
HAL Id: hal-03485290
https://hal.inrae.fr/hal-03485290

Submitted on 6 May 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

A Non-Invasive Millimetre-Wave Radar Sensor for
Automated Behavioural Tracking in Precision

Farming-Application to Sheep Husbandry
Alexandre Dore, Cristian Pasquaretta, Dominique Henry, Edmond Ricard,
Jean-François Bompa, Mathieu Bonneau, Alain Boissy, Dominique Hazard,

Mathieu Lihoreau, Hervé Aubert

To cite this version:
Alexandre Dore, Cristian Pasquaretta, Dominique Henry, Edmond Ricard, Jean-François Bompa, et
al.. A Non-Invasive Millimetre-Wave Radar Sensor for Automated Behavioural Tracking in Precision
Farming-Application to Sheep Husbandry. Sensors, 2021, 21 (23), pp.8140. �10.3390/s21238140�.
�hal-03485290�

https://hal.inrae.fr/hal-03485290
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


sensors

Article

A Non-Invasive Millimetre-Wave Radar Sensor for Automated
Behavioural Tracking in Precision Farming—Application to
Sheep Husbandry

Alexandre Dore 1,2,*, Cristian Pasquaretta 2 , Dominique Henry 1,2, Edmond Ricard 3, Jean-François Bompa 3,
Mathieu Bonneau 4 , Alain Boissy 5, Dominique Hazard 3, Mathieu Lihoreau 2,† and Hervé Aubert 1,†

����������
�������

Citation: Dore, A.; Pasquaretta, C.;

Henry, D.; Ricard, E.; Bompa, J.-F.;

Bonneau, M.; Boissy, A.; Hazard, D.;

Lihoreau, M.; Aubert, H. A

Non-Invasive Millimetre-Wave Radar

Sensor for Automated Behavioural

Tracking in Precision

Farming—Application to Sheep

Husbandry. Sensors 2021, 21, 8140.

https://doi.org/10.3390/s21238140

Academic Editors: Yongliang Qiao,

Lilong Chai, Dongjian He and

Daobilige Su

Received: 2 November 2021

Accepted: 20 November 2021

Published: 6 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Laboratory for Analysis and Architecture of Systems, Toulouse University, CNRS, INPT,
31400 Toulouse, France; dhenry@laas.fr (D.H.); herve.aubert@toulouse-inp.fr (H.A.)

2 Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI), CNRS,
University Paul Sabatier-Toulouse III, 31400 Toulouse, France; cristian.pasquaretta@univ-tlse3.fr (C.P.);
mathieu.lihoreau@univ-tlse3.fr (M.L.)

3 GenPhySE, Toulouse University, INRAE, ENVT, 31326 Castanet Tolosan, France;
edmond.ricard@inrae.fr (E.R.); jean-francois.bompa@inrae.fr (J.-F.B.); dominique.hazard@inrae.fr (D.H.)

4 URZ, INRAE, Petit-Bourg, 97170 Guadeloupe, France; mathieu.bonneau@inrae.fr
5 UMR Herbivores, Clermont University, INRAE, VetAgro Sup, 63122 Saint-Genès Champanelle, France;

alain.boissy@inrae.fr
* Correspondence: alexandre.dore@univ-tlse3.fr
† These authors contributed equally to the work.

Abstract: The automated quantification of the behaviour of freely moving animals is increasingly
needed in applied ethology. State-of-the-art approaches often require tags to identify animals,
high computational power for data collection and processing, and are sensitive to environmental
conditions, which limits their large-scale utilization, for instance in genetic selection programs of
animal breeding. Here we introduce a new automated tracking system based on millimetre-wave
radars for real time robust and high precision monitoring of untagged animals. In contrast to
conventional video tracking systems, radar tracking requires low processing power, is independent
on light variations and has more accurate estimations of animal positions due to a lower misdetection
rate. To validate our approach, we monitored the movements of 58 sheep in a standard indoor
behavioural test used for assessing social motivation. We derived new estimators from the radar
data that can be used to improve the behavioural phenotyping of the sheep. We then showed how
radars can be used for movement tracking at larger spatial scales, in the field, by adjusting operating
frequency and radiated electromagnetic power. Millimetre-wave radars thus hold considerable
promises precision farming through high-throughput recording of the behaviour of untagged animals
in different types of environments.

Keywords: radar sensors; radar signal processing; animal farming; computational ethology; signal
classification; wavelet analysis

1. Introduction

Behavioural research increasingly requires automated recording and analyses of
animal movements [1]. This is exemplified by emerging methods for high-throughput
monitoring and statistical analyses of movements that enable the quantitative characterisa-
tion of behaviour on large numbers of individuals, the discovery of new behaviours, but
also the objective comparison of behavioural data across studies and species [2,3]. These
quantitative approaches are particularly powerful to study inter-individual behavioural
variability or personalities in animal populations [4]. In livestock, for instance, large-scale
genetic selection programmes are based on the measurements of several hundreds (if not
thousands) of farm animals [5]. Many behavioural tests have been developed to assess
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personality traits in these animals [6], with some applications in breeding programmes,
for instance to discard the more aggressive individuals [7]. However, in these studies be-
havioural measures are frequently obtained from direct observations by the experimenters
or farmers [8], which considerably limits the possibility to quantify behavioural traits at
the experimental or commercial farm level.

Animal tracking methods involving on-board devices, such as Global Positioning Sys-
tems (GPS) [9], radio telemetry [10], radio frequency identification (RFID) [11] or harmonic
radar [12], are hardly suitable for detailed high throughput behavioural phenotyping due
to the limited accuracy and duration of measurements. Best available approaches therefore
involve image-based analyses [13]. So far however, these techniques often require large
computational resources to fit the classification model and to process images [14], and are
sensitive to light variation [15]. Moreover, video processing using machine learning is
typically limited to the detection of one type of target (e.g., the focal animal species), which
means that other potentially important information in the signal (e.g., the presence of a
farmer) is ignored.

Recently, Frequency-Modulated Continuous-Wave (FMCW) radars operating in the
millimetre-wave frequency band have been proposed for the automated tracking of the
behaviour of a large diversity of animals (sow: [16], bees: [17]; sheep: [18]). In this approach,
it was shown it is possible to record one-dimensional movements (distance to radar) of
individual sheep in an arena test [18]. Tracking animals with FMCW radars has the great
advantage of being non-invasive (does not require a tag), insensitive to light intensity
variations, and fast (does not require large memory resource). FMCW radars therefore
provide considerable advantages for the development of automated high-throughput
analyses of behaviour in comparison to more conventional approaches like video and
infrared cells. The radar signal processing does not require fitting a model to detect targets,
which relaxes the need to collect thousands of data before application. In addition, it
offers the possibility to detect targets placed behind a non-transparent wall, which can
be used to hide the tracking device, or to study the effect of physical obstacles on an
animal’s behaviour.

Here we report a millimetre-wave FMCW radar system for the automated tracking
and analysis of the 2D trajectories of freely moving animals. We illustrate our approach
with the analysis of the movements of 58 sheep in an experimental farm. The measurements
were performed during a behavioural test commonly used to estimate the sociability of
individual sheep in genetic selection [8,19]. First, we compared the estimate of the sheep
position with the radar and standard video tracking and infrared cells. Second, using the
radar data we identified new behavioural estimators that could be used for large-scale
behavioural phenotyping. Third we showed that the radar system can also operate for
long-distance tracking, in the field, by adjusting radar emission frequency and radiated
electromagnetic power.

2. Material and Methods
2.1. Sheep

We ran the experiments in July 2019 at the experimental farm la Fage of the French
National Research Institute for Agriculture, Food, and Environment (INRAE), France
(43.918304, 3.094309). We tested 58 lambs (29 males, 29 females) Ovis aries with known
weight (range: 12–31.3 kg) and age (range: 59–88 days). Ewes and their lambs were reared
outdoor on rangelands. After weaning, lambs were reared together outside and tested
for behaviour 10 days later. This delay enabled the development of social preferences for
conspecifics instead of preference for mother.

All the lambs were previously tested in a “corridor test” to estimate their docility
towards humans. Briefly, the test pen consisted of a closed, wide rectangular circuit
(4.5 × 7.5 m) with opaque walls [8]. A non-familiar human entered the testing pen and
walked at constant speed through the corridor until two complete tours had been achieved.
The corridor was divided into 6 virtual areas. Every 5 s, the areas in which the human
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and the animal were located were recorded and the mean distance separating the human
and the lamb was calculated. The walking human also recorded with a stopwatch the
total duration when he could see the head of the lamb to discriminate between fleeing and
following lambs. The reactivity criteria towards an approaching human was constructed
by combining both distance and duration measurements (for more details see [20]). The
higher the resulting variable (i.e., “docility” variable in the present study), the more docile
the animal.

2.2. Arena Test

We measured sheep behaviour in a standard protocol (“the arena test”) used to assess
the sociability of sheep through measures of inter-individual variability in social motivation
in the absence or presence of a shepherd [8,19]. A sheep (focal sheep) was introduced in
the pen (2 m × 7 m) (Figure 1A) (for more details see [21]). Three other sheep from the
same cohort (social stimuli) were placed behind a grid barrier, on the opposite side of the
arena entrance. The test involved three phases (Figure 1B):

- In phase 1, the focal sheep could explore the arena for 15 s and see its conspecifics
through a grid barrier;

- In phase 2, visual contact between the focal sheep and the social stimuli was disrupted
using an opaque panel pulled down from the outside of the pen for 60 s. This phase
was used to assess the sociability of the sheep towards its conspecifics;

- In phase 3, visual contact between the focal sheep and its conspecifics was re-established
and a human was standing still in front of grid barrier for 60 s. This phase was used
to assess the sociability of the focal sheep towards conspecifics in presence of a
immobile human.Sensors 2021, 21, x FOR PEER REVIEW 4 of 19 
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a proxy of sociability [8]. A proximity score was computed as the time spent in each virtual 
area weighted according to the virtual area delimited by the infrared receptor in such a 
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Figure 1. Corridor test. (A) Top view of the focal sheep and the social stimuli in the corridor (example
image extracted from video data). (B) Schematic representation of experimental phases 1, 2 and 3.
(C) Image of the FMCW radar frontend (phot credit AD). Each rectangle corresponds to patch [22].
(D) Example of a trajectory of a sheep obtained with radar tracking after removing the clutter and
normalizing the estimated value. The red rectangle represent the pen walls.
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Sets of 2 infrared cells were placed at the height of the sheep’s body and every meter
along the arena test to define 7 virtual areas of 1 m. Analyses of the data resulting from the
activation of the infrared cells by the sheep were performed with Fortran algorithms to
compute longitudinal displacements of the sheep in the device.

2.3. Data Collection

We measured the displacement of the focal sheep in phases 2 and 3 of the arena test
(phase 1 is the initiation phase) using three automated tracking systems: (1) infrared sensors,
(2) a video camera, and (3) a millimetre-wave FMCW radar. During the measurement, an
experimenter also recorded the number of high-pitched bleats by the focal sheep, a proxy
of sociability [8]. A proximity score was computed as the time spent in each virtual area
weighted according to the virtual area delimited by the infrared receptor in such a way
that a high score indicated high proximity to conspecifics [20]. Crossing rate measured the
number of virtual areas crossed during arena test phases 2 and 3.

2.4. Video and Radar Tracking

We compared the efficiency of the radar system and standard video tracking for
monitoring the 2D movements of the sheep. For the video tracking, we placed a camera
on one end of the arena (opposite to entrance side, Figure 1B). The camera was elevated
2 m above ground in order to film the entire arena, producing black and white images
of size 720 p × 576 pixels every 25 ms. Sheep movements were tracked in 2D. For image
processing, we applied a detection algorithm using the state-of-the-art image object detector
tiny-YOLO V3 (You Only Look Once) network, which is a version of the YOLO model
adapted for faster processing allowing 244 images of 0.17 mega pixels (416 × 416 pixels) per
second (on a TITAN X graphics card) [23]. This Convolutional Neural Network (CNN) was
pre-trained on the PASCAL Visual Object Classes Challenge dataset [24]. YOLO detected all
the objects on the image, including the focal sheep, possibly some parts of the background
and the human when entering inside the arena. To differentiate between the sheep and
non-sheep detected objects, we used another CNN, Alexnet, that we parameterized using
transfer learning [25]. A set of 40 sheep and 40 non-sheep images were used to re-train
the network. Finally, for some images the focal sheep was not detected, especially when
it was located at the opposite of the camera. In these cases, the location of the sheep
was extrapolated by continuing the trajectories with a constant speed between the two
known locations.

For the radar tracking, we placed a millimetre-wave FMCW radar (Figure 1C, see tech-
nical characteristics in Table 1) at one end of the arena test (i.e., entrance side, Figure 1B).
The radar was setup outside of the test pen behind a Styrofoam wall transparent to
millimetre-waves [26]. The transmitting antenna array radiated a repetition over time
of a so-called chirp (i.e., a saw-tooth frequency-modulated signal [27]). The chirp was
backscattered by the targeted focal sheep, but also by the surrounding scene which pro-
vides undesirable radar echoes called the electromagnetic clutter. The total backscattered
signal was then collected by the receiving antenna array and processed to mitigate the
clutter and to derive the sheep 2D trajectory from radar data. In the millimetre-wave
frequency range, the detectability of the sheep depends mainly on the bandwidth of the fre-
quency modulation, the beamwidth of the radar antennas, and the radiated electromagnetic
power [27].

Processing of radar data included two main steps. First, we extracted the position of
the animal. Next, we computed behavioural parameters to characterize the movement of
the animal. We extracted the distance of the focal sheep to the radar and its direction in
the horizontal plane of the scene. To mitigate the electromagnetic clutter, we estimated
the mean value and standard deviation of the radar signal in absence of the sheep and we
derived the signal, denoted by D, from the signal S delivered by the radar in presence of
the animal, as follows:

D(t, r, θ) =
S(t, r, θ)− mean(r, θ)

std(r, θ)
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where r is the radar-to-sheep separation distance, mean is the time-averaged radar signal at
the range r and angular position θ, std is the time-standard deviation of the radar signal.
Figure 1D shows an example of position estimations of a sheep over time after removing
the electromagnetic clutter.

2.5. Extraction of New Behavioural Parameters Form the Radar Data

We used the radar estimated 2D trajectories to extract new behavioural parameters
characterizing sheep movements using three approaches.

• 1: Behavioural classes;

We statistically identified broad classes of behaviour using Gaussian Mixture Models
(GMM). First, we divided the trajectories into time windows of 1 s for each sheep and for
each experimental phase. Next, we extracted movement parameters from each window:
average speed, sinuosity (total displacement over distance between the first position and
the last) and total displacement distance. Then, because the social stimuli (i.e., the three
conspecifics) were located at one end of the corridor, we split the speed vector into two
components: along the two lateral walls of the corridor and across the two longitudinal
walls. Finally, to derive behavioural classes we performed a GMM on the extracted
movement parameters for each lamb [28]. The number of classes (i.e., the number of
Gaussians to be used) was determined by comparing models using 1 to 15 classes. We
selected the model with the lowest Akaike score, which represents the model with the
features best explaining the parameter under consideration [29]. The GMM was performed
using the Python package scikit-learn [30]. We estimated the rate of time spent in each
movement classes for the two phases.

Table 1. Technical characteristics of the FMCW radar used for indoor tracking [22] and outdoor tracking [31].

Name Indoor Tracking Outdoor Tracking Note

Operating frequency 77 GHz 24 GHz
This frequency is also called the carrier

frequency of the frequency-modulated signal
transmitted by the radar

Modulation Bandwidth 3 GHz 800 MHz
Frequency interval, centred at the operating
frequency, used for the saw-tooth frequency

modulation of the transmitted signal

Ramp time 256 µs 1 ms Up-ramp duration of the saw-tooth
frequency-modulated signal (or chirp duration)

Repetition time 50 ms 30 ms Period of the transmitted frequency-modulated
signal (or chirp repetition interval)

Number of linear arrays of the
transmitting antenna array 4 1 One linear array composed of 8 × 2 rectangular

patches radiating elements

Number of linear arrays of the
receiving antenna array 8 2 Eight linear arrays composed of 8 rectangular

patches radiating elements

Main lobe beamwidth of the
transmitting antenna array in

the horizontal plane
50◦ 58◦ Angular range (or field of view) of the radar

illumination in the horizontal plane

Transmitted power 100 mW 100 mW

Power delivered at the input terminals of the
transmitting array antenna (the radiated power

is defined as the product of the transmitted
power by the efficiency of the antenna)

• 2: Behavioural transitions;

We determined behavioural changes over time using Ricker wavelet processing [32].
Wavelet processing consists in filtering the sheep position signal using a wavelet as a
filter [33]. The use of wavelet analysis to describe animal behaviour was previously used
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in [34]. This type of filtering is applied to several time scales, thus allowing the detection of
a change in the direction and speed of the sheep, depending on when the changes occur or
the duration of the change. Our aim was to determine the precise moments when the focal
sheep changed its way of moving, which was estimated using the spectrum described by
each scale of the used wavelet. We observed that the number of local maxima in the wavelet
transform coefficients is sensitive to the number of changes in the way of moving and the
size of the wavelet will determine if the change is global or punctual. This estimation of
changes was done on the lateral and longitudinal movement and for the two last phases of
the experiment.

• 3: Space coverage;

We investigated the space occupied across time by the focal sheep using heatmaps
representing the areas the sheep spent time in during the measurements. The use of
heatmaps to describe animal behaviour was previously used in [35]. We partitioned the
arena into a grid of 80 virtual zones of 44 × 40 cm2 each (i.e., 16 partitions along the arena
length and 5 partitions along the arena width). We chose this grid dimension because
it is the width of a small lamb [36]. We counted the number of zones (i.e., the heatmap
score) the focal sheep remained in for more than 200 ms. This count was used to extract
behavioural features for the two last phases of the experiment.

2.6. Outdoor Radar Tracking

We ran outdoor experiments in order to demonstrate the applicability of our radar
system for the tracking of sheep in field conditions. These measurements were done in
an open space with no obstacles (60 m × 15 m asphalt place). A human experimenter
moved within the radar catching area in order to induce animal movements. We tested one
female sheep. To enhance detection range to 40 m, we used a FMCW radar with the lower
operating frequency of 24 GHz. At fixed transmitted power, lower frequencies enable
reduction of the free-space attenuation of the radiated electromagnetic power [27]. The
gain due to the free-space attenuation is 10.13 dB.

2.7. Statistical Analyses

We ran all analyses using the programming environment R [37]. Raw trajectory data
extracted from radar and video measures are available in Dataset S1.

• Analysis of new movement features

We tested the influence of sheep characteristics (docility, and sociability) in interaction
with the two test phases on the proportion of time spent in the behavioural classes using
a generalized Linear Mixed Model with binomial family error distribution. We tested all
possible dual interactions of each variable with the test phase. Three-way Interactions
were excluded to avoid over-fitting of the model [38]. Sheep identity was included as a
random effect. We ran a model selection on all feature combinations (docility, sociability the
phases and their interactions) using the Akaike score. The model with the lowest score was
retained as the best model. When the second best model have an AIC score equivalent to
the best model (i.e., when the difference is lower than 2) an average model was performed
with those that have equivalent AIC. We used a similar procedure to test the influence of
the sheep individual characteristics on continuous wavelet transforms estimated on lateral
and longitudinal movements (Gaussian family error distributions) and heatmaps (Poisson
family error distribution).

• Classification of behavioural types;

To improve the interpretation of the sheep behaviour in the corridor, we reduced
our four movement features (proportion of fast movements, changes in longitudinal and
transversal movements, space coverage) for phases 2 and 3, using a Principal Component
Analysis (PCA). The PCA was performed using the R package FactoMineR [39]. We
explored afterward whether our new automated estimators could be used to replace
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estimators recorded manually using a General Linear Model (GLM, using the R package
stats) approach.

3. Results
3.1. Radar Tracking Is Faster and More Accurate Than Video Tracking

To test the efficiency of the radar tracking system, we compared the data obtained
from the infrared cells, the video and the radar. This efficiency was estimated by comparing
the proximity score estimated using the infrared cell, video and radar detection but also
by using the crossing rate estimated by the infrared cell and the mean speed along the
longitudinal axis estimated by the video and radar detection. We analysed data from
58 individuals (29 males, 29 females). Both data collected by the radar and the video en-
abled to capture information given by infrared cells with high fidelity. Proximity scores and
crossing rates obtained from infrared cells were positively correlated with data obtained
from the radar (Pearson correlation; proximity: r = 0.77, p < 0.001; crossing rate: r = 0.87,
p < 0.001) and the video (Pearson correlation test; proximity: r = 0.91, p < 0.001; crossing
rate: r = 0.34, p < 0.001).

Radar tracking had additional advantages over video tracking in terms of data process-
ing (Table 2). The radar produced two times more measures per second. Radar processing
was also much faster (50 frames per second for radar and 4 for video processing) and
therefore, it may be used for real time analyses. Radar measurement data were of similar
size as video measures (ROM), but required approximately seven times less memory (RAM)
to process. Finally, radar processing did not require a learning phase with important data
collection and a time-consuming training phase that can last several hours just for the
adaptation of the model, or several days if the network is not trained beforehand.

Table 2. Comparison of data processing characteristics with radar and video tracking systems.

Tracking Method Radar Video

Number of measures per second 50 25

Read Only Memory (ROM) for all measures of a sheep 151 Mo 62 Mo

Random Access Memory (RAM) per measure 524 Kb 3.7 Mb

Processing time per measure <20 ms 250 ms

Distance to target centre 1.1 m 1.5 m

3.2. New Behavioural Indicators from the Radar Data

The following analyses were made on the 58 sheep. The 2D radar trajectory data
offered the opportunity for high resolution analyses of sheep movements.

• Behavioural classes: detection of slow and fast movements

In order to classify the different types of movements exhibited by the sheep, we
applied the GMM procedure to statistically identify behavioural classes from the trajectory
data. We found four behavioural classes (Figure 2A):

Class 1 (51.3% of the measures) was characterized by null or slow movements
(“slow movements”);

Class 2 (35.48% of the measures) was characterized by fast movements with low
sinuosity (“fast movement”);

Class 3 (10.2% of the measures) was characterized by fast movements with high
sinuosity (“fast tortuous”);

Class 4 (3.01% of the measures) was characterized by slow movements with high
sinuosity (“slow tortuous”).

Each of the two behavioural classes with strong sinuosity (classes 3 and 4) represented
less than 10% of all data. We thus focused our analyses on slow and fast movements only
(classes 1 and 2). We tested the effects of the individual characteristics of sheep on the rate
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of time spent in each in the two main behavioural classes using GLMMs. The best (using
Akaike criterion) model (See Table S1) retained the docility, sociability indicators and the
phase of the test to explain the two main behavioural classes extracted by the radar, i.e. the
rate of slow movement and fast movement. In phase 3, all the sheep tended to move less
than in phase 2 (estimate = −1.24, std. = 0.008, p < 0.001). In phase 2, highly sociable sheep
moved less than little sociable sheep (estimate = −0.11, std. = 0.015, p < 0.001). This trend
was reduced in phase 3 for both sociable and docile sheep (sociability: estimate = −0.12,
std. = 0.039, p < 0.001 docility: estimate = 0.16, std. = 0.0074, p < 0.001) (Table S1 and
Figure 2).
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(D) Correlation between the proportion of time spent in slow movements and the docility score of sheep during phase 2
and 3. N = 58 sheep.

Table 3. Analyses of behavioural classes. Results of the best GLMM (binomial family, after model
selection—see Table S1). The model tested the effects of phase, docility, sociability, and dual interac-
tion of each variable with phase, on the proportion of time spent in fast movements (behavioural
class 2). Lamb identity was included as a random factor. Significant effects (p < 0.05).

Estimate Std. Error z Value Pr (>|z|)

(Intercept) 0.11 0.055 2.08 0.037

Sociability 0.13 0.039 3.47 <0.001

phase 3 −1.24 0.0086 −144.04 <0.001

Docility −0.11 0.047 −2.43 0.015

sociability:phase 3 −0.12 0.0061 −19.90 <0.001

Docility: phase 3 0.16 0.0074 21.31 <0.001
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• Wavelet analysis: detection of erratic behavioural transitions;

Our second approach to describe the sheep behaviour was to quantified changes
in movements (i.e., variation in speed, direction, or both) through time. This was done
using continuous wavelet analyses (Figure 3). We tested the effects of the individual
characteristics of sheep on the frequency of these changes using GLMMs and model se-
lection (Tables S2 and S3). When considering longitudinal displacements (i.e., wavelet Y)
along the arena device (Table 4), we found that highly sociable sheep made more changes
in the pattern of displacement during both phases of test (estimate = 16.98, std. = 4.68
p < 0.001) (Figure 3A,C). In general the movements were less erratic in phase 2 than in
phase 3 (estimate = −91.50, std. = 9.07, p < 0.001). When considering transversal move-
ments (i.e., wavelet X) across the arena device (Table 4), we found that sheep made more
changes in the way of displacement during phase 2 than phase 3 of test (estimate = −53.15,
std. = 8.26, p < 0.001) (Figure 3B,D). However, this trend was reduced for the docile sheep
(estimate = 19.19, std. = 7.11, p = 0.009).
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Figure 3. Wavelet analyses. (A) Example of wavelet transform for lateral movements (X). Red dots correspond to the
detection of a change in the displacement at scale factor and time position (i.e., a local maxima of the wavelet transform
of the signal position). (B) Example of wavelet transform for longitudinal movements (Y). (C) Relationship between the
number of local maxima (red dots in (A,B)) in the wavelet extraction and the degree of sociability of sheep during phases 2
and 3. (D) Relationship between the number of wavelets and the degree of docility of sheep during phases 2 and 3. See
details of models in Table 4. N = 58 sheep.
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Table 4. Wavelet analyses. Results of the best GLMM (Gaussian family, after model selection—see
details in Tables S2 and S3). The model tested the effects of phase, docility, sociability, and binary
interactions of each variable with phase, on the number of wavelets. Lamb identity was included as
a random factor. Significant effects (p < 0.05) are shown in bold. Wavelet Y: longitudinal movements.
Wavelet X: transversal movements.

Wavelet Y Estimate Std. Error Df t Value Pr (>|t|)

(Intercept) 514 6.64 110 77.3 <0.001

sociability 17 4.68 110 3.63 <0.001

phase 3 −91.5 9.07 55 −10.1 <0.001

docility −3.12 5.72 110 −0.545 0.587

Sociability:phase 3 −14.4 6.4 55 −2.25 0.05

Docility:phase 3 4.7 7.81 55 0.602 0.55

Wavelet X Estimate Std. Error df t Value Pr (>|t|)

(Intercept) 467 6.04 110 77.3 <0.001

sociability 0.526 4.26 110 0.124 0.902

phase 3 −53.2 8.26 55 −6.43 <0.001

Docility −9.61 5.2 110 −1.85 0.0673

Sociability:phase 3 7.36 5.82 55 1.26 0.212

Docility: phase 3 19.2 7.11 55 2.7 <0.05

• Heatmap analyses: Detection of spatial coverage

Finally we quantified the spatial coverage by individual sheep (number of zones occu-
pied in the arena) using heatmaps (Figure 4). Overall, the sheep used 2.37 (std. 1.03) time
less space in phase 3 than in phase 2. We tested the effects of the individual characteristics
on the number of zones in which the sheep spent more than 200 ms using GLMMs and
model selection. Here we describe the most explanatory model considering AIC, but the
three best models gave a similar trend on the sheep behaviour (see Table S4), so that an
average model was ultimately performed using the models with n difference of AIC lower
than 2 with the best model. Using a spatial resolution of the grid similar to the dimension
of a lamb body size (i.e., dimension: 0.44 × 0.40 m; example Figure 4A) revealed that
sheep tended to use less space in phase 3 than in phase 2 (estimate = −0.765, std. = 0.053,
p < 0.001), and that highly sociable sheep used more space in phase 2 than less sociable
sheep (estimate = 0.048, std. = 0.024, p = 0.043). It also showed that most docile sheep used
less space in phase 2 than less docile sheep (estimate = −0.066, std. = 0.031, p = 0.0389) but
the phenomenon was reduced in phase 3 (estimate = 0.099, std. = 0.046, p = 0.032) (Table 5).
Therefore, the influence of sociability on spatial coverage decreased in phase 3.

Table 5. Heatmap analyses. Results of the best GLMM (Gaussian family, after model selection—see
details in Table S4). The model tested the effects of phase, docility, sociability, and dual interactions of
each variable with phase, on the number of areas where the lamb spent more than 1 s. Lamb identity
was included as a random factor. Significant effects (p < 0.05) are shown in bold.

Heatmap Estimate Std. Error z Value Pr (>|z|)

(Intercept) 2.95 0.037 79.00 <2 × 10−16

docility −0.066 0.031 2.07 0.039

phase 3 −0.77 0.053 14.27 <2 × 10−16

sociability 0.048 0.023 2.022 0.043

phase 3: docility 0.099 0.046 2.15 0.032

phase 3: sociability −0.020 0.038 0.52 0.60
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2 and 3. See details of models in Table 5. N = 58 sheep.

3.3. Sheep Behavioural Phenotype

We explored whether the new movement features extracted from the radar data could
capture information from behavioural traits measured manually by the experimenter in
the arena test. We focused on docility and sociability. We ran a PCA based on the eight
behavioural measures extracted from the radar data in phase 2 and phase 3: proportion of
fast movements (class 1) out of all movements (class 1 + class 2), longitudinal movements
(wavelets Y), transversal movements (wavelets X) and space coverage (heatmaps). We
retained two PCs using the Kaiser–Guttman criterion [40]. PC1 explained 30.65% of the
variance and PC2 explained 19.31% of the variance (Table 6). The eigenvalues associated to
the 3 first components are: 2.8928914, 1.7375911, 0.9738257. PC1 was positively associated
with all behavioural variables (Figure 5A). Sheep with high PC1 values moved more often
fast, made more changes in the way of displacement, and used more zones than sheep
with low PC1 values. We therefore interpreted PC1 as a “movement” component. PC2
was positively associated with the four behavioural variables of phase 3 and negatively
associated with the four behavioural variables of phase 2 (Figure 5A). Sheep with high PC2
values showed a more important increase of time spent moving fast, of the frequency of
changes in the way of displacement, and numbers of zones occupied between phase 2 and
phase 3 than sheep with low PC2 levels. We interpreted PC2 as a variable of “movement
in response to social isolation”. Using PC1 and PC2, we investigated contribution of the
docility and sociability of the sheep on these components. It showed that the first was
linked to the sociability (estimate = 0.2690, std. = 0.1054, p = 0.0135) and the second was
linked to docility (estimate = 0.28296, std. = 0.1111, p = 0.0137). The link between PC1 and
docility and PC2 and sociability was not significant.
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Figure 5. (A) Correlations between the two first components (PCs) of the principal component analysis (PCA). Arrows
represent the eight behavioural variables on PC1 (movement speed) and PC2 (movement increase between phases).
Contribution of variables to the variance explained is color-coded. Each data point represents the PC1 and PC2 scores of a
given lamb (N = 58). (B) Relationship between PC1 and sociability. (C) Relationship between PC2 and docility. Blue lines
represent linear models (see main text). N = 58 sheep.

Table 6. Eigenvalue for each component (PC) of the Principal Component Analysis using the eight
behavioural features extracted using the radar tracking.

Component Eigenvalue Variance Explained

PC 1 2.893 30.65

PC 2 1.738 19.31

PC 3 0.974 13.04

PC 4 0.833 9.27

PC 5 0.564 7.20

PC 6 0.492 6.69

3.4. Outdoor Radar Tracking

To demonstrate that our radar tracking system could be used at larger spatial scales,
in the field, we sat up a radar with a lower operating frequency in an outside corridor
(10 × 60 m; Figure 6A). We successfully monitored the 2D trajectory of one sheep over a
maximum distance of 45 m the backscattering signal was not detectable using one radar
measurement (Figure 6B). The presence of a human to induce sheep movement did not
deteriorate sheep tracking (Figure 6C).
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4. Discussion

Research in animal behaviour increasingly requires automated monitoring and annota-
tion of animal movements for comparative quantitative analyses [2,3]. Here we introduced
a radar tracking system suitable to study the 2D movements of sheep indoor and outdoor,
within a range of 45 m. A summary of the method is shown on Figure 7. The system is
non-sensitive to light variations, compatible with real time data analyses, transportable,
fast processing and adaptable to various species and experimental contexts. Moreover,
it does not require tags or transponders to track animals. It is therefore suitable for the
collection of large sets of behavioural data in an automated way required in many areas
of biological and ecological research, as well as applied ethology for precision farming as
illustrated here.

We recently used FMCW radars to track the behaviour of sheep [18], pigs [16] and
bees [17]. Here, however, for the first time, we demonstrate the applicability of this
approach to monitor 2D trajectories of untagged walking animals within a range of 45 m.
Others methods can be used to estimate the sheep position, such as video detection [24]
which can detect sheep in 2D up to 20 m but with a precision from 50 cm (at 5 m) to 1 m
(at 20 m) and GPS detection [41], but this requires to equip the animals with transponders.
We showed that the radar acquisition system has several advantages over these more
conventional methods, and in particular video tracking. It collects more data per second
(50 measures per second for the radar versus 25 for the video), requires less RAM (524 Kb
for one radar measurement versus 3.7 Mb for one video frame). It also requires 10 times
less processing time (e.g., does not require to train neural networks) and generates less false
detection rates (15% of false detection for video processing and 5.2% for radar processing).
Importantly, the radar is not dependent on brightness and can be used for outside tracking
over long distances by adjusting operating frequencies. It also enables the tracking of
individualized animals without tags, based on the size and shape of the radar echoes of
the different targets.

Our application of radar-based tracking to behavioural phenotyping of sheep shows
that the radar analysis is consistent with current semi-automated analyses (i.e., infrared sen-
sors and video). Using the radar, we found that sheep tend to have a greater displacement
in phase 2 than in phase 3 of the arena test. This agrees with previous studies showing that
sheep are more active when socially isolated from conspecifics [20,21]. Higher behavioural
activity in a social isolation context, for instance through locomotion and vocalization
behaviours, may be interpreted as the way for the isolated animal for searching for so-
cial contact with conspecifics as described in the ewe-lamb relationships [42] or between
familiar lambs [43].
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In addition, the high resolution 2D, in theory 5 cm in range and 6◦ in azimuth, tra-
jectories obtained from the radar enabled identification of new behavioural estimators
that could greatly benefit the fast and automated identification of behavioural phenotypes.
For example, our application of unsupervised behavioural annotation to identify statisti-
cally significant behaviours by sheep in the arena test showed that sheep exhibit less fast
movements in phase 3 than in phase 2. The wavelet analysis, considering the way that the
sheep moves (i.e., referred to here as “way of displacement”) revealed the occurrence of
“erratic” displacements. Here low erratic displacements corresponded to displacements
showing a constant speed whereas high erratic displacements corresponded to a high level
of alternation in slow and fast displacements. These erratic displacements may be linked
to the sociability and/or docility of sheep. Finally, space occupation analysis showed that
individuals exploit narrower areas in phase 3 than in phase 2 of the arena test. All these
results are consistent with previous observations using semi-automated recording methods.
Indeed, social isolation from conspecifics (i.e., phase of test 2) resulted in the expression of
on average higher behavioural activity (i.e., individual variability exists), including dis-
placements, than in presence of conspecifics and a motionless human (i.e., phase of test 3).
The higher displacement activity during social isolation resulted in a higher exploration
of the arena whereas, in presence of conspecifics and a motionless human, lambs showed
limited displacement. The combination of these new automatically computed estimators
appears to be complementary to behavioural traits of interest that were until now measured
(i.e., for instance no or slight relationship with sociability or docility) and could be used for
more detailed characterization of animal behavioural profiles. Note, however, that this first
study is based on relatively low sample sizes (58 individuals) and further measurements
are needed to verify the biological trends observed on a much larger number of sheep.

Beyond the case study of the arena test described here, our system could be tuned
to suit a large diversity of animal sizes and experimental contexts. Several ways can be
considered. For instance, the range and resolution of detection could be improved using
different radars. Here, we had to place the radar at 1 m from the arena fences in order
to illuminate and monitor the entire arena. Antennas with larger beamwidth may allow
placing the radar on the arena fences. Moreover, the detection was limited to a few meters,
but it is possible to detect a sheep at tens of meters using a radar operating at a lower
frequency (24 GHz) and/or transmitting higher electromagnetic power. It is also possible
to improve radar detection by using more antennas. Indeed, by multiplying the number of
antennas, we multiply the number of signal estimations and then the noise from the radar
can be decreased. The same radar technology could be used to track individuals in groups
over longer distances in open fields, for instance to explore the mechanisms underpinning
social network structures and collective behaviour [44]. The processing of the radar signal
can also be improved for tracking large number of sheep simultaneously by using deep
radar processing but this would require the use of a large amount of annotated data to
train the neural networks [45]. Individual tracking within groups could also be improved
with non-invasive passive tags that depolarize radar signal in specific directions [46]. Note
that at the moment, we do not know the long-term effects of the use of millimetre waves
on these animals and this should be investigated in further studies.

5. Conclusions

We demonstrated the feasibility of tracking a sheep in a restricted area using a
millimetre-wave FMCW radar. This detection is possible even if each wall of the arena
backscatters the transmitted electromagnetic signal. This radar tracking system can also be
advantageously used to extract features that are correlated to the movement of the sheep
and can estimate if it is erratic, fast and the space occupied in the corridor. In contrast
to other short-range tracking methods, our radar detection approach does not require
pre-annotated data and can be applied in real time. This flexibility holds considerable
premises for tracking the behaviour of animals of various sizes and environments in a wide
range of contexts and research fields.
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Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/s21238140/s1, Table S1: Model selection for behavioural class analyses. Null model, best
model, second and third best models are displayed. Table S2: Model selection for X wavelet analyses
(latitudinal movements). Null model, best model, second and third best models are displayed.
Table S3: Model selection for Y wavelet analyses (longitudinal movements). Null model, best model,
second and third best models are displayed. Table S4: Model selection for heatmap analyses (low
spatial resolution). Null model, best model, second and third best models are displayed. Dataset S1:
list of the sheep trajectory during the behavioural test and list of all behavioral score.
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