three main backgrounds (F = (Flp) ∈ [0, 1]L×3, where148

the columns contain the allele frequencies of all L markers in genetic backgrounds L, M149

and C in this order) and/or the genotypes of the reference individuals.150

Independent markers To evaluate the performance of the models proposed, a first151

set of simulations was performed on 1000 independent SNPs chosen to be common and152

ancestry informative with respect to the L, M and C genetic backgrounds. To this goal,153

the 1000 SNPs were randomly sampled from the 722,170 SNPs out of the 6,914,704 that154

had a minor allele frequency (MAF) ≥ 0.1 and a variance across genetic backgrounds155

≥ 0.1. For this first set of simulations, only the allele frequencies in the reference panel156

at the 1000 SNPs were used.157

First, for each colony c the proportions of the genome coming from each of the genetic158

backgrounds (termed genetic ancestry from now on) of the queen (qc
q) and the inseminating159

drones (qc
d) were sampled from a Dirichlet distribution:160

qc
q = [qcq,L, q

c
q,M , qcq,C ] ∼ Dir([αc

L, α
c
M , αc

C ])

qc
d = [qcd,L, q

c
d,M , qcd,C ] ∼ Dir([αc

L, α
c
M , αc

C ])

(7)

Different values were considered for the α parameters to consider different levels of161

admixed ancestries for the colony (Table 1). Simulated genetic ancestries are represented162

in Figure S1.163

Second, the allele frequencies of each SNP l in the cohort of inseminating drones was164
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simulated as:165

f c
l ∼ 1

nd

Binomial(nd,Fl,•q
c
d) (8)

where Fl,• is the l-th line of the F matrix and nd is the number of inseminating drones,166

here fixed at 15 (Tarpy and Nielsen, 2002; Tarpy, Nielsen, and Nielsen, 2004).167

Third, the genotype of the queen at a SNP l was simulated by first drawing the168

population of origin of each of the two allele of the queen (Zl = (z1l , z
2
l )) from a multino-169

mial distribution with parameter qc
q. The genotype of the queen was finally obtained as170

gcl =
acl1+acl2

2
where :171


acl1 ∼ Bernoulli(Fl,z1l

)

acl2 ∼ Bernoulli(Fl,z2l
)

(9)

Finally, pool sequencing data was simulated as172

xc
l ∼ Binomial(dc,

gcl + f c
l

2
) (10)

where dc is the sequencing depth, which was fixed at 30 unless otherwise specified in173

the Results section.174

Linked markers Pool sequencing experiments provide information on a large number175

of markers distributed throughout the genome. In order to evaluate the performance of176

the models in realistic conditions for the distribution of allele frequencies and the genetic177

structure, a second set of simulations was performed using individual genotypes of 628178

individuals from the diversity panel previously described in Wragg et al. (2021) and used179

beforehand to define reference genetic backgrounds. First, individuals were clustered180

into seven groups, of all potential combinations of admixture between the three genetic181

backgrounds, using hard thresholds on their initial vectors of genetic ancestry estimated182

with ADMIXTURE (Alexander, Novembre, and Lange, 2009) (Figure S2). Then, each183
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colony was simulated by sampling haploid genotypes of 17 individuals two of which were184

united to create the genotype of the queen (replacing step (9) above) and the remaining185

15 were used as inseminating drones under different scenarios of admixture between the186

three populations, replacing step (8). Then pool sequencing data xc
l was simulated as187

in (10). The simulated scenarios are the same as for independent markers, despite that188

only 20 colonies are simulated per scenario because of sampling limitation due to the189

restricted number of individuals to select from. As an example, when the queen of the190

colony is L genetic background and the inseminating drones are LMC genetic background191

the two individuals to make the queen were sampled from the group of ’pure’ L and the192

15 inseminating drones were sampled from all the possible groups, as their combinaison193

will create a mixture of genetic backgrounds.194

Evaluation of statistical models195

Genetic ancestry For each colony and for each set of simulations, the queen genetic196

ancestry qc was estimated using the Admixture model (AM). For independent marker sim-197

ulations, the estimates were compared to the true simulated value, while for linked marker198

simulations they were compared to the estimates obtained by running ADMIXTURE on199

the queen genotype. All simulated colonies were analysed jointly with AM and thereafter200

clustered into seven groups based on their ancestry vectors. Hence, each cluster was a201

group of colonies with homogeneous genetic ancestry.202

Genotype reconstruction The HP model was used to reconstruct the queen geno-203

type, within each of the ancestry clusters described above, in the linked marker simula-204

tions. Criteria for evaluating the model were :205

• the genotyping error rate measured as the proportion of errors in the reconstructed206

genotypes among all markers. We measured the genotyping error rate for different207

calling probability thresholds (see Results).208
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• the calibration of the posterior genotype probabilities. For each locus and each209

simulated colony, the HP model provides the posterior probabilities of the three210

possible genotypes. Because in the simulations the true genotype is known, we211

can evaluate in which proportion of the simulations (π) a genotype with posterior212

probability P is the true genotype. If the model is perfectly calibrated π = P .213

Hence, the calibration of the model was measured as214

AUC =

∫ 1

0

|P − π| (11)

In practice we estimated π by grouping genotype probabilities in bins of size 0.05.215

Validation on experimental data216

Dataset In order to evaluate the performance of the genotyping by pool sequencing217

approach, we produced a new dataset where colonies were both pool sequenced and in-218

dividual drones were sampled. Thirty four colonies, present at an experimental apiary219

and representing the diversity of French honeybee populations, were sampled in 2016. For220

each colony between approximately 300 and 500 worker bees were collected and pooled for221

sequencing purposes. DNA extraction was performed from a blended solution of all the222

workers of the colony with 4 m urea, 10 mm Tris-HCl pH 8, 300 mm NaCl, 10 mm EDTA.223

The elution was centrifuged for 15 min at 3500 g, and 200 µl of supernatant was preserved224

with 0.5 mg proteinase K and 15 µl of DTT 1 m for incubation overnight at 56 °C. After225

manual DNA extraction and DNA Mini Kit (Qiagen) a volume of 100 µl was used to per-226

form pair-end sequencing on the IlluminaTM HiSeq 3000 or NovaSeq 6000 platform with227

the aim to obtain approximately 30× raw sequencing data per sample. Raw reads were228

then aligned to the honeybee reference genome Amel HAV3.1, Genebank assembly acces-229

sion GCA_003254395.2 (Wallberg et al., 2019), using BWA-MEM (v0.7.15; (Li, 2013)).230

For pool sequenced experiments the resulting BAM files were converted into pileup files231

using Samtools mpileup (Li and Durbin, 2009) with the parameters: -C 50 coefficient of232
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50 for downgrading mapping quality for reads with excessive mismatches, -q 20 minimum233

mapping quality of 20 for an alignment, -Q 20 and minimum base quality of 20, following234

standard protocols. This procedure was applied exclusively to the 6,914,704 Single Nu-235

cleotide Polymorphisms (SNPs) identified in Wragg et al. (2021) as polymorphic in the236

European honeybee population. The pileup files were interpreted by the PoPoolation2237

utility mpileup2sync (Kofler et al., 2011) for the Sanger Fastq format, with a minimum238

quality of 20 and were finally converted to allele counts and sequencing depth files using239

a custom-made script. In addition, for each of these 34 colonies 4 male offspring of the240

queen, genetically equivalent to queen gametes, were individually sequenced as in Wragg241

et al. (2021) (Supplementary Table ST4). In order to reduce computation time this anal-242

ysis was performed on a subset of about 50000 markers. These markers were selected243

following the criteria: 1) maximum of two polymorphic sites within a 100 base pair win-244

dow, 2) only one representative marker per linkage disequilibrium block with r2 higher245

than 0.8, 3) variance between allele frequencies in the different genetic backgrounds higher246

than zero, to allow for population identification and 4) sampled so that the minor allele247

frequency follows a uniform distribution. This selection led to exactly 48 334 markers in248

the experimental dataset.249

Genetic ancestry For each colony, using pooled sequencing data, the queen genetic250

ancestry qc was estimated using AM as described above. For the male offspring data, for251

each colony two ways to estimate the genetic ancestry were considered:252

1. By averaging the genetic ancestry vectors of the four males as estimated by AD-253

MIXTURE.254

2. By first reconstructing the queen genotype from the male offspring data (see below)255

and then analysing the resulting genotype with ADMIXTURE.256

Genotype reconstruction For pool sequencing data, queen genotypes were recon-257

structed using HP, considering the 34 colonies jointly. For the male offspring data, queen258
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genotypes were reconstructed by first estimating the genotype probabilities at each locus259

from individual data at the four individually sequenced male offspring. Our goal is to260

reconstruct the genotype of a parent at a locus (gl) (here the queen) from the haploid261

genotypes of a set of ng gametes (here the male offspring). Let R be the random variable262

of the number of reference alleles observed in the offspring and assume that there is a per263

allele sequencing error equal to ϵ, then the genotype likelihoods can be computed from264

the sampling distributions:265


R|gl = 0 ∼ Binomial(ng, ϵ)

R|gl = 0.5 ∼ Binomial(ng, 1/2)

R|gl = 1 ∼ Binomial(ng, 1− ϵ)

(12)

To compute the genotype posterior probability when rl reference alleles are observed266

at a locus, we specify a uniform prior on the three possible genotypes, so that P (gl =267

x|R = rl) = P (R = rl|gl = x)/
∑

x′∈[0,0.5,1] P (R = rl|gl = x′). For our application, we268

fixed ϵ = 10−3 and ng is four as described above. Because we have only four drones269

per colony in this dataset, there is still some uncertainty in the genotype of the queen.270

For example the highest posterior probability achievable for a genotype with ng = 4 is271

≈ 0.94. This has to be taken into account when comparing the genotypes reconstructed272

from the offspring data and from the pool sequencing data: the concordance between the273

two approaches has to be measured with respect to what is expected between the true274

genotype of the queen and the one reconstructed from noisy data (either offspring or pool275

sequencing). Unfortunately we do not know the true genotype of the queen in our dataset276

but we can measure the concordance between the genotype reconstructed with four male277

offspring to the true genotype of the queen using data from Liu et al. (2015). In this278

dataset, genotypes of 13 to 15 offspring are available for three colonies. With that many279

offspring the genotype of the queen can be reconstructed with certainty and be compared280

to the one obtained by downsampling the data to four offspring per colony. Therefore,281

for each of the three colonies in Liu et al. (2015), we called the offspring genotypes at the282
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set of markers present in the diversity panel, reconstructed the queen genotype using (i)283

all offspring (ng = 15 or 13) and (ii) a 100 randomly downsampled datasets consisting of284

four offspring only.285

Results286

In this study we developed statistical models to estimate genetic ancestry and queen287

genotypes from pool sequencing data from workers of the colony. Simulations, from inde-288

pendent and linked markers, were performed to evaluate the performance of our models in289

terms of queen genetic ancestry inference and genotype reconstruction. The scenarios are290

described in Figure S1. Moreover, these models were applied to an experimental dataset291

composed of both pool sequenced data and individual male offspring of the queen. In fact292

male offspring of the queen, haploid individuals coming from unfertilised queen gametes,293

are direct sampling of the queen genetics and their use is often suggested in literature as294

a proxy for queen information.295

Validation on simulations296

Genetic ancestry For independent markers, correlations between simulated genetic297

ancestries and estimated genetic ancestries using the Admixture Model (AM) ranged298

between 0.88 and 0.9 depending on the genetic background and for linked markers corre-299

lations between genetic ancestries estimated using ADMIXTURE (Alexander et al., 2009)300

on the queen genotypes simulated from real data and estimated by AM ranged between301

0.93 and 0.95 depending on the genetic background (Figure 1). In addition to the 15302

scenarios listed we also estimated genetic ancestries by AM on scenarios in which queen303

and drones had divergent ancestries (Supplementary table ST1). We observed that shift-304

ing from the initial hypothesis that queen and drones come from the same origin led to305

highly biased genetic ancestry estimations with AM (Figure S3). It should be noted that306

the statistical model under AM is based on the assumption that markers are indepen-307
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dent. To match this assumption a subset of 1000 markers, rather than the whole genome,308

was used to estimate genetic ancestry for simulations with linked markers. These results309

show that AM outputs accurate genetic ancestry estimates and show inference with high310

agreement to standard population genetics models such as ADMIXTURE, under the as-311

sumption that queen and drones are of the same origin. Moreover, the observed results312

confirm that using only a subset of ancestry informative markers, here 1000 from the313

whole genome, is sufficient to accurately estimate genetic ancestries using AM.314

Genotype reconstruction One major assumption of the Homogeneous Population315

Model (HP) is that colonies within the population are of homogeneous genetic ancestries.316

Therefore, using simulations for linked markers across the whole genome, we compared317

and clustered all the simulated colonies based on their genetic ancestries estimated by318

AM. In our study we assume that colonies come from a mixture of three main genetic319

backgrounds (as described in Wragg et al. (2021)), we thus clustered our simulated colonies320

in seven groups from pure to hybrid genetic types (Figure 2).321

Thereafter, to evaluate queen genotype reconstruction performance we implemented322

the Homogeneous Population Model (HP) on our seven groups of homogeneous colonies323

for linked markers. As the HP model does not make the assumption of independence324

of markers the inference could be performed on the whole genome, approximately 7 mil-325

lion markers. Across all simulations and all scenarios, we observed a good correlation326

between the rate of genotype agreement between simulated and estimated genotypes and327

the associated estimated genotype probability. In other terms genotypes inferred with a328

high probability are often correctly predicted by HP whereas genotypes inferred with a329

low probability are often wrongly predicted by HP, making genotypes with a probability330

close to 0.5 the hardest to infer precisely. The calibration of the HP model for geno-331

type reconstruction, measured as the Area under the Curve between agreement rates and332

probabilities was 0.055 (Figure 3A), when AUC ranged between 0, for perfect correlation333

and 0.5 for completely imperfect correlation. A large proportion of the markers have334
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probabilities close to zero or to one, making the genotypes drawn for these markers close335

to certain (Figure 3A). As expected we observed that the genotyping error rate decreases336

slightly when the best genotype probability threshold increases meaning that filtering for337

markers with higher best genotype probability leads to more accurate genotype recon-338

struction. However such filtering is accompanied with a small reduction in genotype call339

rate. For example if no filtering on best genotype probability is applied, 100% of the340

genome will be reconstructed with an average genotyping error rate of 4%, if filtering341

for markers with best genotype probabilities above 0.9 is applied about 95% of the whole342

genome will be reconstructed with an average genotyping error rate as little as 2% (Figure343

3B). Additionally we observed that the genotyping error rate increased when the MAF344

threshold increased meaning that filtering on MAF might cause an increase in genotyping345

error, accompanied by a drastic reduction in genotype call rate (Figure 3C). Minor Allele346

Frequency and best genotype probability are highly linked as markers with low MAF347

tend to be easier to infer with high probability. In our simulation a large proportion,348

more than 50%, of the whole genome is composed by markers with MAF below 0.05.349

Yet applying a filter on best genotype probability does not seem to highly impact the350

distribution of MAF on the whole genome (Figure S4). Rather than filtering on MAF we351

suggest to filter on best genotype probability, for example equal to or greater than 0.95.352

Indeed, such filtering will improve the queen genotype reconstruction accuracy without353

heavily impacting the allele frequency distribution of the markers genotyped on the whole354

genome. In fact, we observed that genotyping error, on the whole genome and without355

filtering, is on average about 3% (Figure 3D). After applying a filter on best genotype356

probability equal to or greater than 0.95 genotyping error becomes on average as low as357

about 2%.358

These results show average estimates across all simulation scenarios and colonies after359

grouping based on genetic ancestry. Detailed results for calibration and genotyping error360

are presented Figure S5.361

To conclude, using simulations we confirm that the statistical model AM performs362
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similarly to ADMIXTURE leading to highly accurate genetic ancestry inference. A small363

set of markers, as low as 1000 in our example where genetic background differentiation is364

strong, seems sufficient to accurately estimate genetic ancestry with AM. Using simulation365

of linked markers across the whole genome we confirmed that HP reconstructed queen366

genotypes with high accuracy. Furthermore, we inferred the impact of MAF and best367

genotype probability thresholds on the genotype call rate and the associated genotyping368

error rates, giving the advice to filter on best genotype probability equal to or greater369

than 0.95 to reduce genotyping error, without drastic loss of predicted markers and while370

preserving allele frequency distribution across the genome.371

Application on experimental data372

To further evaluate the performance of the AM and HP models, we analyzed real data373

on honeybee colonies for which 4 drones were individually sequenced (see Materials and374

methods).375

Genetic ancestry For each colony, the genetic ancestry of the queen was estimated376

either from the group of male offspring or from the pool sequences of workers. Genetic377

ancestry from worker pool sequence were estimated using the Admixture Model (AM).378

For male offspring, it was estimated with ADMIXTURE (Alexander et al., 2009) either379

using the male offspring directly (admix_males) or from the genotype of the queen recon-380

structed using male offspring (admix_proba), as described in the Material and Methods381

section. Using male offspring data directly (admix_males) or through queen genotype382

reconstruction (admix_proba) genetic ancestry from ADMIXTURE were virtually equal383

with a Mean Squared Difference (MSD) of 1.4 × 10−3 (standard deviation 1.1 × 10−3).384

Comparing estimates based on male offspring versus worker pool sequence (AM) MSD385

were slightly higher with 0.024 and 0.026 with standard errors of 0.025 and 0.021 for ad-386

mix_males and admix_proba respectively (Table 2). Out of the 34 experimental colonies387

most of the genetic ancestry estimated using queen reconstructed genotypes from worker388
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pool sequencing data, male offspring or using individual sequencing of male offspring gave389

nearly identical q vectors (Figure S6).390

Genotype reconstruction To validate queen genotype reconstruction from worker391

pool sequence on our experimental dataset we used publicly available data from Liu et al.392

(2015) on three colonies for which both queen and 13 to 15 male offspring were individually393

sequenced were used. Of the 50000 selected markers only 14988 were available, as polymor-394

phic SNPs, on the dataset from Liu et al. (2015). This reduction in the number of markers395

available for the analysis can be explained as the population used for SNP calling was396

composed of fewer individuals from a unique and uniform origin in the dataset from Liu397

et al. (2015). We compared queen genotypes reconstructed from worker pool sequence and398

queen genotype reconstructed on probabilities from four male offspring (pool/offspring)399

on the experimental dataset, genotypes from individually sequenced queens and queen400

genotype reconstructed on probabilities from four male offspring (queen/offspring) and401

pairs of queen genotype reconstructed on probabilities from four independent male off-402

spring (offspring/offspring) on the dataset from Liu et al. (2015). Genotype concordance403

was on average 0.94 (standard deviation 0.03), 0.96 (standard deviation 0.01) and 0.92404

(standard deviation 0.01) for pool/offspring, queen/offspring and offspring/offspring re-405

spectively (Figure 4). The highest concordance is observed between the actual queen406

genotypes and its reconstruction from four male offspring; however queen genotype re-407

construction from pool and from male offspring seem to present similar concordance than408

when pairs of independent male offspring are compared. The few colonies showing more409

discrepancy between genetic ancestry estimates always showed a genetic ancestry from410

worker pool sequence mostly divergent from the estimates based on males, despite having411

high concordance between genotype reconstruction. This can be either due to limitations412

in AM when it comes to disentangling queen genotype from cohort of inseminating drones413

in the worker pool sequencing data, to the fact that sampling only four male offspring is414

not sufficient to accurately represent the queen genetic ancestry, because of genetic con-415
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tradiction between the queen that produced the male offsprings and the one that produced416

the workers or to a biais in the markers used for AM. However, this validation confirms417

that queen genotype reconstructed using worker pool sequencing data performs as well418

as individually sequencing multiple male offspring. Additionally we showed, on the data419

from Liu et al. (2015), that increasing the number of male offspring individually sequenced420

to six, eight or even ten improved the genotype concordance quite substantially (Figure421

S7) with eight and ten male offspring showing a concordance between reconstructed and422

real genotype close to one.423

To summarise, the difference between genetic ancestry estimated from male offspring424

or worker pool sequencing data, using AM, were small. Queen genotype reconstruction425

from worker pool sequencing data was in agreement with queen genotype reconstructed426

from male offspring. This value was slightly lower than when comparing queen recon-427

structed genotypes from male offspring with the real queen genotype and slightly higher428

than when comparing queen reconstructed genotypes from different sets of male offspring429

of the same queen. HP on worker pool sequencing data is an accurate alternative to430

individually sequence a limited number of male offspring of the queen when one wants to431

access the queen genotype.432

Discussion433

The past decade has seen the growth of the molecular genomics era with the development434

of new sequencing platforms and technologies, one of them being pool sequencing. This435

technology allows for the combination of multiple individuals in one sequencing experi-436

ment, reducing drastically preparation and sequencing costs and therefore making high437

depth sequencing available for a wide variety of samples. Traditionally pool sequencing438

is used to perform analysis on multiple individuals from a population. Additionally pool439

sequencing might be of interest when group level information is desired as for example in440

the context of eusocial organisms. In such cases the pool will represent a meta-individual441

20



of the colony rather than a population. One pitfall of using such sequencing method it442

that the outcome of pool sequencing comes in the form of allele read counts and sequenc-443

ing depths rather than diploid genotype observations making it a non standard format444

for downstream analysis.445

446

So far only a few programs, for example Popoolation (Kofler et al., 2011) and CRISP447

(Bansal, 2010) for SNP calling, Plink (Purcell et al., 2007; Chang et al., 2015) and the448

R package poolfstat (Hivert, Leblois, Petit, Gautier, and Vitalis, 2018; Gautier, Vitalis,449

Flori, and Estoup, 2021) for population genetics or GEMMA (Zhou and Stephens, 2012)450

and LDAK (Speed et al., 2020) for association study handle non genotype data. However,451

when considering eusocial insects from the same colony as a pool we might break under-452

lying assumptions made by these models. In fact, eusocial insects present characteristics453

deviating from what could be expected in a standard population used for pool sequencing454

experiments. First, in hymenopterans, reproductive systems are often polyandric, leading455

to non standard genetic relationships across individuals in the colony. Second, traits of456

interest are likely to be measured at the colony level. Therefore, in order to avoid compu-457

tational limitations and biases that could be brought by the use of pool sequencing with458

unadapted models one may want to infer individual genetic information (e.g. ancestry459

and genotypes) from a pool from the group. In honeybee, for instance, a colony can be460

considered as a polyploid organism (with two major chromosomes, coming from the queen461

and being present in the whole population, and about 15, the number of inseminating462

drones, minor chromosomes) constituted of haploid male offspring of the queen that can463

be described as ‘’flying gametes’‘ as they come from queen unfertilised eggs and diploid464

female offspring of the queen, worker bees, descendant from the mating of a queen with465

a cohort of about 15 inseminating drones. Genetic relationships between colony inmates466

is more complex than in other animal species as they range between 1 to 0.25 depending467

on the patriline from which the individual belongs (Oxley and Oldroyd, 2010). The hon-468

eybee queen carries the largest part of the genetic information of the colony and is the469
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producing organ of the next generation making it a favored pathway for breeding selection.470

In addition, the honeybee populations used by breeders and beekeepers are often highly471

structured with vast differences between genetically pure and highly admixed colonies.472

The honeybee population has been influenced by domestication and selection performed473

by beekeepers often on traits measured at the colony level making the use of pool highly474

relevant. These features make the use of Apis mellifera as a model organism, to develop475

statistical models to use pool sequencing data, greatly relevant. Moreover we also benefit476

from the available knowledge on the organism compared to other eusocial insects. For477

example we can exploit the diversity panels, such as built in Wragg et al. (2021), as priors478

in our models to facilitate inference. In this context the developed methods are expected479

to be easily applicable to organisms with lower level of population stratification, as can480

be for some other eusocial insects.481

482

Here we present two statistical models to infer queen information from pool exper-483

iment data. First, the Admixture Model (AM) allows to infer queen genetic ancestry484

from worker pool sequencing data knowing expected allele frequencies in a reference pop-485

ulations with high correlation between predicted and expected ancestry (about 0.9) and486

computational efficiency as it can be run rapidly for each colony independently, thus487

parallelisable, on a small subset of markers. Second, the Homogeneous Population Model488

(HP) allows for an accurate queen genotype reconstruction with as little as 2% genotyping489

error. This model takes advantage of the information from other colonies of the group to490

complete genotype reconstruction, making the assumption that colonies within a group491

are of homogeneous genetic ancestry. Within the context of population genetics study,492

when genetic ancestry is unknown prior to the analysis and knowing the results of this493

study we suggest to first infer genetic ancestry using AM for all the colony DNA pools of494

interest, then group them based on similarities in their ancestries and perform genotype495

reconstruction on these groups separately with HP. Therefore, we propose to use our sta-496

tistical models sequentially to reach highly accurate genotype reconstruction. To date a497
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common way to infer honeybee queen genotype without manipulating and sacrificing this498

queen is to perform pool sequencing on multiple honeybee queen male offspring (Petersen499

et al., 2020). For this purpose Jones et al. (2020) suggests, using theoretical estimations,500

to sequence at least 30 individuals. This procedure requires to be able to identify and501

sample enough male offspring from the colony, which is not always easy depending on the502

season, the colony and the time available for sampling. An alternative is to individually503

sequence multiple honeybee queen male offspring, in such case, the number of individ-504

ual sequences is the limiting factor to an accurate queen genotype reconstruction with505

at least eight to ten individuals needed to accurately deduce queen genome phase, that506

we cannot obtain from a pool experiment, and to lower the risk of incorrect genotype507

reconstruction (Figure S7). Using real data we saw that our statistical models, based on508

pool sequence experiments, reconstructed queen genotypes at least as well as using four509

individual male offspring sequences. Queen genotype reconstruction from pool sequenc-510

ing data from workers of the colony appears to be a relevant alternative, cheaper as only511

one sequencing procedure needs to be performed. Simulations, of independent and linked512

markers, and the experimental field dataset concluded that we could estimate honeybee513

queen genetic ancestry and genotype accurately and efficiently using our methods.514

515

Despite the efficiency of the statistical models described in this study some limitations516

have been identified and further improvements can be conducted. One crucial assumption517

of our model is that honeybee queens and inseminating drones have similar genetic an-518

cestry, which is often true when natural breeding is conducted. However this assumption519

might be broken when conducting queen artificial insemination for breeding purposes,520

in extremely controlled breeding environments or even when the breeding environment521

is ’polluted’ by unexpected genetics. In fact, when queen and inseminating drones have522

highly divergent ancestries our models will estimate biased genetic ancestry and queen523

genotypes (Figure S3). Additional external information is necessary to account for het-524

erogeneity in the origin of breeding parents of the pool. One way to do so would be525
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by implementing a two step reconstruction algorithm focusing first on the inseminat-526

ing drones allele frequencies, for example using information on the breeding practices or527

sampling drones from the environment as a representation of the mating cohort. Once528

information on the mating cohort is available it can be easily implemented in our model529

by adapting the prior in the equation (6). In this study we performed simulations of pool530

experiments with a sequencing depth of 30x. In practice, and especially in the context531

of non-model organisms, such sequencing depth might be difficult to reach either due to532

sequencing cost or to genetic material availability. Therefore, we also tested the simula-533

tions with a depth of 10 or 100. We compared our results in terms of genotyping error534

rate and genotype call rate on the genome after filtering for best genotype probability.535

In Figure S8 we can see that increasing sequencing depth from 10 to 30 improved the536

accuracy of genotype inference and the genotype call rate. At high sequencing depth,537

100, we observed higher genotyping error rate overall and limited improvement in the538

fraction of markers inferred with certainty. It is likely that some level of heterogeneity539

within the groups used to reconstruct queen genotype led to wrong decisions at higher540

sequencing depth. Increasing sequencing depth seems to cause higher sensitivity to the541

hypothesis of homogeneous population by the statistical HP model. One option to reduce542

this impact would be by grouping colonies based on their genetic ancestries to a more543

refined scale. Indeed, further developments in the HP model could allow one to take into544

account a level of heterogeneity in the population to reduce the sensitivity of the model545

to the homogeneity assumption.546

547

We observed that HP performed better, had a lower genotyping error rate, if inferred548

genotypes along the genome were filtered based on their certainty, measured as a proba-549

bility. In our simulations such filtering did not affect the allele frequency distribution and550

reduced only slightly the number of inferred markers along the genome while reducing551

genotyping error rate (Figure S4). An imputation step would contribute to the improve-552

ment of genome reconstruction completeness. Also taking into consideration Linkage553
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Disequilibrium (LD) along the genome to refine the genotypes inferred by HP could be554

adapted in our statistical model. Such development would benefit from identification of555

haplotype blocks in the honeybee genome (Saelao et al., 2020; Wallberg, Schöning, Web-556

ster, and Hasselmann, 2017; Wragg et al., 2016; Wragg et al., 2021) tagging the different557

Apis mellifera populations. An efficient strategy would be to reconstruct queen genotypes558

with HP, filter on genotype probability to retain only markers from which reconstruction559

is satisfying and then apply an imputation step taking into account known haplotype560

blocks and LD between markers.561

562

To conclude, colony pool sequencing data can be used to infer queen genetic ances-563

try when knowing allele frequencies in reference populations present in the environment.564

Moreover, using pool sequencing data across multiple colonies of homogeneous genetic an-565

cestry in which queen and inseminating drones come from a similar origin, it is possible to566

reconstruct honeybee queen genotypes accurately. Such genotypes are valuable for exam-567

ple to run population genetics analysis and association studies with mainstream models568

currently available and genetic ancestry estimates can be useful for selective breeding569

purposes. Additional developments to take into consideration some level of heterogeneity,570

discrepancy of origins between queen and inseminating drone cohort and linkage dise-571

quilibrium along the genome will help further increase genotype reconstruction accuracy.572

The statistical models described in the study have been designed within the context of573

eusocial hymenoptera but tested solely on Apis mellifera. Such models could be tested574

within the framework of studies on other eusocial species with multiple mating of a single575

queen (Micheletti and Narum, 2018) and with known genetic diversity panels to estimate576

priors for allelic frequencies.577
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Table 2: Genetic ancestry Mean Squared Difference between data and models

queen from males queen from pool queen from pool
vs males vs males vs queen from males

model_i admix_proba AM AM
model_j admix_males admix_males admix_proba
min 1.36E-05 2.94E-04 1.35E-03
mean 1.43E-03 0.024 0.026
median 1.15E-03 0.014 0.020
max 4.19E-03 0.085 0.082
sd 1.16E-03 0.025 0.021

Genetic ancestry Mean Squared Differences for different data and models on experimental colonies. Minimum, average,
median, maximum and standard deviations are calculated for each combination.
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Figure 2: Genetic ancestries for the simulated colonies as estimated by the
Admixture Model Two dimensions plot of genetic ancestries estimated by AM for colonies simulated for linked
markers. X and y axis give the genetic ancestry values in two of the three populations of honeybee in our dataset, for all
the colonies in all scenarios (20 * 15) simulated for linked markers after estimation of their genetic ancestry vectors by the
AM model. Individuals can be grouped by genetic ancestry. Here we decided on seven groups, each in a different colour,
in yellow Apis m. ligustica + Apis m. carnica L, in grey Apis m. mellifera M, in green Apis m. caucasia C, in light
green hybrids Apis m. ligustica and Apis m. caucasia, in brown hybrids Apis m. ligustica + Apis m. carnica and Apis m.
mellifera, in dark green hybrids Apis m. mellifera and Apis m. caucasia and in blue the three ways hybrids.
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Figure 4: Concordance between queen genotype reconstruction based on differ-
ent data Concordance between reconstructed genotypes from different data types. The densities, bottom, represent the
concordance, only for markers after filtering for best genotype probability equal to or greater than 0.94, between i) queen
genotype reconstructed from pool sequencing data using HP and queen genotype reconstructed from genotype probabilities
(pool/offspring), based on four male offspring for experimental colonies, in orange ii) queen genotype reconstructed from
genotype probabilities based on four male offspring for a 100 sampling events and actual queen genotypes from the Liu et al.
(2015) (queen/offspring), in dark blue and iii) pairs of queen genotype reconstructed from genotype probabilities based on
four male offspring for independent sets of individuals with the data from Liu et al. (2015) (offspring/offspring), in light
blue. Concordance values for each test are represented as dots, top, and as density distribution, bottom.
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Figure S2: Genetic ancestries of 628 male individuals from the diversity panel
of Wragg et al. (2021) Two dimensions plot of genetic ancestries for the individuals from the diversity panel.
Individuals can be grouped by genetic ancestry. Here we decided on seven groups, each in a different colour, in yellow Apis
m. ligustica + Apis m. carnica L, in grey Apis m. mellifera M, in green Apis m. caucasia C, in light green hybrids Apis
m. ligustica and Apis m. caucasia, in brown hybrids Apis m. ligustica + Apis m. carnica and Apis m. mellifera, in dark
green hybrids Apis m. mellifera and Apis m. caucasia and in blue the three ways hybrids.
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Figure S3: Genetic composition and genotyping error when queen and drones
come from different ancestries Detailed information are available in Supplementary Table ST1
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Figure S6: Genetic ancestries on experimental colonies estimated from different
models and data on experimental colonies Two dimensions plot of genetic ancestries for the different
estimates on the experimental colonies. For the 34 experimental colonies, drones offspring of the queen (crosses), queen
reconstructed from these drones (diamonds) and queen reconstructed from the pool experiment (circles) projected on top of
the individuals from the diversity panel (628 from Wragg et al. (2021)), representing genetic ancestries in two dimensions.
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Figure S7: textbfConcordance between real and reconstructed queen genotypes as a func-
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Figure S8: Genotyping error rates for different sequencing depths Impact of pool
sequencing depth on genotyping error rate. Genotyping error across each colony simulated for linked markers across the
whole genome after genotype reconstruction within groups of homogeneous genetic ancestries based on estimations from
AM for depth 10 (yellow), 30 (orange) and 100 (brown). The top panel is for all markers on the genome, the bottom panel
is for markers with best genotype probability higher or equal than 0.95, the x axis represents the genotype call rate.
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