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Abstract. Probabilistic seasonal forecasts are important for many water-intensive activities requiring long-term planning. 

Among the different techniques used for seasonal forecasting, the Ensemble Streamflow Prediction (ESP) approach has long 

been employed due to the singular dependence on past meteorological records. The Swedish Meteorological and 

Hydrological Institute is currently extending the use of long-range forecasts within its operational warning service, which 

requires a thorough analysis of the suitability and applicability of different methods with the national S-HYPE hydrological 10 

model. To this end, we aim to evaluate the skill of ESP forecasts over 39,493 catchments in Sweden, understand their 

spatiotemporal patterns, and explore the main hydrological processes driving forecast skill. We found that ESP forecasts are 

generally skilful for most of the country up to 3 months into the future but that large spatiotemporal variations exist. 

Forecasts are most skilful during the winter months in northern Sweden, except for the highly-regulated hydropower-

producing rivers. The relationships between forecast skill and 15 different hydrological signatures show that forecasts are 15 

most skilful for slowly-reacting, baseflow-dominated catchments and least skilful for flashy catchments. Finally, we show 

that forecast skill patterns can be spatially clustered in 7 unique regions with similar hydrological behaviour. Overall, these 

results contribute to identify in which areas, seasons, and how long into the future ESP hydrological forecasts provide an 

added value, not only for the national forecasting and warning service but, most importantly, to guide decision-making in 

critical services such as hydropower management and risk reduction. 20 

1 Introduction 

Regardless of the geographical setting, human society depends on water resources to satisfy basic needs and allow for social 

growth and development. At the same time, however, the variability of the hydrological systems, leading to extreme events 

such as floods or droughts, puts pressure on the viability and sustainability of many water-intensive activities. In this setting, 

being able to predict the future evolution of the hydrologic system may improve societal resilience by anticipating 25 

potentially hazardous events and enabling the adoption of protective and/or adaptive measures (Girons Lopez et al., 2017; 

Pappenberger et al., 2015b). Even if most day-to-day decisions on water-related issues are based on short- and medium-

range forecasts, some activities, such as water reservoir operation and optimisation or strategic planning, benefit from long-

term forecasts. Despite their inherent uncertainties, long-term forecasts such as seasonal forecasts are a valuable tool for such 
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applications, as they provide insights into the general trends of the hydrological system up to several months into the future, 30 

leading also to economic benefits (Bruno Soares et al., 2018; Giuliani et al., 2020). 

Different techniques are available for generating seasonal forecasts, each with different strengths and weaknesses. These 

techniques may be based on dynamic or statistical methods, or on a weighted combination of both. Among these, the 

Ensemble Streamflow Prediction (ESP) methodology has long been widely adopted for seasonal forecasting (Wang et al., 

2011; Wood and Lettenmaier, 2006). Following this methodology, ensemble streamflow forecasts are generated using 35 

historical meteorological data as forcing to a hydrological model. An advantage of this method compared to methods based 

directly on historical streamflow, is that ESP forecasts are initialised based on hydrological conditions updated for the 

forecast date (Crochemore et al., 2020). Forecasts thus benefit from the most recent hydrological knowledge when they are 

initialised, which is of particular interest for unprecedented hydrological conditions. This advantage can however also lead to 

forecast overconfidence as this method does not consider the impact of potential uncertainties in the initial hydrologic 40 

conditions, as noted by Wood and Schaake (2008). Additionally, its reliance on historical meteorological forcing makes it 

impossible for it to capture hydrological responses to unprecedented meteorological events. 

ESP forecasts have been used by the scientific community to assess forecast skill sensitivity and uncertainties and to 

benchmark seasonal forecast improvements (Arnal et al., 2018; Harrigan et al., 2018), as well as for operational flood 

forecasting in many different settings and scales (Candogan Yossef et al., 2017). Over the years, different techniques have 45 

been developed to improve the performance of forecasting systems, such as data assimilation for improving the initial 

conditions of forecasts (DeChant and Moradkhani, 2011), multi-model approaches (Muhammad et al., 2018), or pre- and 

post-processing techniques such as using artificial neural networks for reducing the effects of model errors (Jeong and Kim, 

2005; Macian-Sorribes et al., 2020), historical scenario selection and weighting (Crochemore et al., 2017; Trambauer et al., 

2015), and calibration techniques (Wood and Schaake, 2008). 50 

Evaluation efforts are typically carried out based on forecasts issued retrospectively (re-forecasts) over time periods long 

enough to ensure that the evaluation is statistically robust. For many operational applications it is important to understand the 

spatiotemporal patterns of seasonal streamflow predictability as well as the driving processes behind these patterns (Sutanto 

et al., 2020). Indeed, previous studies have identified different sources of forecast skill depending on hydrological 

characteristics; for instance, Greuell et al., (2019), Shukla et al., (2013), and Wanders et al., (2019) identified initial 55 

conditions of soil moisture and snow (during spring) as the most important sources of skill over Europe, while Singla et al. 

(2012) found similar results for France. In a study over the United Kingdom, Harrigan et al. (2018) ascertained streamflow 

predictability was higher for slow-responding catchments, as described by the baseflow index (BFI). Some studies have even 

gone one step further by investigating spatiotemporal patterns in streamflow predictability in an attempt to regionalize the 

forecast skill. For example, Pechlivanidis et al. (2020) showed that streamflow predictability is strongly dependent on the 60 

overall hydrological regime, with limited predictability in flashy basins (low river memory) and hence, it can be regionalised 

based on a priori knowledge of local hydro-climatic conditions. 
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The Swedish Meteorological and Hydrological Institute (SMHI) has long been operationally providing streamflow forecasts 

and hydrological warnings to relevant actors in hydrological risk management (municipalities, county boards, Swedish Civil 

Contingencies Agency), as well as to the general public. Forecasts were initially produced with the HBV model (Bergström, 65 

1976), but in recent years operational forecasting has shifted to the Swedish implementation of the HYPE model (S-HYPE, 

Lindström et al., 2010), which allows for an integrated, high-resolution description of the hydrological system across the 

country. Where available, in-situ observations of streamflow are assimilated, which has a beneficial impact on the 

hydrological predictions downstream. ESP seasonal forecasts are produced but not generally spread to other actors due to 

uncertainties in their skill and interpretation by external parties. Nevertheless, SMHI is now looking to extend the usage of 70 

long-term forecasts within its warning service, which requires a deeper understanding of forecast performance, its patterns, 

and controlling factors. In terms of regionalisation, four main hydro-climatic regions based on hydro-climatic patterns 

(Lindström and Alexandersson, 2004; Pechlivanidis et al., 2018) have typically been used for water management in Sweden. 

However, these regions were not put forward with consideration to seasonal streamflow predictability over Sweden and 

might therefore be of limited use for this purpose. 75 

The aim of this study is to benchmark and attribute the ESP forecast skill over Sweden with the operational S-HYPE model. 

To address these questions, we: (a) evaluate the skill of ESP seasonal forecasts generated with the operational S-HYPE 

model over Sweden and understand the spatiotemporal pattern of skill, (b) detect potential links between streamflow forecast 

skill and hydrological characteristics, and (c) attribute streamflow predictability patterns across the country to hydrological 

behaviour of the river systems. The paper is structured as follows: section 2 presents the data used, hydrological model setup, 80 

and methodology for the forecast evaluation; section 3 presents the results, followed by the discussion in section 4; finally, 

section 5 states the conclusions. 

2 Methods 

2.1 Data 

Daily precipitation and temperature data from the PTHBV database (Johansson, 2002) were used as forcing data to the S-85 

HYPE model. This database contains gridded data based on a weighted interpolation of measured values from all available 

stations for any given day with a resolution of 4x4 km, and it is available from 1961 onwards. The interpolation method used 

for generating PTHBV considers factors such as elevation and wind frequency and direction to make interpolated values for 

precipitation and temperature more reliable. Additionally, daily stream discharge and water level data from 539 stations of 

SMHI’s gauge network were used to correct the model outputs for improved forecast initialisation (see Figure 1). 90 

2.2 Hydrological modelling 

The ESP re-forecasts were produced using the S-HYPE model (Strömqvist et al., 2012), which is the operational 

implementation of the HYPE model for Sweden (Lindström et al., 2010). This allowed an analysis of model outputs for 
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39,493 catchments (with an average spatial resolution of 10 km2) in the model domain. The HYPE model is a process-based 

hydrological model for water quantity and quality which operates on a daily time step and includes both hydrological 95 

(snowpack, groundwater, surface runoff, streamflow) and anthropogenic (reservoir operation, irrigation) factors. The S-

HYPE model has a median Kling-Gupta efficiency (Gupta et al., 2009) of 0.79 for the period 1981 – 2016, ranging from -

0.56 to 0.96 (Figure 1a). 

 

Figure 1 Study domain: (a) Kling-Gupta S-HYPE model performance (KGE) for the period 1981 – 2016 for each of the 539 100 
hydrological stations, (b) average model correction value for each catchment following the autoregressive correction method and, 

(c) degree of regulation of each catchment. 

A large percentage of water courses in Sweden are regulated, mainly for energy production purposes; see the degree of 

regulation (%) in Figure 1c; see also the definition in Pechlivanidis et al., (2018). This makes the simulation and prediction 

of water variables in the main water courses more challenging, as regulation patterns, which can largely deviate from the 105 

natural flow, need to be considered. In the operational S-HYPE model, general regulation regimes in the form of constant 

flow or seasonally varying sine wave shaped flow (or a combination of both) between predefined levels and, in some cases, 

specific dates are provided for a number of reservoirs. Nevertheless, since dam operation is continuously adapted (within 

certain bounds) to the present and most probable future meteorological and hydrological conditions, these general regulation 

regimes are expected to be of little benefit for seasonal forecasting purposes. 110 
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We produced a series of hydrological re-forecasts at the daily time step for all 39,493 locations across Sweden and 

transboundary basins using meteorological forcing data from 25 random years for the period 1961 – 2016 so as to mimic 

SMHI’s operational forecast setup. When selecting the forcing data, a window of 3 years was left out around the analysis 

year (1 year before and two years after) to limit the impact of interannual streamflow memory and thus avoid conditioning 

the forecasts. We initialised the re-forecasts on the 1st, 8th, 15th, and 22nd of each month (approximately once a week). 115 

We used stream discharge and water level data, where available, to correct the model outputs prior to producing the re-

forecasts, and thus get the best possible initialisation conditions. To this purpose, we used an autoregressive (AR) correction 

method (Lindström and Carlsson, 2000; Pechlivanidis et al., 2014). Following this method, model outputs are replaced by 

the available observations and the model errors with respect to these observations are saved for every time step. If 

observations are no longer available, the output corrections converge exponentially towards the simulated values. This 120 

correction only affects catchments with or downstream from streamflow observations and is especially relevant for regulated 

water courses with low model performance where simulated streamflow can significantly deviate from actual values (Figure 

1b). 

2.3 Forecast evaluation 

We evaluated the skill of the ESP re-forecasts produced with the S-HYPE model over the period 1981 – 2016 using the 125 

Continuous Ranked Probability Skill Score (CRPSS, Appendix A) and a cross-validation strategy. Although studies 

involving large-scale models often use model simulations as reference as this minimizes the impact of model performance on 

forecast skill (Arnal et al., 2018; Crochemore et al., 2020), here the reference was a combination of observations (for 

catchments with or downstream from observation points) and model simulations (elsewhere) as a station-corrected 

simulation approach was used to achieve the best possible initial conditions. We assessed the skill of the ESP re-forecasts so 130 

as to highlight the added value of the ESP forecasts with respect to an ensemble forecast based on historical streamflow, 

which users would have access to in the absence of SMHI’s forecast service (Pappenberger et al., 2015a). To this purpose, 

we used an ensemble whose 25 members were resampled from the historical – station-corrected – model simulations from 

the period 1981 – 2010 (excluding the forecast year) as a benchmark against which to derive the skill of the ESP re-forecasts. 

Even if hydrological models are typically run at a daily time scale, forecast results from hydroclimate prediction systems are 135 

usually post-processed and aggregated over longer periods to provide information tailored to the user needs (Bohn et al., 

2010). More specifically, a temporal aggregation of one month is typically used in seasonal forecasting services (Apel et al., 

2018; Bennett et al., 2017). Nevertheless, different time periods may be of interest depending on the sectorial use (e.g. water 

resources management, civil protection mechanisms, warning services). Therefore, in addition to using a basic temporal 

aggregation of one week (i.e. daily streamflow forecasts were aggregated to weekly averages) to estimate the predictive skill 140 

of the national operational service, we were also interested in understanding how aggregating streamflow forecasts over 

different time periods (i.e. 2 weeks, 4 weeks, 8 weeks, 12 weeks, and 24 weeks) impacts forecast skill. 
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2.4 Forecast skill attribution 

Thereafter, we investigated which hydrological characteristics are associated with skilful forecasts. More specifically, we 

selected a set of 15 hydrologic signatures (statistics describing the hydrological behaviour; see Table 1) to provide 145 

diagnostics of the hydrological regime (Kuentz et al., 2017; Pechlivanidis and Arheimer, 2015). We used the non-parametric 

Spearman rank test to assess the correlation between forecast skill and each of the hydrologic signatures. 

 

Table 1 Hydrologic signatures used for catchment functioning. 

Signature Abbreviation Unit Reference 

Mean annual specific runoff Qm mm yr-1 Viglione et al. (2013) 

Range of Pardé coefficient DPar - Viglione et al. (2013) 

Slope of streamflow duration 

curve 

mFDC % %-1 Viglione et al. (2013) 

Normalised low streamflow q95 - Viglione et al. (2013) 

Normalised high streamflow q05 - Viglione et al. (2013) 

Coefficient of variation CV - Donnelly et al. (2016)  

Flashiness Flash - Donnelly et al. (2016) 

Normalised peak distribution PD - Euser et al. (2013) 

Rising limb density RLD - Euser et al. (2013) 

Declining limb density DLD - Euser et al. (2013) 

Normalised relatively low 

streamflow 

q70 - Viglione et al. (2013) 

Baseflow index BFI - Kuentz et al. (2017) 

Runoff coefficient RC - Kuentz et al. (2017) 

Streamflow elasticity EQP - Sawicz et al. (2011) 

High pulse count HPC - Yadav et al. (2007) 

 150 

Then, we applied a k‐means clustering approach within the 15‐dimension space (hydrological signatures) to group the 

catchments into clusters based on similarities of basin functioning and further identify the dominant streamflow generating 

processes for specific regions. Finally, we analysed the hydrologic predictability for each of the clusters. 
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3 Results 

3.1 Temporal and spatial distribution of forecast skill 155 

The skill of the ESP re-forecasts varies with the lead time and the forecast initialisation date (Figure 2). As expected, the 

skill of the ESP with respect to historical streamflow is overall very high for medium-range horizons (i.e. 1 – 2 weeks 

ahead), with a median skill over Sweden starting at 0.7 (Figure 2a) and thereafter decreasing with time. After approximately 

three months, the ESP provides, on average, no added value with respect to historical streamflow. Similar trends have been 

observed in other evaluations of forecasting systems over Sweden (Foster et al., 2018; Olsson et al., 2016). In particular, we 160 

note a rapid decrease in skill in the first forecast month (Crochemore et al., 2020; Harrigan et al., 2018). Consequently, under 

the common monthly initialisation frequency of climate prediction systems (Batté and Déqué, 2016; Johnson et al., 2019), 

streamflow predictability is expected to remain low for periods beyond a 2-week forecast horizon. By increasing the 

frequency of forecast initialisation (e.g. from once a month to once a week), and hence frequently updating the initial 

hydrological states, it is possible to maintain a high streamflow forecast skill for extended forecast horizons (Figure 2b). 165 

 

Figure 2 Streamflow forecast skill (in terms of CRPSS) as a function of lead time: (a) median skill and 5th to 95th percentile range 

for the entire domain, and (b) temporal disaggregation of forecast skill per initialisation date. Initialisation dates within the same 

month (4 times) are represented with the same colour and the first initialisation of each month is marked with thicker markers 

and lines. 170 

Even if the forecast skill follows a similar decreasing pattern for all initialisation dates, both the maximum skill value as well 

as the deterioration rate differ. The highest skill (greater than 0.8) is observed for forecasts initialised in winter (December-

February). In the other seasons, the forecast skill starts at around 0.7, with the lowest skill value observed for initialisations 

in April (just under 0.6). Even if the forecast skill deteriorates quickly and reaches a predictability value close to the one of 
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historical streamflow (CRPSS close to 0) in long forecast horizons, forecasts initialised in March and April (and to some 175 

extent also in February) show a small secondary peak in the skill in May. This is probably related to the predictable spring 

flood season in the northern parts of the country (see also Pechlivanidis et al., 2020). 

The spatial distribution of forecast skill differs significantly across initialisation dates and forecast horizons (Figure 3). For 

instance, forecasts initialised in winter (e.g. December 1st) maintain skill for inland forested areas of northern Sweden up to 3 

months in the future. Forecasts initialised in spring (e.g. March 1st) show skill up to the same forecast horizon, but most 180 

notably in the southern and eastern parts of the country. Finally, forecasts issued in summer and autumn are skilful up to 2 

months except for some areas in the central-western parts of the country.  

For the first forecast month, forecasts tend to have a comparatively poorer skill in the mountainous areas of north-western 

Sweden than in other parts of the country, except when they are initialised in the spring. Agricultural areas located around 

some of Sweden’s largest lakes, such as Lake Mälaren and Lake Vänern, also have comparatively poor forecast skill. 185 

Interestingly, high predictability would have been expected in such lakes with slow hydrological response (long memory) 

(see Pechlivanidis et al., 2020). However, these great lakes are heavily regulated (see Figure 1), and the model correction 

seems to have impacted forecast skill. Streamflow forecasts in the large, highly-regulated, rivers of northern Sweden, such as 

River Umeälven and River Luleälven, also lack skill (Figure 1c). Again, the regulation patterns that significantly differ from 

the natural regime of watercourses, are not adequately captured by the ESP. In these cases, the broader ensemble of historical 190 

streamflow is a better estimator of the future trends in streamflow. Conversely, streamflow forecasts show high skill in non-

regulated rivers located in the same area and of similar size and hydrological regime, i.e. River Kalixälven and River 

Torneälven. 
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Figure 3 Spatial distribution of streamflow forecast skill (in terms of CRPSS) for selected initialisation dates (rows) and forecast 195 
time horizons (columns). 
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3.2 Forecast skill as a function of temporal aggregation 

We next investigate the impact of the forecast aggregation period on the forecast skill. Here, the focus is not on the spatial 

pattern and therefore forecast skill is averaged over the entire domain. Results show that, even if the average skill for the first 

forecast period decreases when aggregating over longer time periods, the forecasts remain skilful (CRPSS greater than 0) for 200 

aggregation periods up to 12 weeks (Figure 4). When aggregating over 24 weeks, the ESP method generally provides no 

added value with respect to historical streamflow; the predictability from ESP is very similar to the one from historical 

streamflow. Even if, as expected, forecast skill decreases when forecasts are aggregated over long periods, a comparatively 

higher skill is maintained over longer time horizons than when forecasts are aggregated over short periods. In addition, 

forecasts initialised in February and March are skilful up to 16 weeks ahead when aggregating over long periods (e.g. 8 205 

weeks), and the forecasts initialised in April and May show high skill values, even when aggregating over a 12-week period. 

This seems to be due to the high predictability of the spring flood season in May, also shown by the secondary peak in skill 

observed for these initialisations in Figure 2b. Finally, for forecasts initialised in July and October, long aggregation periods 

(e.g. 12 weeks) tend to dilute the high forecast skill observed over the first weeks. 
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 210 

Figure 4 Skill of streamflow forecasts as a function of lead time (weeks) initialised on the 1st of each month for selected forecast 

aggregation periods (i.e. 1 week, 2 weeks, 4 weeks, 8 weeks, 12 weeks, and 24 weeks). The skill is averaged over Sweden. 

3.3 Relating streamflow signatures and forecast skill 

We next investigate potential correlations between forecast skill and the 15 streamflow signatures using the non-parametric 

Spearman rank test. In all cases the null hypothesis (i.e. no correlation exists between forecast skill and the streamflow 215 

signature) is rejected with a level of significance of 0.01. Nevertheless, different patterns emerge when comparing forecast 

skill (first forecast week) for each catchment with each of the 15 streamflow signatures (Figure 5). More specifically, 

forecast skill is strongly inversely correlated (defined here as the Spearman’s rank correlation coefficient (ρ) being less than -

0.50) with high pulse count (HPC), flashiness (Flash), rising limb density (RLD), declining limb density (DLD), and 

coefficient of variation (CV). Additionally, a strong direct correlation (ρ > 0.50) is found between skill and baseflow index 220 

(BFI), normalised low streamflow (q95), and normalised relatively low streamflow (q70) indicating that slowly reacting 

catchments with a significant baseflow component generally experience high predictability (Harrigan et al., 2018; 
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Pechlivanidis et al., 2020). A similar analysis has been conducted for long forecast horizons (results not shown here); 

however, since spatial patterns in forecast skill weaken and blend in with the forecast horizon, the identified correlations are 

not strong. Overall, the identified correlations highlight the existence of a generally high forecast skill in slowly reacting, 225 

baseflow-dominated catchments, while low forecast skill is predominant in flashy catchments. Although this analysis 

indicates the existence of dependencies between streamflow signatures and forecast skill, it can still be considered limited 

given that a hydrological system is generally characterized by a wider set of streamflow signatures than that considered here 

(Pechlivanidis and Arheimer, 2015; Sawicz et al., 2011). 
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 230 

Figure 5 Forecast skill (in terms of CRPSS) for the first forecast week for each of the 39,493 catchments in Sweden as a function of 

each of the 15 hydrological signatures. The non-parametric Spearman’s rank correlation coefficient (ρ) is shown for each 

signature. 

https://doi.org/10.5194/hess-2020-542
Preprint. Discussion started: 28 October 2020
c© Author(s) 2020. CC BY 4.0 License.



14 

 

3.4 Attributing streamflow forecast skill to hydrologic behaviour 

Here, we investigate the potential attribution of streamflow predictability in the Swedish river systems to hydrological 235 

behaviour, given that such dependency has been highlighted in the previous analysis. Using the k-means clustering method, 

an optimal number of seven distinct clusters (based on a silhouette analysis using a different number of clusters; de Amorim 

and Hennig, 2015) have been obtained representing different hydrological regimes (Figure 6). Table 2 provides additional 

information on the topographic, climatological and hydrological characteristics of each cluster while the spatial variability of 

each of the 15 streamflow signatures, as well as of the catchment elevation, is presented in Appendix B. 240 

Catchments clustered in regions 1 and 5 are characterised by a high baseflow contribution, a slow response to precipitation 

and, therefore, a generally small intra-annual variability. In terms of topography, these regions consist mainly of forested 

areas located in southern Sweden. Catchments in Cluster 2 are found in highland areas and boreal forest environments in 

northern Sweden, and are characterised by high seasonality due to the alternance between snow melting and accumulation. 

These catchments are also characterised by high runoff volumes given that they are subject to high precipitation amounts and 245 

low evapotranspiration rates. Agricultural and coastal areas located mainly in southern and central parts of the country are 

found in Cluster 3. These catchments are characterised by a highly variable streamflow regime and a quick response to 

precipitation, yet exhibit a long hydrograph recession. Similarly, catchments grouped in Cluster 6, which are located in low-

land coastal and lake areas, experience flashy responses, as well as high streamflows and seasonal variations. Boreal forest 

catchments in the northern part of the country are grouped in Cluster 4, and are characterised by a generally high runoff 250 

coefficient and a low response to precipitation events. Finally, catchments in Cluster 7 are found along several large and 

highly-regulated rivers in northern Sweden. These catchments are characterised by a small variability but high streamflow 

volumes and runoff coefficients explained by anthropogenic regulations. 
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Figure 6 Clustering analysis: (a) distribution of the 15 hydrological signatures in each clustered region. The red lines represent the 255 
33rd and 66th percentiles for each signature; (b) geographical distribution of hydrologically similar regions over Sweden. 

 

Table 2 Main characteristics of each of the hydrological clusters. 

Cluster 

region 

Number of 

catchments 

Mean 

elevation 

(m a.s.l.) 

Mean annual 

precipitation 

(mm yr-1) 

Mean 

annual 

potential 

evapotran

spiration 

(mm yr-1) 

Mean 

annual 

actual 

evapotran

spiration 

(mm yr-1) 

Low streamflow 

signatures 

High streamflow 

signatures 

1 8408 247.66 649.97 315.84 280.39 q05, CV, Flash, PD, 

RLD, HPC 

q95, q70, BFI 

2 6704 477.38 732.18 184.94 175.17 q95, q70, BFI, EQP Qm, DPar, q05, CV, 

PD, RC, HPC 

3 8273 162.36 654.22 339.79 294.87 BFI, RC Flash, RLD, EQP, 

HPC 

4 8297 370.18 653.06 237.18 219.51 Flash, RLD, DLD  DPar, PD 
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5 4355 259.55 643.25 302.36 270.87 DPar, mFDC, q05, 

CV, Flash, PD, HPC 

q95, q70, BFI 

6 2421 22.47 732.18 381.68 305.74 DPar, q95, q70, BFI mFDC, q05, CV, 

Flash, RLD, DLD, 

HPC 

7 1025 224.10 618.54 297.50 266.87 DPar, mFDC, q05, 

CV, PD, EQP, HPC 

Qm, q95, DLD, q70, 

RC,  

 

The last step is to analyse the streamflow forecast skill in each hydrological cluster (Figure 7). Note that here we have 260 

aggregated the skill for all initialisations and hence we have not accessed the seasonal distribution of the forecast skill; 

however, we have focused on the detection of dependencies between skill and hydrologic regimes. Nevertheless, we note 

that the clusters with high (or poor) forecast skill in relation to the others are the same independently of the target 

month/week. According to Pechlivanidis et al. (2020), this is due to the intraannual variability of the streamflow response, 

which consistently varies between the catchments from the different clusters. Clusters 1, 4, and 5, which are all considered to 265 

have high river memory due to baseflow domination, small intraannual variability, and generally low response to 

precipitation (see Table 2), have a higher median skill than the country-average. Among them, cluster 5 has the highest 

overall median skill for all time horizons but also, interestingly, the highest spread in forecast skill as a function of lead time. 

All of these clusters correspond mainly to forested catchments across the country. Cluster 3 and, most notably cluster 6, have 

a lower median skill than the country-average. These catchments are characterized by short river memory with flashy 270 

responses and are strongly driven by precipitation and strong seasonal variations. Similar results are observed for cluster 2. 

In this case, however, the median skill is closer to the country-average skill than for clusters 3 and 6. The response from 

catchments in cluster 2 is highly seasonal due to snow accumulation and melting processes, and hence not as rainfall-driven 

as for clusters 3 and 6. Finally, cluster 7, which contains the catchments along the large regulated rivers in northern Sweden, 

is the only set of catchments in which the median forecast skill reaches negative values, including also a large spread in the 275 

skill values (5th and 95th percentiles). In these catchments, the ESP was expected to be outperformed by historical streamflow 

since, as previously mentioned, historical streamflows benefit from the AR model correction throughout the forecast period 

and thus can better reproduce regulation patterns with low intraannual variability. 
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Figure 7 Streamflow forecast skill (in terms of CRPSS) as a function of lead time for the entire country (top-left corner; also 280 
shown in Figure 2a) and each of the 7 clusters. The median skill and range for Sweden are provided in the background of Clusters 

1-7 to provide a reference for the values of each cluster. 

4 Discussion 

4.1 Challenges and opportunities in an operational forecasting service 

The results obtained in this study indicate that ESP seasonal forecasts produced with the operational S-HYPE hydrological 285 

model are skilful with respect to historical streamflow on average up to 3 months ahead, despite the large temporal and 

spatial variabilities. This positive skill would make operational seasonal forecasts, in general, suitable to guide decision-

making for applications requiring long-term planning, (e.g. water resources management, agriculture). Nevertheless, issues 

related to the modelling setup, the forecast methodology, the hydro-climatic characteristics of the Swedish river systems (e.g. 

high degree of regulation in many water courses), among others, can impact the reliability of such a forecasting service. 290 

The ESP forecasting approach is limited by its use of historical meteorological forcing data to generate the streamflow 

forecasts, making it unable to capture unprecedented meteorological events. Consequently, extreme events that lay outside 

the observed range will inevitably be misrepresented, limiting the service’s predictability of extreme conditions which can be 

important to some decision makers. This issue may be addressed by using numerical weather prediction (NWP) models to 

predict the future climate (Monhart et al., 2019). However, although NWPs are not constrained by the observational period, 295 

they are limited by the chaotic nature of the weather system (aleatory uncertainty), which makes small errors in the initial 

conditions grow significant with time. In addition, NWP-based forecasts require post-processing (i.e. downscaling and bias-
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adjustment) to be suitable to use in impact studies. Finally, their added value for streamflow forecasting in comparison to 

ESP is shown to be limited in Sweden, with the possible exception of southern Sweden (Arnal et al., 2018). 

As expected, ESP forecast skill decreases rapidly with time particularly in fast responding river systems. Results have shown 300 

that monthly initialization, which is the most common initialization frequency of climate prediction models, is critical to set 

high skill values; however, such frequency in the initialization cannot account for skill deterioration within the month. In this 

setting, increasing the initialisation frequency to, for instance, once a week would allow to maintain a high skill up to 

monthly time horizons. Nevertheless, considering that climate prediction models are not developed to represent the exact 

daily dynamics of the natural systems and that forecasts are therefore aggregated into long time periods, more frequent (e.g. 305 

daily) forecast initialisations are not expected to provide an added value to the forecast service. Moreover, forecast 

information from such frequent initialisations can easily be misinterpreted by decision-makers (Schepen et al., 2016). 

Regarding the aggregation of forecast outputs, most studies have focused on a 1-month aggregation period as it is reported to 

provide an “appropriate forecast at the seasonal scale and a proxy of the underlying distribution” (Emerton et al., 2018; 

Meißner et al., 2017; Yossef et al., 2013). Nevertheless, there may be value in considering aggregation periods different from 310 

the standard monthly aggregation (or even adaptive aggregation periods) for providing guidance on the usability of the 

forecasts for decision-making. This choice should be driven by user needs and our finding is that aggregations over periods 

longer than the month do not necessarily mean a loss in skill. Here, we have observed that, in Sweden, long aggregated 

forecasts covering the spring flood season tend to gain in skill. Overall, however, from time horizons of, on average, 4 

months into the future, forecasts have very low or no skill regardless of the aggregation period of choice. 315 

Another important factor driving hydrological predictability at the seasonal scale is the adequate knowledge of the initial 

hydrological conditions (Shukla et al., 2013). In many cases, ESP forecasts are initialized based on the latest available model 

state (modelled reality), which may significantly deviate from the actual hydrological state (observed reality). Incorporating 

the latest available observations into forecast initialisation can thus be especially important to bridge the gap between 

modelled and observed reality. Here, an AR-updating method is used to correct the model outputs whenever observations are 320 

available, with the objective to generate forecasts which are as close as possible to observed reality (see Section 2.2). This 

method is straightforward and easy to implement, and takes advantage of streamflow memory to not only correct the initial 

forecast state but also the following forecast horizons when observations are no longer available. More advanced data 

assimilation methods could be considered in further developments of the presented operational forecast system, such as 

Kalman Filters (Sun et al., 2016), allowing not only for a correction of model outputs, but also an adjustment of model states 325 

and thus of process representation (Musuuza et al., 2020). 

4.2 Impact of regulation on forecasting skill 

One of the main applications of long-term forecasting in Sweden is for planning reservoir operation during the spring flood 

season (May-July) (Foster et al., 2018). However, forecast skill is low for the main hydropower-producing heavily-regulated 

rivers in the northern parts of the country, where the highest spring flood peak volumes occur. In these locations, ESP 330 
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forecasts may be used to adequately predict the water inflows to the reservoirs from the headwaters but they would have no 

value for predicting reservoir outflows with respect to using the ensemble of historical streamflow. In order to further 

understand the impact of streamflow regulation on the results, we evaluated the ESP forecasts using model simulations 

(without AR correction) as reference. Forecast skill was in this case very high for the highly regulated rivers where low 

forecast skill was obtained in the main analysis. This exercise shows that the regulation routines in some river stations in the 335 

S-HYPE model still need improvement in order to correctly represent the management rules dominating regulated 

streamflow patterns. This issue is not as obvious in less heavily regulated rivers elsewhere in the country, where ESP 

forecasts are generally skilful. 

With the exception of River Luleälven and other comparatively smaller rivers in the Swedish mountains, the S-HYPE model 

performance is generally high for most locations, including the large rivers in the northern parts of the country. Similarly, 340 

ESP seasonal forecasts are skilful for non-regulated rivers in that area that also benefit from long-term planning. More 

specifically, River Torneälven and, to a lesser extent, River Kalixälven are susceptible to severe ice break-up events in 

connection to the spring melt season and subsequent spring flooding (Zachrisson, 1989). An important factor in predicting 

the timing of the ice break-up is the onset of spring flood due to snowmelt. Skilful ESP seasonal forecasts for these rivers 

should allow for early planning and allocation of resources that could greatly contribute to mitigate potentially severe ice 345 

break-ups. 

4.3 Regionalisation of skill in other domains 

Besides streamflow regulation patterns, certain characteristics of the hydrological regime have a high impact on hydrological 

predictability. Here we have shown that forecast skill is high in baseflow-dominated catchments where past hydrologic 

conditions drive the catchment response, while it is low in flashy catchments where rainfall drives the streamflow dynamics 350 

and hence accurate rainfall forecasts are crucial. This corresponds well with findings from similar studies over different 

geographical domains (Harrigan et al., 2018; Pechlivanidis et al., 2020). However, contrary to the findings by (Harrigan et 

al., 2018), who identified a specific streamflow signature (i.e. the baseflow index) as the main driver of hydrological 

predictability, we have found that, for Sweden, it is instead the result of the overall hydrological behaviour, even if some 

specific streamflow signatures may have a greater impact than others. Additionally, the seven clusters not only differ in 355 

terms of hydrological response, but also in terms of climatological patterns and physiographic characteristics.  

The results obtained here may contribute to guiding in which areas, seasons, and how long into the future ESP hydrological 

forecasts provide an added value not only for SMHI’s forecasting and warning service, but most importantly for guiding 

decision-making in critical services such as hydropower management and risk reduction. Here, we note that, even if the 

hydro-climatic gradient of Sweden does not fully represent the equivalent gradients over the continent or the globe, our 360 

results are however transferable to other locations with similar climatological and hydrological conditions as it has also been 

highlighted in Pechlivanidis et al. (2020). 
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5 Conclusions 

Herein, we analysed the skill of ESP re-forecasts using the operational S-HYPE hydrological model over Sweden in an effort 

to evaluate the suitability of this methodology for producing reliable forecasts at the seasonal scale within SMHI’s 365 

hydrological forecasting and warning service as well as for other activities requiring long-term planning. In addition, we 

aimed at understanding the underlying patterns and drivers behind skilful forecasts and attributed the seasonal predictability 

to hydrological characteristics. About 39,400 catchments, which lie along Sweden’s strong hydroclimatic gradient, were 

investigated. The main conclusions of this study are: 

• The skill of the ESP forecasts varies both geographically and seasonally, and depends on the initialization month 370 

and aggregation period. Moreover, the skill decreases rapidly with time particularly in fast responding river 

systems; however, the ESP forecasts are generally skilful up to 3 months into the future. Forecasts are most skilful 

during the winter months for the northern parts of the country, except for the highly-regulated hydropower-

producing rivers. 

• Initialization frequency is a key driver affecting streamflow forecasting skill. Monthly initialisations are critical to 375 

preserve high forecast skill values without, however, addressing the skill deterioration over the first forecast month. 

Increasing the initialisation frequency to once a week allows maintaining the high skill up to monthly time horizons. 

• The river systems in Sweden can be categorised into 7 clusters based on similarities in streamflow signatures. This 

results in an improved understanding of the dominating hydrological processes, which are shown to vary spatially 

and seasonally. Particularly, dominant streamflow generation processes over the mountainous regions, including 380 

baseflow and snow accumulation/melting, dampening from lakes, and reservoir alterations could explain the 

hydrological clustering across the country. 

• A link between forecast skill and streamflow signatures has been detected. Over the 15 streamflow signatures 

investigated here, baseflow index, flashiness, rising limb density, coefficient of variation and high pulse count show 

strong correlations with forecast skill. Streamflow forecasts are most skilful for slowly-reacting catchments due to 385 

snow-related processes and/or dampening from lakes and baseflow-dominated catchments (river systems with long 

memory). Conversely, forecasts are least skilful for catchments with a flashy response to rainfall (river systems with 

short memory). 

Appendix A: Continuous Ranked Probability Skill Score 

The Continuous Ranked Probability Score (CRPS; Hersbach, 2000) is a common measure of ensemble forecast performance. 390 

It is formulated as the integral squared distance between the forecast ensemble and the observation step function. The CRPS 

is then averaged over all forecasts of the evaluation period. Its dimension is that of the forecast variable being assessed, here 

m3s-1, and its value is equivalent to the mean absolute error when applied to deterministic forecasts. 
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The Continuous Ranked Probability Skill Score (CRPSS) is then assessed by comparing the CRPS value of the investigated 

forecast system (here, ESP) to that of a selected benchmark (here, an ensemble of historical streamflow selected from the 395 

period 1981 – 2010). Given CRPSsys, the CRPS of the forecasting system, CRPSbench the CRPS of the benchmark and 

CRPSpft the optimal CRPS value (0), the CRPSS is formulated according to Eq. A1. 

𝐶𝑅𝑃𝑆𝑆 =
𝐶𝑅𝑃𝑆𝑏𝑒𝑛𝑐ℎ−𝐶𝑅𝑃𝑆𝑠𝑦𝑠

𝐶𝑅𝑃𝑆𝑏𝑒𝑛𝑐ℎ−𝐶𝑅𝑃𝑆𝑝𝑓𝑡
          (A1) 

This metric is non-dimensional and takes values between 1 (optimum) and low negative values. Positive (negative) skill 

scores indicate that the forecast system performs better (worse) than the benchmark in terms of CRPS. Skill scores close to 0 400 

indicate that the evaluated forecast system has equivalent performance to that of the benchmark. 
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Appendix B: Spatial variability of hydrological signatures 
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Figure B1 Spatial variability of the 15 modelled hydrological signatures including the catchment mean elevation. The colour 

intervals are based on the quantiles (15% intervals) of each signature (and elevation) distribution. A clarification of the 405 
abbreviations used here can be found in Table 1 in the main text. 
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